1
|
Yang L, Fang Y, He Y, Zhang J. (-)-Epigallocatechin-3-Gallate and Quercetin Inhibit Quiescin Sulfhydryl Oxidase 1 Secretion from Hepatocellular Carcinoma Cells. Antioxidants (Basel) 2025; 14:106. [PMID: 39857439 PMCID: PMC11763033 DOI: 10.3390/antiox14010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Liver cancer is one of the most prevalent cancers worldwide. The first-line therapeutic drug sorafenib offers only a moderate improvement in patients' conditions. Therefore, an approach to enhancing its therapeutic efficacy is urgently needed. It has been revealed that hepatocellular carcinoma (HCC) cells with heightened intracellular quiescin sulfhydryl oxidase 1 (QSOX1) exhibit increased sensitivity to sorafenib. QSOX1 is a secreted disulfide catalyst, and it is widely recognized that extracellular QSOX1 promotes the growth, invasion, and metastasis of cancer cells through its participation in the establishment of extracellular matrix. Inhibiting QSOX1 secretion can increase intracellular QSOX1 and decrease extracellular QSOX1. Such an approach would sensitize HCC cells to sorafenib but remains to be established. Since (-)-epigallocatechin-3-gallate (EGCG) has been demonstrated to be an effective inhibitor of α-fetal protein secretion from HCC cells, we screened QSOX1 secretion inhibition using polyphenolic compounds. We examined eight dietary polyphenols (EGCG, quercetin, fisetin, myricetin, caffeic acid, chlorogenic acid, resveratrol, and theaflavin) and found that EGCG and quercetin effectively inhibited QSOX1 secretion from human HCC cells (HepG2 or Huh7), resulting in high intracellular QSOX1 and low extracellular QSOX1. The combination of EGCG or quercetin, both of which change the cellular distribution of QSOX1, with sorafenib, which has no influence on the cellular distribution of QSOX1, exhibited multiple synergistic effects against the HCC cells, including the induction of apoptosis and inhibition of invasion and metastasis. In conclusion, our current results suggest that dietary EGCG and quercetin have the potential to be developed as adjuvants to sorafenib in the treatment of HCC by modulating the cellular distribution of QSOX1.
Collapse
Affiliation(s)
| | | | | | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China; (L.Y.); (Y.F.); (Y.H.)
| |
Collapse
|
2
|
Janmeda P, Jain D, Chaudhary P, Meena M, Singh D. A systematic review on multipotent carcinogenic agent, N-nitrosodiethylamine (NDEA), its major risk assessment, and precautions. J Appl Toxicol 2024; 44:1108-1128. [PMID: 38212177 DOI: 10.1002/jat.4574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 01/13/2024]
Abstract
The International Agency for Research on Cancer has classified N-nitrosodiethylamine (NDEA) as a possible carcinogen and mutagenic substances, placing it in category 2A of compounds that are probably harmful to humans. It is found in nature and tobacco smoke, along with its precursors, and is also synthesized endogenously in the human body. The oral or parenteral administration of a minimal quantity of NDEA results in severe liver and kidney organ damage. The NDEA required bioactivation by CYP450 enzyme to form DNA adduct in the alkylation mechanism. Thus, this bioactivation directs oxidative stress and injury to cells due to the higher formation of reactive oxygen species and alters antioxidant system in tissues, whereas free radical scavengers guard the membranes from NDEA-directed injury in many enzymes. This might be one of the reasons in the etiology of cancer that is not limited to a certain target organ but can affect various organs and organ systems. Although there are various possible approaches for the treatment of NDEA-induced cancer, their therapeutic outcomes are still very dismal. However, several precautions were considered to be taken during handling or working with NDEA, as it considered being the best way to lower down the occurrence of NDEA-directed cancers. The present review was designed to enlighten the general guidelines for working with NDEA, possible mechanism, to alter the antioxidant line to cause malignancy in different parts of animal body along with its protective agents. Thus, revelation to constant, unpredictable stress situations even in common life may remarkably augment the toxic potential through the rise in the oxidative stress and damage of DNA.
