1
|
Junejo SA, Wu C, Fu X, Cacciotti I, Zhang B, Huang Q. The influence of pulse cell wall structure and cellular protein matrix on the in vitro digestion kinetics of starch: A dual encapsulation mechanism. Food Res Int 2024; 197:115220. [PMID: 39593306 DOI: 10.1016/j.foodres.2024.115220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
The intrinsic characteristics and extrinsic processing of whole-pulse food modulate the starch digestion rate and extent. This study investigated the dual encapsulation mechanism of cell wall structure and protein matrix on the in vitro digestion properties of intracellular starch, using an isolated whole-pulse food model of intact pea cotyledon cells subjected to alkaline buffer and enzymatic treatments. Results showed that intact cells with the maximum protein matrix content (18.9 %) exhibited the lowest peak temperature (71.4 °C, uncooked and 58.1 °C, cooked), enthalpy change (3.4 J/g, uncooked and 2.0 J/g, cooked), relative crystallinity (11.6 %), and starch digestion rate (0.0248 min-1) and extent (11.9 %) compared to alkaline buffer and enzymatic treatments. Even after enzymatic treatment, cells with minimal protein matrix content (1.8 %) exhibited a starch digestion rate (0.0387 min-1) and extent (39.7 %), which were still lower than those of isolated starch (0.0480 min-1 and 56.8 %). These findings indicate that the protein matrix and cell walls act as a dual encapsulation system to slow starch hydrolysis. This provides a theoretical basis and technical guidance for developing low-glycemic whole-pulse foods.
Collapse
Affiliation(s)
- Shahid Ahmed Junejo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Chumin Wu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome "Niccolò Cusano", Roma, Italy
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
2
|
Okelo EO, Wainaina I, Duijsens D, Onyango A, Sila D, Grauwet T, Hendrickx MEG. Targeted hydrothermally induced cell biopolymer changes explain the in vitro digestion of starch and proteins in common bean ( Phaseolus vulgaris) cotyledons. Food Funct 2024; 15:8848-8864. [PMID: 39118584 DOI: 10.1039/d4fo00734d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Digestion of macro-nutrients (protein and starch) in pulses is a consequence of the interplay of both extrinsic (process-related) and intrinsic (matrix-dependent) factors which influence their level of encapsulation and physical state, and therefore, their accessibility by the digestive enzymes. The current work aimed at understanding the consequences of hydrothermally induced changes in the physical state of cell biopolymers (cell wall, protein, and starch) in modulating the digestion kinetics of starch and proteins in common beans. The hydrothermal treatments were designed such that targeted microstructural/biopolymer changes occurred. Therefore, bean samples were processed at temperatures between 60 and 95 °C for 90 minutes. It was demonstrated that these treatments allowed the modulation of starch gelatinization, protein denaturation and cell separation. The specific role of hydrothermally induced starch gelatinization and protein denaturation, alongside enhanced cell wall permeability on the digestion kinetics of common bean starch and proteins is illustrated. For instance, bean samples processed at T > 70 °C were marked by higher levels of starch digestibility (Cf values above 47%) compared to the partially (un-)gelatinized samples (processed at T ≤ 70 °C) (Cf values below 35%). Similarly, samples processed at T > 85 °C exhibited significantly higher levels of protein digestibility (Cf values above 47%) resulting from complete protein denaturation. Moreover, increased permeability of the cell wall to digestive enzymes in these samples (T > 85 °C) increased levels of digestibility of both gelatinized starch and denatured proteins. This study provides an understanding of the potential use of hydrothermal processing to obtain pulse-based ingredients with pre-determined microstructural and nutritional characteristics.
Collapse
Affiliation(s)
- Erick O Okelo
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200, Nairobi, Kenya.
| | - Irene Wainaina
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200, Nairobi, Kenya.
| | - Dorine Duijsens
- Laboratory of Food Technology, Department of Microbial and Molecular systems, KU Leuven, Kasteelpark Arenberg 22, Box 2457, B-3001, Leuven, Belgium.
| | - Arnold Onyango
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200, Nairobi, Kenya.
| | - Daniel Sila
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200, Nairobi, Kenya.
| | - Tara Grauwet
- Laboratory of Food Technology, Department of Microbial and Molecular systems, KU Leuven, Kasteelpark Arenberg 22, Box 2457, B-3001, Leuven, Belgium.
| | - Marc E G Hendrickx
- Laboratory of Food Technology, Department of Microbial and Molecular systems, KU Leuven, Kasteelpark Arenberg 22, Box 2457, B-3001, Leuven, Belgium.
