1
|
Gazwi HSS, Zaki AH, Abd Allah NAR, Gomaa AT, Milošević M, Al-Rejaie SS, Mohany M, Yassien EE. Mitigation of cisplatin-induced hepatotoxicity by Salvia officinalis: Attenuation of oxidative damage and inflammation in rats. Free Radic Biol Med 2024; 222:62-71. [PMID: 38852878 DOI: 10.1016/j.freeradbiomed.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Salvia officinalis L., commonly known as sage and belonging to the Lamiaceae family, is a medicinal herb indigenous to the Mediterranean region. It is celebrated for its diverse pharmacological properties and traditional uses in folk medicine, particularly in addressing hepatotoxicity. Cisplatin (Cis), a potent chemotherapeutic agent widely employed in cancer treatment, is recognized for its efficacy but often accompanied by adverse effects, including hepatotoxicity. The aim of this study was to assess whether an ethanolic S. officinalis extract (ESOE) could provide protection against Cis-induced hepatotoxicity in an experimental rat model. The ESOE was prepared using standard extraction techniques, and its chemical constituents were elucidated through UPLC-ESI-MS/MS analysis, revealing the presence of bioactive compounds such as alkaloids, phenolic compounds, and flavonoids, which are associated with various therapeutic effects, including hepatoprotection. Adult male albino rats were allocated into four groups: control, ESOE (250 mg/kg), Cis (7.5 mg/kg), and ESOE (250 mg/kg) + Cis (7.5 mg/kg). The treatment duration lasted 21 days, with Cis administration on the 22nd day. Twenty-four hours post-Cis administration, blood and liver samples were collected for analysis. Cis-induced hepatotoxicity was evidenced by alterations in hematological parameters, including erythrocyte, thrombocyte, leukocyte, and lymphocyte counts, alongside elevated serum levels of liver enzymes (ALT, LDH, AST, ALP, and GGT), indicative of liver damage. Furthermore, Cis exposure resulted in increased hepatic malondialdehyde (MDA) and Nitric oxide (NO) levels, oxidative stress markers, coupled with decreased levels of reduced glutathione (GSH), a non-enzymatic antioxidant, and histopathological changes in liver tissue, characterized by necrosis and inflammation. Additionally, Cis treatment led to elevated levels of 8-hydroxy-2'-deoxyguanosine (8-OH-dG), TNF-α, and IL-6, indicating oxidative stress and inflammation. Remarkably, pretreatment with ESOE ameliorated these Cis-induced hepatotoxic effects, as evidenced by improved hematological parameters, reduced liver enzyme activities, alleviated oxidative stress, and ameliorated histopathological alterations. The observed hepatoprotective effects of ESOE against Cis-induced liver injury may be attributed to its antioxidant and anti-inflammatory properties, highlighting its potential as a natural therapeutic agent in mitigating chemotherapy-associated hepatotoxicity.
Collapse
Affiliation(s)
- Hanaa S S Gazwi
- Department of Agricultural Chemistry, Agriculture Faculty, Minia University, El-Minia, Egypt.
