1
|
Mousavi Ghahfarrokhi SS, Mahdigholi FS, Amin M. Collateral beauty in the damages: an overview of cosmetics and therapeutic applications of microbial proteases. Arch Microbiol 2023; 205:375. [PMID: 37935975 DOI: 10.1007/s00203-023-03713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Microbial proteases are enzymes secreted by a variety of microorganisms, including bacteria and fungi, and have attracted significant attention due to their versatile applications in the food and pharmaceutical industries. In addition, certain proteases have been used in the development of skin health products and cosmetics. This article provides a review of microbial proteases in terms of their classification, sources, properties, and applications. Moreover, different pharmacological and molecular investigations have been reviewed. Various biological activities of microbial proteases, such as Arazyme, collagenase, elastin, and Nattokinase, which are involved in the digestion of dietary proteins, as well as their potential anti-inflammatory, anti-cancer, antithrombotic, and immunomodulatory effects have been included. Furthermore, their ability to control infections and treat various disorders has been discussed. Finally, this review highlights the potential applications and future perspectives of microbial proteases in biotechnology and biomedicine, and proposes further studies to develop new perspectives for disease control and health-promoting strategies using microbial resources.
Collapse
Affiliation(s)
- Seyed Sadeq Mousavi Ghahfarrokhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fateme Sadat Mahdigholi
- Department of Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Room No. 1-221, Faculty of Pharmacy, 16th Azar Street, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Nara N, Kurosawa Y, Fuse-Hamaoka S, Kuroiwa M, Endo T, Tanaka R, Kime R, Hamaoka T. A single dose of oral nattokinase accelerates skin temperature recovery after cold water immersion: A double-blind, placebo-controlled crossover study. Heliyon 2023; 9:e17951. [PMID: 37483751 PMCID: PMC10362143 DOI: 10.1016/j.heliyon.2023.e17951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
Nattokinase (NK) intake may improve blood flow; however, its effects on skin temperature, which is predominantly controlled by skin surface blood flow, are unknown. The purpose of this study was to determine the effects of a single dose of NK on changes in skin temperature after cold water immersion. A double-blinded, placebo-controlled, crossover intervention study was performed on nine healthy men. The participants were randomised to receive either a single dose of 2,000 fibrinolytic units (FU) of NK or a placebo with subsequent crossover. Two hours after supplementation, the participants immersed both hands in a water bath maintained at 10 °C for 1 min. Skin temperature, perceived coldness, cardiac output, and sympathetic nervous activity were measured before, during, and after water immersion. Two-way analysis of variance showed a significant effect of treatment interaction on the skin temperature of the middle finger, palm, and back of the right hand (p < 0.05). These findings represented that the skin temperatures of the middle finger, palm, and back of the right hand immersed in the cold water were significantly dropped due to the cold water immersion, and then recovered more quickly by NK intake than by placebo intake. The results of the current study highlight the potential implications of NK for the prevention of excessive vasoconstriction. It may be more significant for those with cold-sensitive constitution, such as women and elderly. In contrast, the acute administration of 2,000 FU of NK did not affect changes in heart rate, cardiac output, sympathetic nervous activity compared with a placebo in healthy men.
Collapse
Affiliation(s)
- Noriko Nara
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
- Department of Food & Health Sciences, Jissen Women's University, 4-1-1 Osakaue, Hino-shi, Tokyo 191-8510, Japan
| | - Yuko Kurosawa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Sayuri Fuse-Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Miyuki Kuroiwa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Tasuki Endo
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
- Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya, Aichi 468-8502, Japan
| | - Riki Tanaka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Ryotaro Kime
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Takafumi Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
3
|
Sheng Y, Yang J, Wang C, Sun X, Yan L. Microbial nattokinase: from synthesis to potential application. Food Funct 2023; 14:2568-2585. [PMID: 36857725 DOI: 10.1039/d2fo03389e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Nattokinase (NK) is an alkaline serine protease with strong thrombolytic activity produced by Bacillus spp. or Pseudomonas spp. It is a potential therapeutic agent for thrombotic diseases because of its safety, economy, and lack of side effects. Herein, a comprehensive summary and analysis of the reports surrounding NK were presented, and the physical-chemical properties and producers of NK were first described. The process and mechanism of NK synthesis were summarized, but these are vague and not specific enough. Further results may be achieved if detection techniques such as multi-omics are used to explore the process of NK synthesis. The purification of NK has problems such as a complicated operation and low recovery rate, which were found when summarizing the techniques to improve the quality of finished products. If multiple simple and efficient precipitation methods and purification materials are combined to purify NK, it may be possible to solve the current challenges. Additionally, the application potential of NK in biomedicine was reviewed, but functional foods with NK are challenging for acceptance in daily life due to their unpleasant odor. Accordingly, multi-strain combination fermentation or food flavoring agents can improve the odor of fermented foods and increase people's acceptance of them. Finally, the possible future directions focused on NK studies were proposed and provided suggestions for subsequent researchers.
