1
|
Bienboire-Frosini C, Durairaj R, Pelosi P, Pageat P. The Major Cat Allergen Fel d 1 Binds Steroid and Fatty Acid Semiochemicals: A Combined In Silico and In Vitro Study. Int J Mol Sci 2020; 21:ijms21041365. [PMID: 32085519 PMCID: PMC7073184 DOI: 10.3390/ijms21041365] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
The major cat allergen Fel d 1 is a tetrameric glycoprotein of the secretoglobin superfamily. Structural aspects and allergenic properties of this protein have been investigated, but its physiological function remains unclear. Fel d 1 is assumed to bind lipids and steroids like the mouse androgen-binding protein, which is involved in chemical communication, either as a semiochemical carrier or a semiochemical itself. This study focused on the binding activity of a recombinant model of Fel d 1 (rFel d 1) towards semiochemical analogs, i.e., fatty acids and steroids, using both in silico calculations and fluorescence measurements. In silico analyses were first adopted to model the interactions of potential ligands, which were then tested in binding assays using the fluorescent reporter N-phenyl-1-naphthylamine. Good ligands were fatty acids, such as the lauric, oleic, linoleic, and myristic fatty acids, as well as steroids like androstenone, pregnenolone, and progesterone, that were predicted by in silico molecular models to bind into the central and surface cavities of rFel d 1, respectively. The lowest dissociation constants were shown by lauric acid (2.6 µM) and androstenone (2.4 µM). The specific affinity of rFel d 1 to semiochemicals supports a function of the protein in cat’s chemical communication, and highlights a putative role of secretoglobins in protein semiochemistry.
Collapse
Affiliation(s)
- Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication (D-BMCC), Research Institute in Semiochemistry and Applied Ethology (IRSEA), Quartier Salignan, 84400 Apt, France;
- Correspondence: ; Tel.: +33-490-75-57-00
| | - Rajesh Durairaj
- Department of Molecular Biology and Chemical Communication (D-BMCC), Research Institute in Semiochemistry and Applied Ethology (IRSEA), Quartier Salignan, 84400 Apt, France;
| | - Paolo Pelosi
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 3430 Tulln, Austria;
| | - Patrick Pageat
- Department of Chemical Ecology (D-EC), Research Institute in Semiochemistry and Applied Ethology (IRSEA), Quartier Salignan, 84400 Apt, France;
| |
Collapse
|
2
|
Ricatti J, Acquasaliente L, Ribaudo G, De Filippis V, Bellini M, Llovera RE, Barollo S, Pezzani R, Zagotto G, Persaud KC, Mucignat-Caretta C. Effects of point mutations in the binding pocket of the mouse major urinary protein MUP20 on ligand affinity and specificity. Sci Rep 2019; 9:300. [PMID: 30670733 PMCID: PMC6342991 DOI: 10.1038/s41598-018-36391-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/15/2018] [Indexed: 12/30/2022] Open
Abstract
The mouse Major Urinary Proteins (MUPs) contain a conserved β-barrel structure with a characteristic central hydrophobic pocket that binds a variety of volatile compounds. After release of urine, these molecules are slowly emitted in the environment where they play an important role in chemical communication. MUPs are highly polymorphic and conformationally stable. They may be of interest in the construction of biosensor arrays capable of detection of a broad range of analytes. In this work, 14 critical amino acids in the binding pocket involved in ligand interactions were identified in MUP20 using in silico techniques and 7 MUP20 mutants were synthesised and characterised to produce a set of proteins with diverse ligand binding profiles to structurally different ligands. A single amino acid substitution in the binding pocket can dramatically change the MUPs binding affinity and ligand specificity. These results have great potential for the design of new biosensor and gas-sensor recognition elements.
