1
|
Wu K, Zhang T, Chai X, Duan X, He D, Yu H, Liu X, Tao Z. Encapsulation Efficiency and Functional Stability of Cinnamon Essential Oil in Modified β-cyclodextrins: In Vitro and In Silico Evidence. Foods 2022; 12:foods12010045. [PMID: 36613259 PMCID: PMC9818807 DOI: 10.3390/foods12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Essential oils (EOs) have good natural antioxidant and antimicrobial properties; however, their volatility, intense aroma, poor aqueous solubility, and chemical instability limit their applications in the food industry. The encapsulation of EOs in β-cyclodextrins (β-CDs) is a widely accepted strategy for enhancing EO applications. The complexation of cinnamon essential oil (CEO) with five types of β-CDs, containing different substituent groups (β-CD with primary hydroxyl, Mal-β-CD with maltosyl, CM-β-CD with carboxymethyl, HP-β-CD with hydroxypropyl, and DM-β-CD with methyl), inclusion process behaviors, volatile components, and antioxidant and antibacterial activities of the solid complexes were studied. The CEOs complexed with Mal-β-CD, CM-β-CD, and β-CD were less soluble than those complexed with DM-β-CD and HP-β-CD. Molecular docking confirmed the insertion of the cinnamaldehyde benzene ring into various β-CD cavities via hydrophobic interactions and hydrogen bonds. GC-MS analysis revealed that HP-β-CD had the greatest adaptability to cinnamaldehyde. The CEO encapsulated in β-, Mal-β-, and CM-β-CD showed lower solubility but better control-release characteristics than those encapsulated in DM- and HP-β-CD, thereby increasing their antioxidant and antibacterial activities. This study demonstrated that β-, Mal-β-, and CM-β-CD were suitable alternatives for the encapsulation of CEO to preserve its antioxidant and antibacterial activities for long-time use.
Collapse
|
2
|
Pardeshi CV, Kothawade RV, Markad AR, Pardeshi SR, Kulkarni AD, Chaudhari PJ, Longhi MR, Dhas N, Naik JB, Surana SJ, Garcia MC. Sulfobutylether-β-cyclodextrin: A functional biopolymer for drug delivery applications. Carbohydr Polym 2022; 301:120347. [DOI: 10.1016/j.carbpol.2022.120347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
|
3
|
Nakhle L, Kfoury M, Mallard I, Greige-Gerges H, Landy D. Solubilization of Eucalyptus citriodora essential oil and citronellal in deep eutectic solvents:water:cyclodextrins mixtures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Hammoud Z, Kayouka M, Trifan A, Sieniawska E, Jemâa JMB, Elaissari A, Greige-Gerges H. Encapsulation of α-Pinene in Delivery Systems Based on Liposomes and Cyclodextrins. Molecules 2021; 26:molecules26226840. [PMID: 34833931 PMCID: PMC8623189 DOI: 10.3390/molecules26226840] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
The essential oil component α-pinene has multiple biological activities. However, its application is limited owing to its volatility, low aqueous solubility, and chemical instability. For the aim of improving its physicochemical properties, α-pinene was encapsulated in conventional liposomes (CLs) and drug-in-cyclodextrin-in-liposomes (DCLs). Hydroxypropyl-β-cyclodextrin/α-pinene (HP-β-CD/α-pinene) inclusion complexes were prepared in aqueous solution, and the optimal solubilization of α-pinene occurred at HP-β-CD:α-pinene molar ratio of 7.5:1. The ethanol-injection method was applied to produce different formulations using saturated (Phospholipon 90H) or unsaturated (Lipoid S100) phospholipids in combination with cholesterol. The size, the phospholipid and cholesterol incorporation rates, the encapsulation efficiency (EE), and the loading rate (LR) of α-pinene were determined, and the storage stability of liposomes was assessed. The results showed that α-pinene was efficiently entrapped in CLs and DCLs with high EE values. Moreover, Lipoid S100 CLs displayed the highest LR (22.9 ± 2.2%) of α-pinene compared to the other formulations. Both carrier systems HP-β-CD/α-pinene inclusion complex and Lipoid S100 CLs presented a gradual release of α-pinene. Furthermore, the DPPH radical scavenging activity of α-pinene was maintained upon encapsulation in Lipoid S100 CLs. Finally, it was found that all formulations were stable after three months of storage at 4 °C.