Collapse
Affiliation(s)
- Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Jiani Yang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Xindi Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Lei Yan
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| |
Collapse
|
4
|
Sharma C, Osmolovskiy A, Singh R. Microbial Fibrinolytic Enzymes as Anti-Thrombotics: Production, Characterisation and Prodigious Biopharmaceutical Applications. Pharmaceutics 2021; 13:1880. [PMID: 34834294 PMCID: PMC8625737 DOI: 10.3390/pharmaceutics13111880] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiac disorders such as acute myocardial infarction, embolism and stroke are primarily attributed to excessive fibrin accumulation in the blood vessels, usually consequential in thrombosis. Numerous methodologies including the use of anti-coagulants, anti-platelet drugs, surgical operations and fibrinolytic enzymes are employed for the dissolution of fibrin clots and hence ameliorate thrombosis. Microbial fibrinolytic enzymes have attracted much more attention in the management of cardiovascular disorders than typical anti-thrombotic strategies because of the undesirable after-effects and high expense of the latter. Fibrinolytic enzymes such as plasminogen activators and plasmin-like proteins hydrolyse thrombi with high efficacy with no significant after-effects and can be cost effectively produced on a large scale with a short generation time. However, the hunt for novel fibrinolytic enzymes necessitates complex purification stages, physiochemical and structural-functional attributes, which provide an insight into their mechanism of action. Besides, strain improvement and molecular technologies such as cloning, overexpression and the construction of genetically modified strains for the enhanced production of fibrinolytic enzymes significantly improve their thrombolytic potential. In addition, the unconventional applicability of some fibrinolytic enzymes paves their way for protein hydrolysis in addition to fibrin/thrombi, blood pressure regulation, anti-microbials, detergent additives for blood stain removal, preventing dental caries, anti-inflammatory and mucolytic expectorant agents. Therefore, this review article encompasses the production, biochemical/structure-function properties, thrombolytic potential and other surplus applications of microbial fibrinolytic enzymes.
Collapse
Affiliation(s)
- Chhavi Sharma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201313, India;
| | - Alexander Osmolovskiy
- Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Rajni Singh
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201313, India;
| |
Collapse
|
5
|
Zhang X, Tong Y, Wang J, Lyu X, Yang R. Screening of a Bacillus subtilis strain producing both nattokinase and milk-clotting enzyme and its application in fermented milk with thrombolytic activity. J Dairy Sci 2021; 104:9437-9449. [PMID: 34218912 DOI: 10.3168/jds.2020-19756] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/20/2021] [Indexed: 11/19/2022]
Abstract
Bacillus subtilis is a generally recognized as safe probiotic, which is used as a starter for natto fermentation. Natto is a functional food with antithrombus function due to nattokinase. Compared with natto, fermented milk is a more popular fermented food, which is commonly fermented by Lactobacillus bulgaricus and Streptococcus. However, there is no report on B. subtilis-fermented milk. In this study, to produce a functional fermented milk with antithrombus function, a B. subtilis strain (B. subtilis JNFE0126) that produced both nattokinase and milk-clotting enzyme was isolated from traditionally fermented natto and used as the starter for the functional fermented milk. In liquid fermentation culture, the peak values of thrombolytic activity and milk-clotting activity were 3,511 U/mL at 96 h and 874.5 Soxhlet unit/mL at 60 h, respectively. The optimal pH and temperature were pH 7.0 at 40°C for nattokinase and pH 6.5 and 55°C for milk-clotting enzyme, respectively. The thrombolytic activity in the fermented milk reached 215.1 U/mL after 8 h of fermentation. Sensory evaluation showed that the acceptance of the milk fermented by B. subtilis JNFE0126 was similar to the traditional milk fermented by L. bulgaricus and S. thermophilus. More importantly, oral intake of the fermented milk by the thrombosis-model mice prevented the development of thrombosis. Our results suggest that B. subtilis JNFE0126-fermented milk has potential as a novel, functional food in the prevention of thrombosis-related cardiovascular diseases.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaomei Lyu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|