Collapse
Affiliation(s)
- Jimena Ricatti
- Department of Molecular Medicine, University of Padua, Padua, Italy.,Cell Biology and Neuroscience Institute, University of Buenos Aires-National Scientific and Technical Council (UBA-CONICET), Buenos Aires, Argentina
| | - Laura Acquasaliente
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Giovanni Ribaudo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Vincenzo De Filippis
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Marino Bellini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Ramiro Esteban Llovera
- Multidisciplinary Institute of Cell Biology, National Scientific and Technical Council (CONICET) and Department of Science and Technology, National University of Quilmes, Buenos Aires, Argentina
| | - Susi Barollo
- Department of Medicine, University of Padua, Padua, Italy
| | | | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Krishna C Persaud
- School of Chemical Engineering and Analytical Science, University of Manchester, Manchester, UK
| | - Carla Mucignat-Caretta
- Department of Molecular Medicine, University of Padua, Padua, Italy. .,National Institute of Biostructures and Biosystems, Rome, Italy.
| |
Collapse
|
3
|
Buffalo nasal odorant-binding protein (bunOBP) and its structural evaluation with putative pheromones. Sci Rep 2018; 8:9323. [PMID: 29921930 PMCID: PMC6008301 DOI: 10.1038/s41598-018-27550-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 05/17/2018] [Indexed: 01/18/2023] Open
Abstract
Pheromones are odoriferous volatile chemical cues produced by animals for communication among conspecifics so as to regulate their social behaviors. In general, the odor compounds are recognized by receptors in the nasal cavity. Odorant-binding protein (OBP), a lipocalin family protein, mediates the air-borne odor cues to nasal receptors through nasal mucus. The presence of OBP in several mammalian species is well documented but to-date there is no report of a nasal OBP in buffalo. Hence, the present study was undertaken to investigate if OBP is present in buffalo nasal mucus. Uni- and two-dimensional gel electrophoresis of the nasal mucus suggested the presence of OBP, which was confirmed using mass spectrometry. In silico homology model of the OBP was generated and its structural similarity with other mammalian OBPs was assessed. Finally, molecular-docking and -dynamics simulations analysis revealed the efficiency of buffalo nasal OBP (bunOBP) to bind with buffalo pheromones as well as other reported chemical cues. Taken together, the occurrence of nasal OBP in buffalo and its putative role in odor binding are reported for the first time. The potential association of this protein with estrus-specific volatiles could be taken to advantage for non-invasive detection of estrus in buffaloes.
Collapse
|
4
|
Burger JL, Jeerage KM, Bruno TJ. Direct nuclear magnetic resonance observation of odorant binding to mouse odorant receptor MOR244-3. Anal Biochem 2016; 502:64-72. [PMID: 27019154 DOI: 10.1016/j.ab.2016.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/01/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
Abstract
Mammals are able to perceive and differentiate a great number of structurally diverse odorants through the odorant's interaction with odorant receptors (ORs), proteins found within the cell membrane of olfactory sensory neurons. The natural gas industry has used human olfactory sensitivity to sulfur compounds (thiols, sulfides, etc.) to increase the safety of fuel gas transport, storage, and use through the odorization of this product. In the United States, mixtures of sulfur compounds are used, but the major constituent of odorant packages is 2-methylpropane-2-thiol, also known as tert-butyl mercaptan. It has been fundamentally challenging to understand olfaction and odorization due to the low affinity of odorous ligands to the ORs and the difficulty in expressing a sufficient number of OR proteins. Here, we directly observed the binding of tert-butyl mercaptan and another odiferous compound, cis-cyclooctene, to mouse OR MOR244-3 on living cells by saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy. This effort lays the groundwork for resolving molecular mechanisms responsible for ligand binding and resulting signaling, which in turn will lead to a clearer understanding of odorant recognition and competition.
Collapse
Affiliation(s)
- Jessica L Burger
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA.
| | - Kavita M Jeerage
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Thomas J Bruno
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
| |
Collapse
|
5
|
Leray A, Brulé T, Buret M, Colas des Francs G, Bouhelier A, Dereux A, Finot E. Sorting of Single Biomolecules based on Fourier Polar Representation of Surface Enhanced Raman Spectra. Sci Rep 2016; 6:20383. [PMID: 26833130 PMCID: PMC4735853 DOI: 10.1038/srep20383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/31/2015] [Indexed: 12/29/2022] Open
Abstract
Surface enhanced Raman scattering (SERS) spectroscopy becomes increasingly used in biosensors for its capacity to detect and identify single molecules. In practice, a large number of SERS spectra are acquired and reliable ranking methods are thus essential for analysing all these data. Supervised classification strategies, which are the most effective methods, are usually applied but they require pre-determined models or classes. In this work, we propose to sort SERS spectra in unknown groups with an alternative strategy called Fourier polar representation. This non-fitting method based on simple Fourier sine and cosine transforms produces a fast and graphical representation for sorting SERS spectra with quantitative information. The reliability of this method was first investigated theoretically and numerically. Then, its performances were tested on two concrete biological examples: first with single amino-acid molecule (cysteine) and then with a mixture of three distinct odorous molecules. The benefits of this Fourier polar representation were highlighted and compared to the well-established statistical principal component analysis method.
