1
|
Jiang Z, Huang Z, Du H, Li Y, Wang M, Chen D, Lu J, Liu G, Mei L, Li Y, Liang W, Yang B, Guo Y. Effects of high-dose glucose oxidase on broiler growth performance, antioxidant function, and intestinal microbiota in broilers. Front Microbiol 2024; 15:1439481. [PMID: 39529676 PMCID: PMC11551609 DOI: 10.3389/fmicb.2024.1439481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Glucose oxidase (GOD) has been investigated as a potential additive for enhancing intestinal health and growth performance in poultry. However, limited research exists on the effects of ultra-high doses of GOD in practical poultry production. This study aimed to investigate the impact of high dietary GOD levels on broiler growth performance, antioxidant capacity, and intestinal microbiota. A total of 400 healthy, 1-day-old, slow-growing broiler chickens were randomly assigned to four treatment groups. The control group was fed a standard basal diet, while the other groups (G1, G2, and G3) were fed the basal diet supplemented with 4 U/g, 20 U/g, and 100 U/g of VTR GOD, respectively. The results showed that a dose of 100 U/g GOD significantly improved the final body weight and average daily feed intake (ADFI) (p < 0.05). Additionally, the G3 group exhibited a marked increase in glutathione peroxidase (GSH-Px) activity (p < 0.05), reflecting enhanced antioxidant function. Gut morphology remained intact across all groups, indicating no adverse effects on intestinal barrier integrity. Microbiota analysis revealed significant increases (p < 0.05) in Firmicutes and Verrucomicrobiota abundance at the phylum level in the GOD-supplemented groups. Moreover, GOD treatments significantly increased the abundance of Faecalibacterium, Mucispirllum, and CHKCI001 at the genus level. Metabolic function predictions suggested that high-dose GOD supplementation enriched carbohydrate metabolism, particularly starch and sucrose metabolism. Correlation analysis indicated that Faecalibacterium and CHCKI001 were two bacteria strongly influenced by GOD supplementation and were associated with enhanced growth performance and improved gut health. In conclusion, high-dose GOD supplementation had no adverse effects and demonstrated significant benefits, promoting both growth performance and gut health in broilers.
Collapse
Affiliation(s)
- Zipeng Jiang
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
- South China University of Technology, School of Biology and Biological Engineering, Guangzhou, China
| | - Zhiyi Huang
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Hongfang Du
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Yangyuan Li
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Min Wang
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Dandie Chen
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Jingyi Lu
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Ge Liu
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Liang Mei
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | - Yuqi Li
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| | | | - Bo Yang
- South China University of Technology, School of Biology and Biological Engineering, Guangzhou, China
| | - Yuguang Guo
- Guangdong VTR Bio-tech Co., Ltd., Zhuhai, China
| |
Collapse
|
2
|
Al-Fakhrany OM, Elekhnawy E. Next-generation probiotics: the upcoming biotherapeutics. Mol Biol Rep 2024; 51:505. [PMID: 38619680 PMCID: PMC11018693 DOI: 10.1007/s11033-024-09398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/28/2024] [Indexed: 04/16/2024]
Abstract
Recent and continuing advances in gut microbiome research have pointed out the role of the gut microbiota as an unexplored source of potentially beneficial probiotic microbes. Along the lines of these advances, both public awareness and acceptance of probiotics are increasing. That's why; academic and industrial research is dedicated to identifying and investigating new microbial strains for the development of next-generation probiotics (NGPs). At this time, there is a growing interest in NGPs as biotherapeutics that alter the gut microbiome and affect various diseases development. In this work, we have focused on some emergent and promising NGPs, specifically Eubacterium hallii, Faecalibacterium prausnitzii, Roseburia spp., Akkermansia muciniphila, and Bacteroides fragilis, as their presence in the gut can have an impact on the development of various diseases. Emerging studies point out the beneficial roles of these NGPs and open up novel promising therapeutic options. Interestingly, these NGPs were found to enhance gastrointestinal immunity, enhance immunotherapy efficacy in cancer patients, retain the intestinal barrier integrity, generate valuable metabolites, especially short-chain fatty acids, and decrease complications of chemotherapy and radiotherapy. Although many of these NGPs are considered promising for the prevention and treatment of several chronic diseases, research on humans is still lacking. Therefore, approval of these microbes from regulatory agencies is rare. Besides, some issues limit their wide use in the market, such as suitable methods for the culture and storage of these oxygen-sensitive microbes. The present review goes over the main points related to NGPs and gives a viewpoint on the key issues that still hinder their wide application. Furthermore, we have focused on the advancement in NGPs and human healthiness investigations by clarifying the limitations of traditional probiotic microorganisms, discussing the characteristics of emerging NGPs and defining their role in the management of certain ailments. Future research should emphasize the isolation, mechanisms of action of these probiotics, safety, and clinical efficacy in humans.