| | - Asmaa Hussein Zaki
- Department of Agricultural Chemistry, Agriculture Faculty, Minia University, El-Minia, Egypt
| | - Nedaa A R Abd Allah
- Department of Food Science, Faculty of Agriculture, Minia University, Minia, 61519, Egypt
| | - Asmaa Talat Gomaa
- Department of Agricultural Economics, Faculty of Agriculture, Minia University, 61519 Egypt
| | - Marija Milošević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 11451, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 11451, Saudi Arabia
| | - Eman E Yassien
- Department of Agricultural Chemistry, Agriculture Faculty, Minia University, El-Minia, Egypt
| |
Collapse
|
2
|
Li Z, Cao Q, Chen H, Yang J, Wang Z, Qu X, Yao Y, Zhou Z, Zhang W. Dual Phytochemical/Activity-Guided Optimal Preparation and Bioactive Material Basis of Orthosiphon Stamineus Benth. (Shen Tea) against Nonalcoholic Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18561-18572. [PMID: 39121367 DOI: 10.1021/acs.jafc.4c05125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Orthosiphon stamineus Benth. (OSB) is a popular plant used for making "Shen tea" or "Java tea". It has been demonstrated with antioxidant, anti-inflammatory, and hepatoprotective activities. However, its potential beneficial effects and bioactive material basis for nonalcoholic fatty liver disease (NAFLD) has not been convincingly studied. In the present work, we conducted dual phytochemical/activity-guided extraction optimization and component fractionation of OSB, and evaluated its beneficial effects on NAFLD. Flavonoids and polyphenols (caffeic acid/protocatechuic acid derivatives) were determined as the dominant phytochemicals in OSB. The extraction process for these phytochemicals was optimized by using response surface methodology. Noticeably, flavonoids showed a stronger correlation with the antioxidant activities of OSB than polyphenols. Likewise, the flavonoid-rich fraction of OSB exerted antioxidant activities stronger than those of other fractions. As expected, in vitro and in vivo studies demonstrated that the flavonoid-rich fraction effectively attenuated weight increase, improved lipid metabolism, alleviated hepatic steatosis, and reversed hepatic inflammation. Importantly, this fraction showed equivalent beneficial effects to the total extract of OSB, suggesting that flavonoids were the main bioactive constituents of OSB. The action mechanism was indicated as direct antioxidant effect through chemical interaction with free radicals and indirect mitochondria-mediated antioxidant defense. Our research offers bioactive substances for further exploitation and expands the potential application of OSB.
Collapse
Affiliation(s)
- Zheng Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou 571158, P. R. China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| | - Qiongyue Cao
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Haoyu Chen
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Junyi Yang
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Zhihao Wang
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Xiangquan Qu
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Yuqin Yao
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Zhengkun Zhou
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, P. R. China
| |
Collapse
|
3
|
Widowati W, Darsono L, Utomo HS, Sabrina AHN, Natariza MR, Valentinus Tarigan AC, Waluyo NW, Gleyriena AM, Siahaan BH, Oktaviani R. Antidiabetic and hepatoprotection effect of butterfly pea flower ( Clitoria ternatea L.) through antioxidant, anti-inflammatory, lower LDH, ACP, AST, and ALT on diabetes mellitus and dyslipidemia rat. Heliyon 2024; 10:e29812. [PMID: 38681657 PMCID: PMC11053275 DOI: 10.1016/j.heliyon.2024.e29812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
This study explores the antidiabetic and hepatoprotective potential of Butterfly pea flower extract (Clitoria ternatea L.) (CTE) in diabetic and dyslipidemia rat models. Diabetes Mellitus (DM) is a chronic metabolic disorder marked by high levels of blood glucose, which can cause dyslipidemia and liver damage as a result of oxidative stress. CTE, a natural substance, is recognized for its positive attributes, such as anti-inflammatory, antioxidant, anti-diabetic, anti-dyslipidemia, antibiotic, and liver tissue protection capabilities. Dyslipidemia was induced in rats using a high-fat diet (HFD) and propylthiouracil (PTU) for 28 days. DM was induced using streptozotocin (STZ) and nicotinamide (NA). Rats were treated with varying doses of CTE for 28 days, along with glibenclamide and simvastatin. The research showed that CTE raised the levels of SOD, CAT, and liver proteins while lowering the levels of MDA, LDH, ACP, AST, ALT, IL-1β, and CRP in rats with DM and dyslipidemia. This suggests that CTE might be useful for treating DM.