Collapse
Affiliation(s)
- Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Devendra Singh
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
3
|
Chen Y, Chen C, Xiang J, Gao R, Wang G, Yu W. Functional Tea Extract Inhibits Cell Growth, Induces Apoptosis, and Causes G0/G1 Arrest in Human Hepatocellular Carcinoma Cell Line Possibly through Reduction in Telomerase Activity. Foods 2024; 13:1867. [PMID: 38928812 PMCID: PMC11203311 DOI: 10.3390/foods13121867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The functional tea CFT-1 has been introduced into China as a nutraceutical beverage according to the "Healthy China" national project. The effects on human hepatocellular carcinoma (HCC) cells remain unclear and were investigated with the functional tea extract (purity > 98%). The morphological changes in the cells were observed with microscopes. Cell proliferation, migration, cycle distribution, and apoptotic effects were assessed by MTT, Transwell assays, and flow cytometry, respectively, while telomerase inhibition was evaluated with telomerase PCR ELISA assay kits. The CFT-1 treatment resulted in cell shrinkage, nuclear pyknosis, and chromatin condensation. CFT-1 suppressed the growth of Hep3B cells with IC50 of 143 μg/mL by inducing apoptosis and G0/G1 arrest in Hep3B cells. As for the molecular mechanism, CFT-1 treatment can effectively reduce the telomerase activity. The functional tea extract inhibits cell growth in human HCC by inducing apoptosis and G0/G1 arrest, possibly through a reduction in telomerase activity. These results indicate that CFT-1 extract exhibited in vitro anticancer activities and provided insights into the future development and utilization of CFT-1 as functional foods to inhibit the proliferation of HCC cells.
Collapse
Affiliation(s)
- Yuan Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Y.C.); (J.X.); (R.G.)
- Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Agricultural Product Processing Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Y.C.); (J.X.); (R.G.)
- Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Jiaxing Xiang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Y.C.); (J.X.); (R.G.)
- Horticulture College, Fujian Agriculture and Forestry University, Fuzhou 350003, China
| | - Ruizhen Gao
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Y.C.); (J.X.); (R.G.)
- Horticulture College, Fujian Agriculture and Forestry University, Fuzhou 350003, China
| | - Guojun Wang
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1, Fort Pierce, FL 34946, USA;
| | - Wenquan Yu
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Y.C.); (J.X.); (R.G.)
- Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| |
Collapse
|
4
|
Rayginia TP, Keerthana CK, Shifana SC, Pellissery MJ, Abhishek A, Anto RJ. Phytochemicals as Potential Lead Molecules against Hepatocellular Carcinoma. Curr Med Chem 2024; 31:5199-5221. [PMID: 38213177 DOI: 10.2174/0109298673275501231213063902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of liver cancer, accounting for 85-90% of liver cancer cases and is a leading cause of cancer-related mortality worldwide. The major risk factors for HCC include hepatitis C and B viral infections, along with chronic liver diseases, such as cirrhosis, fibrosis, and non-alcoholic steatohepatitis associated with metabolic syndrome. Despite the advancements in modern medicine, there is a continuous rise in the annual global incidence rate of HCC, and it is estimated to reach >1 million cases by 2025. Emerging research in phytomedicine and chemotherapy has established the anti-cancer potential of phytochemicals, owing to their diverse biological activities. In this review, we report the major phytochemicals that have been explored in combating hepatocellular carcinoma and possess great potential to be used as an alternative or in conjunction with the existing HCC treatment modalities. An overview of the pre-clinical observations, mechanism of action and molecular targets of some of these phytochemicals is also incorporated.