Collapse
Affiliation(s)
- Omnia Momtaz Al-Fakhrany
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
3
|
Sajnaga E, Socała K, Kalwasińska A, Wlaź P, Waśko A, Jach ME, Tomczyk M, Wiater A. Response of murine gut microbiota to a prebiotic based on oligosaccharides derived via hydrolysis of fungal α-(1→3)-d-glucan: Preclinical trial study on mice. Food Chem 2023; 417:135928. [PMID: 36933426 DOI: 10.1016/j.foodchem.2023.135928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 02/04/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
We investigated the modulating effect of α-(1→3)-glucooligosaccharides (GOS), i.e. a product of fungal α-(1→3)-d-glucan hydrolysis, on the gut microbiota composition. Mice were fed with a GOS-supplemented diet and two control diets for 21 days, and fecal samples were collected at 0, 1, and 3-week time points. The bacterial community composition was determined by 16S rRNA gene Illumina sequencing. The gut microbiota of the GOS-supplemented mice showed profound time-dependent changes in the taxonomic composition; however, we did not observe significant changes in α-diversity indices. The biggest number of genus abundance shifts after 1 week of the treatment was noticed between the group of the GOS-supplemented mice and the controls; however, the differences were still relevant after the 3-week treatment. The GOS-supplemented mice displayed higher abundance of Prevotella spp., with a concomitant decrease in the abundance of Escherichia-Shigella. Hence, GOS seems to be a promising candidate for a new prebiotic.
Collapse
Affiliation(s)
- Ewa Sajnaga
- Department of Biomedicine and Environmental Research, John Paul II Catholic University of Lublin, ul. Konstantynów 1J, 20-708 Lublin, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
| | - Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University in Toruń, ul. Lwowska 1, 87-100 Toruń, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, ul. Skromna 8, 20-704 Lublin, Poland
| | - Monika Elżbieta Jach
- Department of Molecular Biology, John Paul II Catholic University of Lublin, ul. Konstantynów 1H, 20-708 Lublin, Poland
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland.
| |
Collapse
|
4
|
Yang L, Yang Z, Liu J, Liu Z, Liu Y, Zhu L, Zhu Z, Jiang L. Deciphering the contribution of PerR to oxidative stress defense system in
Clostridium tyrobutyricum. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Lei Yang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China
| | - Zhihan Yang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China
| | - Jiayu Liu
- College of Food Science and Light Industry Nanjing Tech University Nanjing China
| | - Zilong Liu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China
| | - Yuxin Liu
- College of Food Science and Light Industry Nanjing Tech University Nanjing China
| | - Liying Zhu
- College of Chemical and Molecular Engineering Nanjing Tech University Nanjing China
| | - Zhengming Zhu
- College of Food Science and Light Industry Nanjing Tech University Nanjing China
| | - Ling Jiang
- College of Food Science and Light Industry Nanjing Tech University Nanjing China
- State Key Laboratory of Materials‐Oriented Chemical Engineering Nanjing Tech University Nanjing China
| |
Collapse
|
5
|
Liu Y, Xu M, Zhao Z, Wu J, Wang X, Sun X, Han S, Pan C. Analysis on bacterial community structure of new and old fermented pit mud of Shedian Liquor. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2117644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Yanbo Liu
- Department of Brewing Engineering, College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, PR China
- Postdoctoral Programme, Henan Yangshao Distillery Co., Ltd, Mianchi, PR China
- Department of Brewing Engineering, Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, PR China
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, PR China
| | - Mingyue Xu
- Department of Brewing Engineering, College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, PR China
- Department of Brewing Engineering, Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, PR China
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, PR China
| | - Zhijun Zhao
- Department of Brewing Engineering, College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, PR China
- Department of Brewing Engineering, Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, PR China
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, PR China
| | - Junyi Wu
- Department of Brewing Engineering, College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, PR China
- Department of Brewing Engineering, Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, PR China
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, PR China
| | - Xian Wang
- SheDianLaoJiu Co. Ltd, Sheqi, PR China
| | - Xiyu Sun
- Department of Brewing Engineering, College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, PR China
- Department of Brewing Engineering, Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, PR China
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, PR China
- ZhangGongLaoJiu Wine Co. Ltd, Ningling, PR China
| | - Suna Han
- Postdoctoral Programme, Henan Yangshao Distillery Co., Ltd, Mianchi, PR China
| | - Chunmei Pan
- Department of Brewing Engineering, College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, PR China
- Department of Brewing Engineering, Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, PR China
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, PR China
| |
Collapse
|
6
|
Shi Y, Chen F, Wang Z, Cao J, Li C. Effect and mechanism of functional compound fruit drink on gut microbiota in constipation mice. Food Chem 2022; 401:134210. [PMID: 36122488 DOI: 10.1016/j.foodchem.2022.134210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022]
Abstract
Compound fruit drink (CFD) is a functional drink prepared with fruit, Chinese herbs and prebiotic fructooligosaccharide as the main ingredients. Loperamide hydrochloride was used to establish a mouse model of constipation. And the effect of CFD on the improvement of constipation and the impact on gut microbiota were studied. The results showed that CFD significantly enhanced intestinal motility in constipated mice (P < 0.05). It significantly improved serum levels of gastrointestinal regulatory-related peptides, elevated the short-chain fatty acids (SCFAs) content and alleviated colonic injury. Meanwhile, CFD also up-regulated the mRNA expression levels of AQP3, AQP9, SCF and c-Kit and the related protein expression levels. Fecal microbial results showed that the CFD medium-dose group significantly increased species richness. Furthermore, CFD increased the abundance of potentially beneficial bacteria and reduced the number of potentially pathogenic bacteria. This study indicated that CFD was a promising functional drink for effectively relieving constipation.