Collapse
Affiliation(s)
- Wahyu Widowati
- Faculty of Medicine, Maranatha Christian University, Bandung, 40164, West Java, Indonesia
| | - Lusiana Darsono
- Faculty of Medicine, Maranatha Christian University, Bandung, 40164, West Java, Indonesia
| | - Herry S. Utomo
- Louisiana State University (LSU) AgCenter, H. Rouse Caffey Rice Research Station Rayne, LA, USA
| | | | - Maria Rizka Natariza
- Faculty of Medicine, Maranatha Christian University, Bandung, 40164, West Java, Indonesia
| | | | - Novaldo Wahid Waluyo
- Faculty of Medicine, Maranatha Christian University, Bandung, 40164, West Java, Indonesia
| | | | - Berlian Haifa Siahaan
- Faculty of Medicine, Maranatha Christian University, Bandung, 40164, West Java, Indonesia
| | - Reza Oktaviani
- Faculty of Medicine, Maranatha Christian University, Bandung, 40164, West Java, Indonesia
| |
Collapse
|
4
|
Liu Y, Li P, Pan W, Zhao J, Olnood CG, Liu Y, Xu YJ. Salecan confers anti-inflammatory effects in liver injury via regulating gut microbiota and its metabolites. Carbohydr Polym 2023; 302:120418. [PMID: 36604080 DOI: 10.1016/j.carbpol.2022.120418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Salecan, a natural β-glucan and one of the novel food ingredients approved in China, has been shown a variety of positive health effects, yet the mechanism of liver injury remains poorly understood. In addition, β-glucan could induce the shifts in gut microbiota, however, whether modulation of gut microbiota by β-glucan is associated with their positive health effects remain elusive. Here, the anti-inflammatory effects and the underlying mechanism of Salecan supplementation in CCl4-induced liver injury were investigated. After 8 weeks of treatment, we observed that Salecan alleviated liver injury by regulating inflammatory response and M2 macrophage polarization. In addition, Salecan treatment modulated the composition of gut microbiota and antibiotic cocktail treatment indicated that the hepatoprotective effect of Salecan was dependent on the gut microbiota. Fecal microbiota transplantation was used to further verify the mechanism, and we confirmed that microbial colonization partially alleviated liver injury. Besides, microbiota-derived metabolites of Salecan also contributed to the hepatoprotective and anti-inflammatory effect of Salecan against liver injury. These findings supported that Salecan intervention attenuated liver injury by regulating gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Yanjun Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Panpan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Wenjie Pan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Juan Zhao
- Sichuan Synlight Biotech Ltd., 88 Keyuan South Road, Chengdu 610000, Sichuan, China
| | - Chen Guang Olnood
- Sichuan Synlight Biotech Ltd., 88 Keyuan South Road, Chengdu 610000, Sichuan, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
5
|
Xu X, Liu S, Zhao Y, Wang M, Hu L, Li W, Xu H. Combination of Houttuynia cordata polysaccharide and Lactiplantibacillus plantarum P101 alleviates acute liver injury by regulating gut microbiota in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6848-6857. [PMID: 35639719 DOI: 10.1002/jsfa.12046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Polysaccharides and probiotics can play an outstanding role in the treatment of liver disease by regulating gut microbiota. Recently, the combined therapeutic effect of probiotics and polysaccharides has attracted the attention of researchers. Houttuynia cordata polysaccharide (HCP) combined with Lactiplantibacillus plantarum P101 was used to prevent carbon tetrachloride (CCl4 )-induced acute liver injury (ALI) in mice, and its effect on gut microbiota regulation was explored. RESULTS Results showed that, in mice, HCP combined with L. plantarum P101 significantly alleviated oxidative stress and inflammatory injury in the liver by activating Nrf2 signals and inhibiting NF-κB signals. The analysis of gut microbiota revealed that the combination of HCP and L. plantarum P101 increased the abundance of beneficial bacteria such as Alloprevotella, Roseburia, and Akkermansia, but reduced that of the pro-inflammatory bacteria Alistipes, Enterorhabdus, Anaerotruncus, and Escherichia-Shigella. Correlation analysis also indicated that the expression of Nrf2 and TLR4/NF-κB was connected to the changes in gut microbiota composition. Houttuynia cordata polysaccharide combined with L. plantarum P101 can regulate the gut microbiota and then mediate the gut-liver axis to activate the antioxidant pathway and inhibit inflammatory responses, thereby alleviating CCl4 -induced ALI. CONCLUSION Our study provided a new perspective on the use of polysaccharides combined with probiotics in the treatment of liver disease. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaowei Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mengqi Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wenjuan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Wang H, Liu S, Cui Y, Wang Y, Guo Y, Wang X, Liu J, Piao C. Hepatoprotective effects of flavonoids from common buckwheat hulls in type 2 diabetic rats and HepG2 cells. Food Sci Nutr 2021; 9:4793-4802. [PMID: 34531992 PMCID: PMC8441485 DOI: 10.1002/fsn3.2390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/11/2022] Open
Abstract
Flavonoids from common buckwheat hulls (BHFs) show significant antioxidant and antidiabetic potential. However, their hepatoprotective property is yet to be defined. This study aims to examine the hepatoprotective effect of BHFs in type 2 diabetes mellitus (T2DM) rats and chronic high glucose-damaged HepG2 cells. Results showed that BHF treatment significantly relieves the state of insulin resistance, thereby reducing blood glucose and improving oxidative stress in T2DM rats. It is worth mentioning that BHF treatment improved diabetes-induced liver damage disorders, manifested as the clearance of liver fat and the decline of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. In vitro, HepG2 cells pretreated with BHFs maintained higher superoxide dismutase (SOD), glutathione peroxidase (GSH-px), and catalase (CAT) activities than the unprotected group. In parallel, compared with the unprotected group, BHFs significantly reduced the leakage of ALT and AST in pre-protected group dose-dependently. These results indicated that BHFs had considerable antioxidant and hepatoprotective potential and could be promising to be used as nutraceuticals and dietary supplements to prevent and/or protect against liver disorders.