Collapse
Affiliation(s)
- Tennyson Prakash Rayginia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, 695011, India
| | - Chenicheri Kizhakkeveettil Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, 695011, India
| | | | - Maria Joy Pellissery
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Ajmani Abhishek
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram, Kerala, 695317, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram, Kerala, 695317, India
| |
Collapse
|
5
|
Li D, Cao D, Cui Y, Sun Y, Jiang J, Cao X. The potential of epigallocatechin gallate in the chemoprevention and therapy of hepatocellular carcinoma. Front Pharmacol 2023; 14:1201085. [PMID: 37292151 PMCID: PMC10244546 DOI: 10.3389/fphar.2023.1201085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most notorious malignancies globally, has a high fatality and poor prognosis. Though remarkable breakthroughs have been made in the therapeutic strategies recently, the overall survival of HCC remains unsatisfactory. Consequently, the therapy of HCC remains a great challenge. Epigallocatechin gallate (EGCG), a natural polyphenol extracted from the leaves of the tea bush, has been extensively investigated for its antitumor effects. In this review, we summarize the previous literature to elucidate the roles of EGCG in the chemoprophylaxis and therapy of HCC. Accumulating evidence has confirmed EGCG prevents and inhibits the hepatic tumorigenesis and progression through multiple biological mechanisms, mainly involving hepatitis virus infection, oxidative stress, proliferation, invasion, migration, angiogenesis, apoptosis, autophagy, and tumor metabolism. Furthermore, EGCG enhances the efficacy and sensitivity of chemotherapy, radiotherapy, and targeted therapy in HCC. In conclusion, preclinical studies have confirmed the potential of EGCG for chemoprevention and therapy of HCC under multifarious experimental models and conditions. Nevertheless, there is an urgent need to explore the safety and efficacy of EGCG in the clinical practice of HCC.
Collapse
Affiliation(s)
- Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Jiang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Yang G, Meng Q, Shi J, Zhou M, Zhu Y, You Q, Xu P, Wu W, Lin Z, Lv H. Special tea products featuring functional components: Health benefits and processing strategies. Compr Rev Food Sci Food Saf 2023; 22:1686-1721. [PMID: 36856036 DOI: 10.1111/1541-4337.13127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/08/2022] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
The functional components in tea confer various potential health benefits to humans. To date, several special tea products featuring functional components (STPFCs) have been successfully developed, such as O-methylated catechin-rich tea, γ-aminobutyric acid-rich tea, low-caffeine tea, and selenium-rich tea products. STPFCs have some unique and enhanced health benefits when compared with conventional tea products, which can meet the specific needs and preferences of different groups and have huge market potential. The processing strategies to improve the health benefits of tea products by regulating the functional component content have been an active area of research in food science. The fresh leaves of some specific tea varieties rich in functional components are used as raw materials, and special processing technologies are employed to prepare STPFCs. Huge progress has been achieved in the research and development of these STPFCs. However, the current status of these STPFCs has not yet been systematically reviewed. Here, studies on STPFCs have been comprehensively reviewed with a focus on their potential health benefits and processing strategies. Additionally, other chemical components with the potential to be developed into special teas and the application of tea functional components in the food industry have been discussed. Finally, suggestions on the promises and challenges for the future study of these STPFCs have been provided. This paper might shed light on the current status of the research and development of these STPFCs. Future studies on STPFCs should focus on screening specific tea varieties, identifying new functional components, evaluating health-promoting effects, improving flavor quality, and elucidating the interactions between functional components.
Collapse
Affiliation(s)
- Gaozhong Yang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Meng
- College of Food Science, Southwest University, Chongqing, China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Mengxue Zhou
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qiushuang You
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Wenliang Wu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
7
|
Xiao Q, Lü Z, Zhu Z, Zhang D, Shen J, Huang M, Chen X, Yang J, Huang X, Rao M, Lu S. Exposure to polycyclic aromatic hydrocarbons and the associations with oxidative stress in waste incineration plant workers from South China. CHEMOSPHERE 2022; 303:135251. [PMID: 35688192 DOI: 10.1016/j.chemosphere.2022.135251] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Waste incineration is one of the most common emission sources of polycyclic aromatic hydrocarbons (PAHs), causing potential occupational exposure in waste incineration workers. However, relative investigations among waste incineration plant workers are still very limited, particularly in China. Therefore, we collected urine specimens from 77 workers in a waste incineration plant as the exposed group, and 101 residents as the control group in Shenzhen, China. Nine mono-hydroxylated PAH metabolites (OH-PAHs) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured, and their internal relationships were explored. The urinary levels of most OH-PAHs and 8-OHdG in the exposed group exhibited high levels versus another group (p < 0.05). We found negative associations between OH-PAHs and 8-OHdG in the control group (p < 0.05), while most of OH-PAHs were not associated with 8-OHdG in the exposed group, which indicated that the exposure to waste incineration could enlarge the level of individual oxidative stress damage. Nevertheless, PAHs were less likely to trigger obvious health risks in exposed workers through estimation of human intake and exposure risks. This study provides a reference for occupational PAH exposure and strengthen the need of health monitoring among incineration workers.