Collapse
Affiliation(s)
- Aymeric Leray
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université Bourgogne Franche-Comté, 21000 Dijon (France)
| | - Thibault Brulé
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université Bourgogne Franche-Comté, 21000 Dijon (France)
| | - Mickael Buret
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université Bourgogne Franche-Comté, 21000 Dijon (France)
| | - Gérard Colas des Francs
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université Bourgogne Franche-Comté, 21000 Dijon (France)
| | - Alexandre Bouhelier
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université Bourgogne Franche-Comté, 21000 Dijon (France)
| | - Alain Dereux
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université Bourgogne Franche-Comté, 21000 Dijon (France)
| | - Eric Finot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université Bourgogne Franche-Comté, 21000 Dijon (France)
| |
Collapse
|
6
|
Larisika M, Kotlowski C, Steininger C, Mastrogiacomo R, Pelosi P, Schütz S, Peteu SF, Kleber C, Reiner-Rozman C, Nowak C, Knoll W. Electronic Olfactory Sensor Based on A. mellifera Odorant-Binding Protein 14 on a Reduced Graphene Oxide Field-Effect Transistor. Angew Chem Int Ed Engl 2015; 54:13245-8. [PMID: 26364873 PMCID: PMC4768645 DOI: 10.1002/anie.201505712] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Indexed: 11/11/2022]
Abstract
An olfactory biosensor based on a reduced graphene oxide (rGO) field-effect transistor (FET), functionalized by the odorant-binding protein 14 (OBP14) from the honey bee (Apis mellifera) has been designed for the in situ and real-time monitoring of a broad spectrum of odorants in aqueous solutions known to be attractants for bees. The electrical measurements of the binding of all tested odorants are shown to follow the Langmuir model for ligand-receptor interactions. The results demonstrate that OBP14 is able to bind odorants even after immobilization on rGO and can discriminate between ligands binding within a range of dissociation constants from K(d)=4 μM to K(d)=3.3 mM. The strongest ligands, such as homovanillic acid, eugenol, and methyl vanillate all contain a hydroxy group which is apparently important for the strong interaction with the protein.
Collapse
Affiliation(s)
- Melanie Larisika
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637371 (Singapore)
| | - Caroline Kotlowski
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | | | - Rosa Mastrogiacomo
- Department of Biology of Agriculture, Food and Environment, University of Pisa (Italy)
| | - Paolo Pelosi
- Department of Biology of Agriculture, Food and Environment, University of Pisa (Italy)
| | - Stefan Schütz
- Buesgen-Institute, Dept. of Forest Zoology and Forest Conservation, Goettingen (Germany)
| | - Serban F Peteu
- Michigan State University, Chemical Engineering & Materials Science (USA)
| | - Christoph Kleber
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | - Ciril Reiner-Rozman
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | - Christoph Nowak
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637371 (Singapore)
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | - Wolfgang Knoll
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria).
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637371 (Singapore).
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria).
| |
Collapse
|
7
|
Larisika M, Kotlowski C, Steininger C, Mastrogiacomo R, Pelosi P, Schütz S, Peteu SF, Kleber C, Reiner‐Rozman C, Nowak C, Knoll W. Electronic Olfactory Sensor Based on
A. mellifera
Odorant‐Binding Protein 14 on a Reduced Graphene Oxide Field‐Effect Transistor. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Melanie Larisika
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637371 (Singapore)
| | - Caroline Kotlowski
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | | | - Rosa Mastrogiacomo
- Department of Biology of Agriculture, Food and Environment, University of Pisa (Italy)
| | - Paolo Pelosi
- Department of Biology of Agriculture, Food and Environment, University of Pisa (Italy)
| | - Stefan Schütz
- Buesgen‐Institute, Dept. of Forest Zoology and Forest Conservation, Goettingen (Germany)
| | - Serban F. Peteu
- Michigan State University, Chemical Engineering & Materials Science (USA)
| | - Christoph Kleber
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | - Ciril Reiner‐Rozman
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | - Christoph Nowak
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637371 (Singapore)
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | - Wolfgang Knoll
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637371 (Singapore)
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| |
Collapse
|
8
|
A computational microscope focused on the sense of smell. Biochimie 2014; 107 Pt A:3-10. [PMID: 24952349 DOI: 10.1016/j.biochi.2014.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/07/2014] [Indexed: 11/24/2022]
Abstract
In this article, we review studies of the protagonists of the perception of smell focusing on Odorant-Binding Proteins and Olfactory Receptors. We notably put forward studies performed by means of molecular modeling, generally combined with experimental data. Those works clearly emphasize that computational approaches are now a force to reckon with. In the future, they will certainly be more and more used, notably in the framework of a computational microscope meant to observe how the laws of physics govern the biomolecular systems originating our sense of smell.