Collapse
Affiliation(s)
- Hai Wang
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Shuyan Liu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Yang Cui
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Yue Wang
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Yang Guo
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Xiujuan Wang
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Junmei Liu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunChina
| | - Chunhong Piao
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunChina
| |
Collapse
|
7
|
Chao T, Hsieh C, Kuo Y, Yu Y, Wan C, Hsieh S. Bracteanolide A abrogates oxidative stress-induced cellular damage and protects against hepatic ischemia and reperfusion injury in rats. Food Sci Nutr 2021; 9:4758-4769. [PMID: 34531989 PMCID: PMC8441430 DOI: 10.1002/fsn3.2374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Liver diseases, including viral hepatitis, liver cirrhosis, and liver cancer, mostly remain silent until the late stages and pose a continuing threat to millions of people worldwide. Liver transplantation is the most appropriate solution in the case of liver failure, but it is associated with hepatic ischemia and reperfusion (I/R) injury which severely reduces the prognosis of the patients. In order to ameliorate I/R injury, we investigated the potential of bracteanolide A, from the herb Tradescantia albiflora Kunth in protecting the liver from I/R injury. We first determined the protective effect of bracteanolide A against oxidative stress and DNA damage using HepG2 hepatocyte cell line and then assessed the levels of inflammatory cytokines and antioxidant proteins in response to hepatic insult using an animal model of hepatic I/R injury. The results showed bracteanolide A greatly enhanced cell survival and decreased reactive oxygen species (ROS) production under H2O2 induction. It also upregulated the expression of nuclear factor (erythroid-derived 2)-like2 (Nrf2) and its downstream cytoprotective proteins NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1). Bracteanolide A effectively reduced the severity of liver lesions in I/R-injured rats revealed by histological analysis and significantly decreased the levels of alanine transaminase (ALT), aspartate transaminase (AST), cyclooxygenase-2, and inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α. Bracteanolide A preconditioning effectively protected the liver from I/R damage in the animal model, and this easily applied procedure may provide a new means to ameliorate hepatic I/R injury during liver surgeries.