Collapse
Affiliation(s)
- Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Zhanlu Lü
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Junchun Shen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Min Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Jialei Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Manting Rao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
BEYAZ S, GÖK Ö, ASLAN A. The therapeutic effects and antioxidant properties of epigallocatechin-3 gallate: A new review. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2022. [DOI: 10.21448/ijsm.1017559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Yassin NYS, AbouZid SF, El-Kalaawy AM, Ali TM, Almehmadi MM, Ahmed OM. Silybum marianum total extract, silymarin and silibinin abate hepatocarcinogenesis and hepatocellular carcinoma growth via modulation of the HGF/c-Met, Wnt/β-catenin, and PI3K/Akt/mTOR signaling pathways. Biomed Pharmacother 2022; 145:112409. [PMID: 34781148 DOI: 10.1016/j.biopha.2021.112409] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has been identified as one of the most deadly malignancies with limited therapeutic efficacy worldwide. However, understanding the molecular mechanisms of crosstalk between signaling pathways in HCC and predicting cancer cell responses to targeted therapeutic interventions remain to be challenge. Thus, in this study, we aimed to evaluate the anticancerous efficacy of Silybum marianum total extract (STE), silymarin (Sm), and silibinin (Sb) against experimentally-induced HCC in rats. In vitro investigations were also performed and the anticancer effects against HCC cell lines (HepG2 and Huh7) were confirmed. Wistar rats were given diethylnitrosamine (DEN)/2-acetylaminofluorene (AAF)/carbon tetrachloride (CCl4) and were orally treated with STE (200 mg/kg body weight (bw)), Sm (150 mg/kg bw), and Sb (5 mg/kg bw) every other day from the 1st or 16th week to the 25th week of DEN/AAF/CCl4 injection. Treatment with STE, Sm, and Sb inhibited the growth of cancerous lesions in DEN/AAF/CCl4-treated rats. This inhibition was associated with inhibition of Ki-67 expression and repression of HGF/cMet, Wnt/β-catenin, and PI3K/Akt/mTOR signaling pathways. STE, Sm, and Sb improved liver function biomarkers and tumor markers (AFP, CEA, and CA19.9) and increased total protein and albumin levels in serum. STE, Sm, and Sb treatment was also noted to reduce the hepatic production of lipid peroxides, increase hepatic glutathione content, and induce the activities of hepatic antioxidant enzymes in DEN/AAF/CCl4-treated rats. These results indicate that STE, Sm, and Sb exert anti-HCC effects through multiple pathways, including suppression of Ki-67 expression and HGF/cMet, Wnt/β-catenin, and PI3K/Akt/mTOR pathways and enhancement of antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Nour Y S Yassin
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Sameh F AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University for Sustainable Development, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt
| | - Asmaa M El-Kalaawy
- Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Tarek M Ali
- Department of Physiology, College of Medicine, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Mazen M Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Osama M Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt.
| |
Collapse
|
10
|
Hu Z, Li M, Cao Y, Akan OD, Guo T, Luo F. Targeting AMPK Signaling by Dietary Polyphenols in Cancer Prevention. Mol Nutr Food Res 2021; 66:e2100732. [PMID: 34802178 DOI: 10.1002/mnfr.202100732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Cancer is a serious public health problem in the world and a major disease affecting human health. Dietary polyphenols have shown good potential in the treatment of various cancers. It is worth noting that cancer cells usually exhibit metabolic abnormalities of high glucose intake and inefficient utilization. AMPK is the key molecule in the regulation of energy metabolism and is closely related with obesity and diabetes. Recent studies indicate that AMPK also plays an important role in cancer prevention and regulating cancer-related genes and pathways, and dietary polyphenols can significantly regulate AMPK activity. In this review, the progress of dietary polyphenols preventing carcinogenesis via AMPK pathway is systemically summarized. From the viewpoint of interfering energy metabolism, the anti-cancer effects of dietary polyphenols are explained. AMPK pathway modulated by different dietary polyphenols affects pathways and target genes are summarized. Dietary polyphenols exert anti-cancer effect through the target molecules regulated by AMPK, which broadens the understanding of polyphenols anti-cancer mechanisms and provides value reference for the investigators of the novel field.