Collapse
|
9
|
Audouze K, Tromelin A, Le Bon AM, Belloir C, Petersen RK, Kristiansen K, Brunak S, Taboureau O. Identification of odorant-receptor interactions by global mapping of the human odorome. PLoS One 2014; 9:e93037. [PMID: 24695519 PMCID: PMC3973694 DOI: 10.1371/journal.pone.0093037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 02/27/2014] [Indexed: 12/14/2022] Open
Abstract
The human olfactory system recognizes a broad spectrum of odorants using approximately 400 different olfactory receptors (hORs). Although significant improvements of heterologous expression systems used to study interactions between ORs and odorant molecules have been made, screening the olfactory repertoire of hORs remains a tremendous challenge. We therefore developed a chemical systems level approach based on protein-protein association network to investigate novel hOR-odorant relationships. Using this new approach, we proposed and validated new bioactivities for odorant molecules and OR2W1, OR51E1 and OR5P3. As it remains largely unknown how human perception of odorants influence or prevent diseases, we also developed an odorant-protein matrix to explore global relationships between chemicals, biological targets and disease susceptibilities. We successfully experimentally demonstrated interactions between odorants and the cannabinoid receptor 1 (CB1) and the peroxisome proliferator-activated receptor gamma (PPARγ). Overall, these results illustrate the potential of integrative systems chemical biology to explore the impact of odorant molecules on human health, i.e. human odorome.
Collapse
Affiliation(s)
- Karine Audouze
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Anne Tromelin
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Bourgogne University, Dijon, France
| | - Anne Marie Le Bon
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Bourgogne University, Dijon, France
| | - Christine Belloir
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Bourgogne University, Dijon, France
| | | | | | - Søren Brunak
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Olivier Taboureau
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- INSERM UMR-S973, Molecules Thérapeutiques In Silico, Paris Diderot University, Paris, France
- * E-mail:
| |
Collapse
|
10
|
Heydel JM, Coelho A, Thiebaud N, Legendre A, Bon AML, Faure P, Neiers F, Artur Y, Golebiowski J, Briand L. Odorant-Binding Proteins and Xenobiotic Metabolizing Enzymes: Implications in Olfactory Perireceptor Events. Anat Rec (Hoboken) 2013; 296:1333-45. [DOI: 10.1002/ar.22735] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 02/01/2013] [Accepted: 02/26/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Jean-Marie Heydel
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Alexandra Coelho
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Nicolas Thiebaud
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Arièle Legendre
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Anne-Marie Le Bon
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Philippe Faure
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Fabrice Neiers
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Yves Artur
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Jérôme Golebiowski
- Université de Nice Sophia Antipolis; CNRS UMR7272, Institut de Chimie de Nice; F-06108 Nice Cedex 2 France
| | - Loïc Briand
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| |
Collapse
|
11
|
Lemière G, Duñach E. Catalytic Activation of Olefins by Metal Triflates and Triflimides: Application to Fragrance Chemistry. Chemistry 2013; 19:3270-80. [DOI: 10.1002/chem.201203903] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gilles Lemière
- Institut de Chimie de Nice, UMR 7272, Université Nice‐Sophia Antipolis, CNRS, Faculté des Sciences, Parc Valrose, 06108 Nice Cedex 2 (France), Fax: (+33) 4‐92‐07‐61‐89
| | - Elisabet Duñach
- Institut de Chimie de Nice, UMR 7272, Université Nice‐Sophia Antipolis, CNRS, Faculté des Sciences, Parc Valrose, 06108 Nice Cedex 2 (France), Fax: (+33) 4‐92‐07‐61‐89
| |
Collapse
|