Collapse
Affiliation(s)
- Ting‐Yu Chao
- Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Cheng‐Chu Hsieh
- Biologics DivisionAnimal Health Research InstituteCouncil of AgricultureExecutive Yuan, New Taipei CityTaiwan
| | - Yueh‐Hsiung Kuo
- Department of ChemistryNational Taiwan UniversityTaipeiTaiwan
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine ResourcesChina Medical UniversityTaichungTaiwan
- Department of BiotechnologyAsia UniversityTaichungTaiwan
- Chinese Medicine Research CenterChina Medical UniversityTaichungTaiwan
| | - Ya‐Ju Yu
- Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Cho‐Hua Wan
- Graduate Institute of Molecular and Comparative PathobiologySchool of Veterinary MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Shu‐Chen Hsieh
- Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
8
|
Yao X, Xu J, Adhikari B, Lv W. Microwave-Assisted Enzymatic Extraction of Flavonoids from Armeniaca mume Sieb. Blossom and Their Immunomodulating Effect in Mice with DSS-Induced Colitis. Molecules 2021; 26:molecules26040855. [PMID: 33562018 PMCID: PMC7915570 DOI: 10.3390/molecules26040855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/03/2023] Open
Abstract
Armeniaca mume Sieb. blossom is among the traditional Chinese edible flowers, and it is widely used in the food and pharmaceutical industries. Flavonoids are among the most abundant bioactive compounds in A. mume Sieb. blossom. However, the research on the extraction of flavonoids from A. mume Sieb. blossom and their immunomodulating function is insufficient. In this study, we developed a microwave-assisted enzymatic extraction of flavonoids from A. mume Sieb. blossom (FAMB) and explored their immunomodulating effect on mice with dextran sulfate sodium salt-induced colitis. The results showed that the optimum parameters for microwave-assisted enzymatic extraction of FAMB were as follows: cellulase: 2.0%; microwave power: 200 W; microwave action time: 5 min; and enzymatic hydrolysis time: 50 min. FAMB significantly promoted the lymphocyte proliferation and natural killer (NK) cell killing activity in colitis mice, and increased the concentrations of TNF-α, IFN-γ, and IL-2 in serum. FAMB also significantly reduced the apoptosis of spleen lymphocytes in these mice. These results demonstrated that the microwave-assisted enzymatic method could significantly improve the yield and efficacy extraction of FAMB. FAMB showed a good immunomodulation effect on colitis mice.
Collapse
Affiliation(s)
- Xinjun Yao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China;
| | - Jicheng Xu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China;
- Correspondence: (J.X.); (B.A.)
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- Correspondence: (J.X.); (B.A.)
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing 100083, China;
| |
Collapse
|
9
|
Wu Y, Sun H, Yi R, Liao X, Li J, Li H, Tan F, Zhao X. Malus hupehensis leaves extract attenuates obesity, inflammation, and dyslipidemia by modulating lipid metabolism and oxidative stress in high-fat diet-induced obese mice. J Food Biochem 2020; 44:e13484. [PMID: 32996190 DOI: 10.1111/jfbc.13484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 01/04/2023]
Abstract
Malus hupehensis leaves (MHL) are used to make traditional Chinese tea. In this study, MHL extract was shown to improve metabolic disorders and inflammatory response in high-fat diet-induced obese mice. MHL extract could reduce body weight, and significantly alleviate liver damage and fat accumulation. MHL extract caused a decrease in the levels of ALT, AST, AKP, TC, TG, LDL-C, and an increase in the level of HDL-C. It also caused a decrease in inflammatory cytokines, including TNF-α, IFN-γ, IL-1β, IL-6, and an increase in the anti-inflammatory cytokine IL-10 and IL-4. MHL extract could upregulate mRNA expression of PPAR-α, LPL, CPT1, CYP7A1, SOD1, SOD2, CAT, GSH1, and GSH-Px and downregulate that of PPAR-γ and C/EBP-α in the liver of obese mice. In conclusion, our work represents the first study demonstrating that MHL extract possesses an anti-obesity effect and alleviates obesity-related symptoms, including dyslipidemia, chronic low-grade inflammatory, and liver damage. PRACTICAL APPLICATIONS: The research may contribute to the development and application of MHL as functional foods or dietary supplement to fight against obesity.