Collapse
Affiliation(s)
- Zahraa Hammoud
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Jdeidet El-Metn 90656, Lebanon; (Z.H.); (M.K.)
- UMR-5280, CNRS-University Lyon-1, 5 rue de la Doua, 69100 Villeurbanne, France;
| | - Maya Kayouka
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Jdeidet El-Metn 90656, Lebanon; (Z.H.); (M.K.)
| | - Adriana Trifan
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16, 700115 Iasi, Romania;
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: (E.S.); (H.G.-G.)
| | - Jouda Mediouni Ben Jemâa
- Laboratory of Biotechnology Applied to Agriculture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, El Menzah 1004, Tunisia;
| | | | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Jdeidet El-Metn 90656, Lebanon; (Z.H.); (M.K.)
- Correspondence: (E.S.); (H.G.-G.)
| |
Collapse
|
5
|
Liu M, Yan C, Han J, Guo Z, Zhu W, Xiao Z, Wu Y, Huang J. pH‐activated
polymeric profragrances for
dual‐controllable
perfume release. AIChE J 2021. [DOI: 10.1002/aic.17265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ming Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai China
| | - Chenxu Yan
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai China
| | - Jianwei Han
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai China
| | - Zhiqian Guo
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai China
| | - Wei‐Hong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Yue Wu
- Apple Flavor & Fragrance Group Co., Ltd. Shanghai China
| | - Jian Huang
- Apple Flavor & Fragrance Group Co., Ltd. Shanghai China
| |
Collapse
|
6
|
Zhu G, Zhu G, Xiao Z. A review of the production of slow-release flavor by formation inclusion complex with cyclodextrins and their derivatives. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00929-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Antioxidant and antimicrobial properties of randomly methylated β cyclodextrin - captured essential oils. Food Chem 2018; 278:305-313. [PMID: 30583377 DOI: 10.1016/j.foodchem.2018.11.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 01/27/2023]
Abstract
Free essential oils and their active components have a low physiochemical stability and low aqueous solubility which limit their applications as food preservatives and in packaging industry. The aim of this study was to characterize the physicochemical properties, antioxidant activities and antimicrobial activity of randomly methylated β cyclodextrin (RAMEB) encapsulated thyme oil, lemon balm oil, lavender oil, peppermint oil and their active components that include thymol, citral, linalool, menthol and borneol. Inclusion complex formation of essential oils (EOs) and RAMEB were evaluated by several methods. Antioxidant capacities of RAMEB-EOs/components were reported to be more stable than free EOs/components (P < 0.05). Rapid SYBR green I/propidium iodide live/dead microbial cellular discrimination assay for Schizosaccharomyces pombe, Escherichia coli and Staphylococcus aureus showed similar results when compared with flow cytometry analysis (P < 0.01) suggesting that our novel microplate fluorescence method could be applied for the fast live/dead microbial discrimination in antimicrobial assays.
Collapse
|
8
|
Release control of fragrances by complexation with β-cyclodextrin and its derivatives. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0825-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
|
10
|
A friendly environmental approach for the controlled release of Eucalyptus essential oil. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Characterization of Cyclodextrin/Volatile Inclusion Complexes: A Review. Molecules 2018; 23:molecules23051204. [PMID: 29772824 PMCID: PMC6100373 DOI: 10.3390/molecules23051204] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 11/17/2022] Open
Abstract
Cyclodextrins (CDs) are a family of cyclic oligosaccharides that constitute one of the most widely used molecular hosts in supramolecular chemistry. Encapsulation in the hydrophobic cavity of CDs positively affects the physical and chemical characteristics of the guests upon the formation of inclusion complexes. Such a property is interestingly employed to retain volatile guests and reduce their volatility. Within this scope, the starting crucial point for a suitable and careful characterization of an inclusion complex is to assess the value of the formation constant (Kf), also called stability or binding constant. This task requires the application of the appropriate analytical method and technique. Thus, the aim of the present paper is to give a general overview of the main analytical tools used for the determination of Kf values for CD/volatile inclusion complexes. This review emphasizes on the advantages, inconvenients and limits of each applied method. A special attention is also dedicated to the improvement of the current methods and to the development of new techniques. Further, the applicability of each technique is illustrated by a summary of data obtained from the literature.
Collapse
|