Collapse
Affiliation(s)
- Yali Shi
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Fei Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ziqi Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jun Cao
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chuan Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Hepatoprotective Mechanism of Ginsenoside Rg1 against Alcoholic Liver Damage Based on Gut Microbiota and Network Pharmacology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5025237. [PMID: 36052161 PMCID: PMC9427247 DOI: 10.1155/2022/5025237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
Abstract
Alcoholic liver disease (ALD) is a major public health problem worldwide, which needs to be effective prevention. Ginsenoside Rg1 (GRg1), a bioactive ingredient extracted from ginseng, has benefit effects on health. In this study, 11 potential targets of GRg1 against ALD were firstly obtained by network pharmacology. KEGG pathway enrichment showed that GRg1-target-ALD was closely related to Toll-like receptor (TLR) and nuclear factor-kappa B (NF-κB) signaling pathways. In addition, GRg1 decreased antioxidant levels and increased oxidative levels in alcohol-treated mice, which alleviated oxidative stress-induced hepatic damage. GRg1 enhanced intestinal barrier function via upregulating the levels of tight junction protein and immunoglobulin A. GRg1 also reduced alcohol-induced inflammation by suppressing TLR4/NF-κB pathway, which was consistent with the prediction of network targets. Moreover, GRg1 altered GM population, and Verrucomicrobia, Bacteroidetes, Akkermansia, Bacteroides, Lachnospiraceae_NK4A136_group, and Alloprevotella played positive association with intestinal barrier indicators and negative correlation with hepatic inflammation biomarkers. The results suggest that GRg1 administration might be a promising strategy for protection of alcohol-induced liver damage.
Collapse
|
8
|
Wang T, Wang S, Dong S, Zhang Y, Ismael M, Wang S, Shi C, Yang J, Wang X, Lü X. Interaction of Companilactobacillus crustorum MN047-derived bacteriocins with gut microbiota. Food Chem 2022; 396:133730. [PMID: 35878442 DOI: 10.1016/j.foodchem.2022.133730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022]
Abstract
Companilactobacillus crustorum MN047-derived bacteriocins (CCDB) have inhibitory effects on the growth of pathogens. In this study, a pectin/zein beads delivery system was used to investigate the effects of CCDB on the dextran sulfate sodium-induced colitis in mice. The focus was given on aspects linked with the gut microbiota, intestinal epithelial barrier, oxidative stress, and inflammation. Results suggested that CCDB alleviated the pathological symptoms of colitis, including increased disease activity index and shortened colon length. CCDB strengthened the gut barrier by increasing goblet cells and promoting the expressions of MUC2 and tight junctions-related proteins. CCDB decreased oxidative mediators and increased antioxidant mediators in serum or colon tissue. Furthermore, CCDB reduced harmful bacteria and enriched beneficial bacteria, which further decreased serum LPS and increased fecal butyric acid. In addition, CCDB inhibited the overexpressions of proinflammatory cytokines, chemokines, and pathogens/LPS-activated TLR4/NF-κB pathway. Therefore, CCDB is a potential dietary supplement to relieve colitis.
Collapse
Affiliation(s)
- Tao Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Shuxuan Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Shuchen Dong
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Yu Zhang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Mohamedelfatieh Ismael
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Shuang Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Caihong Shi
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Jie Yang
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China.
| |
Collapse
|