Collapse
Affiliation(s)
- Ya Wu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Hailan Sun
- Department of Nutrition, Chongqing Health Center for Women and Children, Chongqing, China
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xiangping Liao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Jia Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Honggang Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, Valenzuela, Philippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
10
|
Antioxidant Capacity-Related Preventive Effects of Shoumei (Slightly Fermented Camellia sinensis) Polyphenols against Hepatic Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9329356. [PMID: 32922655 PMCID: PMC7453255 DOI: 10.1155/2020/9329356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/05/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Shoumei is a kind of white tea (slightly fermented Camellia sinensis) that is rich in polyphenols. In this study, polyphenols were extracted from Shoumei. High-performance liquid chromatography (HPLC) showed that the polyphenols included mainly gallic acid, catechin, hyperoside, and sulfuretin. In an in vitro experiment, H2O2 was used to induce oxidative damage in human normal hepatic L-02 cells. In an animal experiment, CCl4 was used to induce liver injury. The in vitro results showed that Shoumei polyphenols inhibited oxidative damage in normal hepatic L-02 cells, and the in vivo results showed that the polyphenols effectively reduced liver index values in mice with liver injury. The polyphenols also decreased aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), triglyceride (TG), total cholesterol (TC), blood urea nitrogen (BUN), nitric oxide (NO), malondialdehyde (MDA), interleukin 6 (IL-6), interleukin 12 (IL-12), tumour necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ) levels and increased albumin (ALB), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) levels in the serum of mice with liver injury. Furthermore, pathological observation showed that the Shoumei polyphenols reduced CCl4-induced hepatocyte damage. qRT-PCR and Western blotting showed that the polyphenols upregulated the mRNA and protein expression of neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), manganese- (Mn-) SOD, copper/zinc- (Cu/Zn-) SOD, CAT, and inhibitor of nuclear factor kappa B (NF-κB) alpha (IκB-α) and downregulated the expression of inducible nitric oxide synthase (iNOS) and NF-κB p65. The Shoumei polyphenols had a preventive effect against CCl4-induced mouse liver injury equivalent to that of silymarin. The four polyphenols identified as the key substances responsible for this effect mediated the effect through their antioxidant capacity. These results suggest that Shoumei polyphenols are high-quality natural products with liver-protective effects.
Collapse
|
11
|
Prophylactic Effect of Lactobacillus plantarum YS4 on Oxazolone-Induced Colitis in BALB/c Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9048971. [PMID: 32849906 PMCID: PMC7441416 DOI: 10.1155/2020/9048971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
In the present research, the effects of Lactobacillus plantarum YS4 (LP-YS4) on colitis were tested in an oxazolone-induced mouse model. BALB/c mice were induced by oxazolone and then treated with LP-YS4. The serum levels of mice were analyzed using commercial kits and the protein and mRNA expression levels of mouse colon tissue were detected by Western blotting and qPCR assay, respectively. The results demonstrated that LP-YS4 significantly (P < 0.05) increased the colon length and ratio of colon weight/length in mice with colitis and attenuated the negative effects of colitis. The results also showed that treatment with LP-YS4 significantly reduced the serum concentrations of ET-1, SP, and IL-10 while significantly increasing those of SS, VIP, and IL-2 in colitis mice (P < 0.05). In addition, LP-YS4 significantly increased the activities of GSH and SOD while decreasing those of MPO and MDA in the colon tissue of colitis mice (P < 0.05). LP-YS4 also significantly upregulated the mRNA and protein expression of c-Kit, eNOS, nNOSe, and SCF in colitis mice while significantly downregulating the relative expression of iNOS. In summary, LP-YS4 could reduce the negative effects of colitis, and such effects were better than those of the common probiotic Lactobacillus bulgaricus.
Collapse
|
12
|
Jia XB, Zhang Q, Xu L, Yao WJ, Wei L. Effect of Malus asiatica Nakai Leaf Flavonoids on the Prevention of Esophageal Cancer in C57BL/6J Mice by Regulating the IL-17 Signaling Pathway. Onco Targets Ther 2020; 13:6987-6996. [PMID: 32764989 PMCID: PMC7373410 DOI: 10.2147/ott.s261033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Background The aim of this study was to observe the preventive effect of flavonoids extracted from Malus asiatica Nakai leaves (FMANL) on esophageal cancer in mice, especially the ability of FMANL to regulate the interleukin 17 (IL-17) signaling pathway during this process. Materials and Methods The C57BL/6J mice were treated with 4-nitroquinoline N-oxide (4NQO) to induce esophageal cancer, and the visceral tissue index and the serum and esophageal tissue indexes of mice were used to verify the effect of FMANL. Results The experimental results showed that FMANL can effectively control the changes in visceral tissue caused by esophageal cancer. FMANL could increase the cytokine levels of interleukin 10 (IL-10), monocyte chemotactic protein 1 (MCP-1) and decrease the cytokine levels of tumor necrosis factor alpha (TNF-α), interferon-γ (IFN-γ), interleukin 6 (IL-6), and interleukin 12p70 (IL-12p70) in serum of mice with esophageal cancer. FMANL could also reduce CD3+, CD4+, and CD8+ and enhance CD19+ mouse peripheral blood lymphocytes. The results of qPCR and Western blot analysis showed that FMANL could down-regulate the mRNA and protein expression levels of IL-17, interleukin 23 (IL-23), interleukin 1 beta (IL-1β), chemokine (C-X-C) ligand 1 (CXCL1), chemokine (C-X-C) ligand 2 (CXCL2), S100 calcium-binding protein A8 (S100A8), S100 calcium-binding protein A9 (S100A9), matrix metalloprotein 9 (MMP-9), and matrix metalloprotein 13 (MMP-1) in mice with esophageal cancer. High-performance liquid chromatography (HPLC) detection showed that FMANL contained 10 chemicals, including rutin, hyperoside, isoquercitrin, dihydroquercetin, quercitrin, hesperidin, myricetin, baicalin, neohesperidin dihydrochalcone, and quercetin. Conclusion It could be concluded that FMANL can effectively prevent experimentally induced esophageal cancer in mice, and its effects might be obtained from 10 compounds present in FMANL.