Collapse
Affiliation(s)
- Zuomin Hu
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Mengyuan Li
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Yunyun Cao
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Otobong Donald Akan
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Tianyi Guo
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Feijun Luo
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| |
Collapse
|
11
|
Rodriguez S, Skeet K, Mehmetoglu-Gurbuz T, Goldfarb M, Karri S, Rocha J, Shahinian M, Yazadi A, Poudel S, Subramani R. Phytochemicals as an Alternative or Integrative Option, in Conjunction with Conventional Treatments for Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13225753. [PMID: 34830907 PMCID: PMC8616323 DOI: 10.3390/cancers13225753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is globally ranked as the sixth most diagnosed cancer, and the second most deadly cancer. To worsen matters, there are only limited therapeutic options currently available; therefore, it is necessary to find a reservoir from which new HCC treatments may be acquired. The field of phytomedicine may be the solution to this problem, as it offers an abundance of plant-derived molecules, which show capabilities of being effective against HCC proliferation, invasion, migration, and metastasis. In our review, we collect and analyze current evidence regarding these promising phytochemical effects on HCC, and delve into their potential as future chemotherapies. Additionally, information on the signaling behind these numerous phytochemicals is provided, in an attempt to understand their mechanisms. This review makes accessible the current body of knowledge pertaining to phytochemicals as HCC treatments, in order to serve as a reference and inspiration for further research into this subject. Abstract Hepatocellular carcinoma (HCC) is the most abundant form of liver cancer. It accounts for 75–85% of liver cancer cases and, though it ranks globally as the sixth most common cancer, it ranks second in cancer-related mortality. Deaths from HCC are usually due to metastatic spread of the cancer. Unfortunately, there are many challenges and limitations with the latest HCC therapies and medications, making it difficult for patients to receive life-prolonging care. As there is clearly a high demand for alternative therapy options for HCC, it is prudent to turn to plants for the solution, as their phytochemicals have long been used and revered for their many medicinal purposes. This review explores the promising phytochemical compounds identified from pre-clinical and clinical trials being used either independently or in conjunction with already existing cancer therapy treatments. The phytochemicals discussed in this review were classified into several categories: lipids, polyphenols, alkaloids, polysaccharides, whole extracts, and phytochemical combinations. Almost 80% of the compounds failed to progress into clinical studies due to lack of information regarding the toxicity to normal cells and bioavailability. Although large obstacles remain, phytochemicals can be used either as an alternative or integrative therapy in conjunction with existing HCC chemotherapies. In conclusion, phytochemicals have great potential as treatment options for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sheryl Rodriguez
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
| | - Kristy Skeet
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Tugba Mehmetoglu-Gurbuz
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
| | - Madeline Goldfarb
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (M.G.); (S.K.)
| | - Shri Karri
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (M.G.); (S.K.)
| | - Jackelyn Rocha
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Mark Shahinian
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Abdallah Yazadi
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Seeta Poudel
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
| | - Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
- Correspondence: ; Tel.: +1-915-215-6851
| |
Collapse
|
12
|
Panieri E, Saso L. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Antioxid Redox Signal 2021; 34:1428-1483. [PMID: 33403898 DOI: 10.1089/ars.2020.8146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (NRF2/KEAP1) pathway is a crucial and highly conserved defensive system that is required to maintain or restore the intracellular homeostasis in response to oxidative, electrophilic, and other types of stress conditions. The tight control of NRF2 function is maintained by a complex network of biological interactions between positive and negative regulators that ultimately ensure context-specific activation, culminating in the NRF2-driven transcription of cytoprotective genes. Recent Advances: Recent studies indicate that deregulated NRF2 activation is a frequent event in malignant tumors, wherein it is associated with metabolic reprogramming, increased antioxidant capacity, chemoresistance, and poor clinical outcome. On the other hand, the growing interest in the modulation of the cancer cells' redox balance identified NRF2 as an ideal therapeutic