Collapse
Affiliation(s)
- Xiang-Bo Jia
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, People's Republic of China
| | - Quan Zhang
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, People's Republic of China
| | - Lei Xu
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, People's Republic of China
| | - Wen-Jian Yao
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, People's Republic of China
| | - Li Wei
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, People's Republic of China
| |
Collapse
|
13
|
Yi R, Wang FB, Tan F, Long X, Pan Y, Zhao X. Intervention effects of lotus leaf flavonoids on gastric mucosal lesions in mice infected with Helicobacter pylori. RSC Adv 2020; 10:23510-23521. [PMID: 35517367 PMCID: PMC9055112 DOI: 10.1039/d0ra03311a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is one of the main factors that cause gastric lesions. The lotus leaf is an edible plant used in traditional Eastern medicine. This study evaluates the intervention effects of lotus leaf flavonoids (LLF) on gastric mucosal lesions in mice infected with H. pylori and explores their mechanism of action. High-performance liquid chromatography analysis reveals that LLF contain kaempferitrin (kaempferol-3,7-dirhamnoside), hypericin, astragalin (kaempferol-3-glucoside), phlorizin, and quercetin. LLF can reduce the number of gastric mucosal lesions and tissue lesions in mice with H. pylori-induced gastric lesions. LLF can increase the levels of somatostatin and vasoactive intestinal peptide in the serum of mice with gastric lesions and decrease the levels of substance P and endothelin-1 to inhibit gastric lesions. LLF can also reduce the levels of interleukin (IL)-6, IL-12, tumor necrosis factor (TNF)-α, and interferon-gamma cytokines in the serum of mice with gastric lesions. Using a quantitative polymerase chain reaction assay it can be seen that LLF can downregulate mRNA expressions of TNF-α, IL-1β, myeloperoxidase, keratin (KRT) 16, KRT6b, and transglutaminase 3 epidermal in the gastric tissues of mice with gastric lesions. Western blot analysis indicates that LLF can downregulate the protein expressions of caspase-1, Nod-like receptor protein 3, IL-1β, TNF-α, and Toll-like receptor 4 in the gastric tissues of mice with gastric lesions. LLF have beneficial effects on gastric lesions induced by H. pylori. Meanwhile LLF is more active in competition with ranitidine. LLF represent an active substance that can inhibit H. pylori-induced gastric lesions. The flavones of LLF may enhance the inhibition of gastric mucosal lesions by promoting the interaction between the compounds.
Collapse
Affiliation(s)
- Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 P. R. China +86-23-6265-3650
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 P. R. China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 P. R. China
| | - Feng-Bo Wang
- Department of Rehabilitation, First Affiliated Hospital of Chengdu Medical College Chengdu 610500 P. R. China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University Valenzuela 838 Philippines
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 P. R. China +86-23-6265-3650
| | - Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 P. R. China +86-23-6265-3650
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 P. R. China +86-23-6265-3650
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 P. R. China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 P. R. China
| |
Collapse
|
14
|
Yi R, Tian Y, Tan F, Li W, Mu J, Long X, Pan Y, Zhao X. Intervention effect of Malus pumila leaf flavonoids on senna-induced acute diarrhea in BALB/c mice. Food Sci Nutr 2020; 8:2535-2542. [PMID: 32405409 PMCID: PMC7215224 DOI: 10.1002/fsn3.1549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
The Malus pumila leaves are used as a kind of tea drink in China, and there are abundant flavonoids in the leaves of Malus pumila. In this study, BALB/c mice received senna extract solution via gavage, which induced acute diarrhea, and the interventive effect of Malus pumila leaf flavonoids (MPLF) was observed. The results showed that MPLF decreased the diarrhea index, and MPLF also decreased the capillary permeability in the abdominal cavity of mice. The result of serum cytokine detection indicated that MPLF decreased the levels of inflammatory cytokines, including interleukin 6 (IL-6), interleukin 12 (IL-12), and tumor necrosis factor alpha (TNF-α). The results of quantitative polymerase chain reaction (qPCR) indicated that diarrhea decreased the mRNA and protein expression of aquaporin-3 (AQP3) in the jejunum and aquaporin-4 (AQP4) in the ileum, which were inhibited by MPLF. By high performance liquid chromatography (HPLC), MPLF mainly contains 10 flavonoids, which are rutin, hyperoside, isoquercitrin, taxifolin, quercitrin, hesperidin, myricetin, baicalin, neohesperidin dihydrochalcone and quercetin, the synergistic effect of these components plays an antidiarrhea role in MPLF. Therefore, MPLF achieved good antidiarrheal effect, which was better than that of the commonly used montmorillonite powder at the same concentration. MPLF is a natural raw material for functional food with an antidiarrheal effect.
Collapse
Affiliation(s)
- Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Yu Tian
- Department of Critical Care Medicinethe First Affiliated Hospital of Chengdu Medical CollegeChengduChina
| | - Fang Tan
- Department of Public HealthOur Lady of Fatima UniversityValenzuelaPhilippines
| | - Wenfeng Li
- School of Life Science and BiotechnologyYangtze Normal UniversityChongqingChina
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
- Department of Food Science and BiotechnologyCha UniversitySeongnamSouth Korea
| | - Yanni Pan
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
- Department of Food Science and BiotechnologyCha UniversitySeongnamSouth Korea
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| |
Collapse
|
15
|
Yang M, Sun F, Zhou Y, He M, Yao P, Peng Y, Luo F, Liu F. Preventive effect of lemon seed flavonoids on carbon tetrachloride-induced liver injury in mice. RSC Adv 2020; 10:12800-12809. [PMID: 35492116 PMCID: PMC9051252 DOI: 10.1039/d0ra01415j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to determine the preventive effect of lemon seed flavonoids (LSF) on carbon tetrachloride-induced liver injury in mice. Liver injury was induced by injection with 2 mL kg-1 of carbon tetrachloride after administration of LSF by gavage. Liver index, serological parameters, and expression intensities of related mRNA and protein in the liver tissue were observed. The results indicated that LSF reduced liver weight and liver index, downregulated serum levels of AST, ALT, ALP, TG, TC, BUN, NO, and MDA, and upregulated levels of ALB, SOD, CAT, and GSH-Px in the mice with liver injury. It also downregulated serum cytokines, such as IL-6, IL-12, TNF-α, and IFN-γ in these mice. qPCR and western blot confirmed that LSF upregulated mRNA and protein expression of Mn-SOD, Cu/Zn-SOD, CAT, GSH-Px, and IκB-α, and downregulated expression of NF-κB-p65, iNOS, COX-2, TNF-α, IL-1β, and IL-6 in the liver tissue of mice with liver injury. The preventive effect on carbon tetrachloride-induced liver injury was attributed to (-)-epigallocatechin, caffeic acid, (-)-epicatechin, vitexin, quercetin, and hesperidin, which were active substances that were detected in LSF by HPLC. Moreover, the effect of LSF is similar to that of silymarin, but the synergistic effect of the five active substances working in concert acted to produce a more robust liver-protecting effect.
Collapse
Affiliation(s)
- Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Yue Zhou
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Mei He
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Pu Yao
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Yuan Peng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Fei Luo
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Fu Liu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| |
Collapse
|