target. Critical Issues: For this reason, many efforts have been made to identify potent and selective NRF2 inhibitors that might be used as single agents or adjuvants of anticancer drugs with redox disrupting properties. Despite the lack of specific NRF2 inhibitors still represents a major clinical hurdle, the researchers have exploited alternative strategies to disrupt NRF2 signaling at different levels of its biological activation. Future Directions: Given its dualistic role in tumor initiation and progression, the identification of the appropriate biological context of NRF2 activation and the specific clinicopathological features of patients cohorts wherein its inactivation is expected to have clinical benefits, will represent a major goal in the field of cancer research. In this review, we will briefly describe the structure and function of the NRF2/ KEAP1 system and some of the most promising NRF2 inhibitors, with a particular emphasis on natural compounds and drug repurposing. Antioxid. Redox Signal. 34, 1428-1483.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
13
|
Fishbein A, Hammock BD, Serhan CN, Panigrahy D. Carcinogenesis: Failure of resolution of inflammation? Pharmacol Ther 2021; 218:107670. [PMID: 32891711 PMCID: PMC7470770 DOI: 10.1016/j.pharmthera.2020.107670] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Inflammation in the tumor microenvironment is a hallmark of cancer and is recognized as a key characteristic of carcinogens. However, the failure of resolution of inflammation in cancer is only recently being understood. Products of arachidonic acid and related fatty acid metabolism called eicosanoids, including prostaglandins, leukotrienes, lipoxins, and epoxyeicosanoids, critically regulate inflammation, as well as its resolution. The resolution of inflammation is now appreciated to be an active biochemical process regulated by endogenous specialized pro-resolving lipid autacoid mediators which combat infections and stimulate tissue repair/regeneration. Environmental and chemical human carcinogens, including aflatoxins, asbestos, nitrosamines, alcohol, and tobacco, induce tumor-promoting inflammation and can disrupt the resolution of inflammation contributing to a devastating global cancer burden. While mechanisms of carcinogenesis have focused on genotoxic activity to induce mutations, nongenotoxic mechanisms such as inflammation and oxidative stress promote genotoxicity, proliferation, and mutations. Moreover, carcinogens initiate oxidative stress to synergize with inflammation and DNA damage to fuel a vicious feedback loop of cell death, tissue damage, and carcinogenesis. In contrast, stimulation of resolution of inflammation may prevent carcinogenesis by clearance of cellular debris via macrophage phagocytosis and inhibition of an eicosanoid/cytokine storm of pro-inflammatory mediators. Controlling the host inflammatory response and its resolution in carcinogen-induced cancers will be critical to reducing carcinogen-induced morbidity and mortality. Here we review the recent evidence that stimulation of resolution of inflammation, including pro-resolution lipid mediators and soluble epoxide hydrolase inhibitors, may be a new chemopreventive approach to prevent carcinogen-induced cancer that should be evaluated in humans.
Collapse
Affiliation(s)
- Anna Fishbein
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
14
|
Raimundo L, Ramos H, Loureiro JB, Calheiros J, Saraiva L. BRCA1/P53: Two strengths in cancer chemoprevention. Biochim Biophys Acta Rev Cancer 2020; 1873:188339. [PMID: 31917206 DOI: 10.1016/j.bbcan.2020.188339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Increasing emphasis has been given to prevention as a feasible approach to reduce the cancer burden. However, for its clinical success, further advances are required to identify effective chemopreventive agents. This review affords a critical and up-to-date discussion of issues related to cancer prevention, including an in-depth knowledge on BRCA1 and p53 tumor suppressor proteins as key molecular players. Indeed, it compiles the most recent advances on the topic, highlighting the unique potential of BRCA1 and p53 germline mutations as molecular biomarkers for risk assessment and targets for chemoprevention. Relevant evidences are herein provided supporting the effectiveness of distinct pharmacological agents in cancer prevention, by targeting BRCA1 and p53. Moreover, the rationale for using germline mutant BRCA1- or p53-related cancer syndromes as model systems to investigate effective chemopreventive agents is also addressed. Altogether, this work provides an innovative conception about the dependence on p53 and BRCA1 co-inactivation in tumor formation and development, emphasizing the relationship between these two proteins as an encouraging direction for future personalized pharmacological interventions in cancer prevention.
Collapse
Affiliation(s)
- Liliana Raimundo
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Helena Ramos
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Joana B Loureiro
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Juliana Calheiros
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|