| |
Collapse
|
3
|
Cimini A, Morgante L, Moresi M. Analyzing Cooking Efficiency of Gradoli Purgatory Beans: Effects of Dehulling, Malting, and Monovalent Carbonates. Foods 2024; 13:2505. [PMID: 39200432 PMCID: PMC11354054 DOI: 10.3390/foods13162505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Legumes, rich in protein, fiber, and micronutrients, are increasingly popular in pulse-based and gluten-free foods despite global consumption stagnating at 21 g/day due to taste, low protein digestibility, anti-nutrients, and long cooking times. Bean resistance to cooking causes textural defects like the hardshell and hard-to-cook phenomena. The pectin-cation-phytate hypothesis explains why soaking beans in sodium salts reduces cooking time by enhancing pectin solubility in water. Gradoli Purgatory beans (GPB), from Italy's Latium region, were malted, reducing phytic acid by 32% and oligosaccharides by 63%. This study evaluated the hardness of cooked GPB seeds in various conditions, including decorticated or malted states, using a modified standard method. Cooking at 98 °C for 7-75 min on an induction hob with a water-to-seed ratio of 4 g/g was tested. Soaking was applied before cooking for conventional seeds only, followed by texture analysis. Conventional GPBs were adequately cooked if their cotyledons disintegrated upon pressing, requiring a force peak of 250 to 220 N and cooking times of 52 to 57 min. Malted, decorticated, and split GPBs cooked similarly to raw decorticated and split ones, with times of 32 and 25 min, respectively. Faster cooking was due to bean coat removal and splitting, not chemical changes. Sodium or potassium carbonate/bicarbonate at 1-2 g/L improved cooking efficiency, with 2 g/L of sodium carbonate reducing cooking time to 13 min. Higher concentrations caused non-uniform cooking. Cooking malted, decorticated, and split GPBs in sodium-carbonated water reduced greenhouse gas emissions from 561 to 368 g CO2e/kg, meeting the demand for eco-friendly and nutritionally enhanced plant protein sources.
Collapse
Affiliation(s)
| | | | - Mauro Moresi
- Dipartimento per l’Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Via S. C. de Lellis, 01100 Viterbo, Italy; (A.C.); (L.M.)
| |
Collapse
|
4
|
Lisciani S, Marconi S, Le Donne C, Camilli E, Aguzzi A, Gabrielli P, Gambelli L, Kunert K, Marais D, Vorster BJ, Alvarado-Ramos K, Reboul E, Cominelli E, Preite C, Sparvoli F, Losa A, Sala T, Botha AM, Ferrari M. Legumes and common beans in sustainable diets: nutritional quality, environmental benefits, spread and use in food preparations. Front Nutr 2024; 11:1385232. [PMID: 38769988 PMCID: PMC11104268 DOI: 10.3389/fnut.2024.1385232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/28/2024] [Indexed: 05/22/2024] Open
Abstract
In recent decades, scarcity of available resources, population growth and the widening in the consumption of processed foods and of animal origin have made the current food system unsustainable. High-income countries have shifted towards food consumption patterns which is causing an increasingly process of environmental degradation and depletion of natural resources, with the increased incidence of malnutrition due to excess (obesity and non-communicable disease) and due to chronic food deprivation. An urgent challenge is, therefore, to move towards more healthy and sustainable eating choices and reorientating food production and distribution to obtain a human and planetary health benefit. In this regard, legumes represent a less expensive source of nutrients for low-income countries, and a sustainable healthier option than animal-based proteins in developed countries. Although legumes are the basis of many traditional dishes worldwide, and in recent years they have also been used in the formulation of new food products, their consumption is still scarce. Common beans, which are among the most consumed pulses worldwide, have been the focus of many studies to boost their nutritional properties, to find strategies to facilitate cultivation under biotic/abiotic stress, to increase yield, reduce antinutrients contents and rise the micronutrient level. The versatility of beans could be the key for the increase of their consumption, as it allows to include them in a vast range of food preparations, to create new formulations and to reinvent traditional legume-based recipes with optimal nutritional healthy characteristics.
Collapse
Affiliation(s)
- Silvia Lisciani
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Stefania Marconi
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Cinzia Le Donne
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Emanuela Camilli
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Altero Aguzzi
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Paolo Gabrielli
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Loretta Gambelli
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Karl Kunert
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Diana Marais
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Barend Juan Vorster
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | | | | | - Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Milan, Italy
| | - Chiara Preite
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Milan, Italy
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Milan, Italy
| | - Alessia Losa
- Research Centre for Genomics and Bioinformatics, Council for Agricultural and Economics Research, Montanaso Lombardo, Italy
| | - Tea Sala
- Research Centre for Genomics and Bioinformatics, Council for Agricultural and Economics Research, Montanaso Lombardo, Italy
| | - Anna-Maria Botha
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Marika Ferrari
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| |
Collapse
|
5
|
Kim H, Lee C, Kim E, Jo Y, Park J, Ban C, Lim S. Optimization of Ultrasound-Assisted Pretreatment for Accelerating Rehydration of Adzuki Bean ( Vigna angularis). J Microbiol Biotechnol 2024; 34:846-853. [PMID: 38379340 DOI: 10.4014/jmb.2401.01004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
Adzuki bean (Vigna angularis), which provides plant-based proteins and functional substances, requires a long soaking time during processing, which limits its usefulness to industries and consumers. To improve this, ultrasonic treatment using high pressure and shear force was judged to be an appropriate pretreatment method. This study aimed to determine the optimal conditions of ultrasound treatment for the improved hydration of adzuki beans using the response surface methodology (RSM). Independent variables chosen to regulate the hydration process of the adzuki beans were the soaking time (2-14 h, X1), treatment intensity (150-750 W, X2), and treatment time (1-10 min, X3). Dependent variables chosen to assess the differences in the beans post-immersion were moisture content, water activity, and hardness. The optimal conditions for treatment deduced through RSM were a soaking time of 12.9 h, treatment intensity of 600 W, and treatment time of 8.65 min. In this optimal condition, the values predicted for the dependent variables were a moisture content of 58.32%, water activity of 0.9979 aw, and hardness of 14.63 N. Upon experimentation, the results obtained were a moisture content of 58.28 ± 0.56%, water activity of 0.9885 ± 0.0040 aw, and hardness of 13.01 ± 2.82 g, confirming results similar to the predicted values. Proper ultrasound treatment caused cracks in the hilum, which greatly affects the water absorption of adzuki beans, accelerating the rate of hydration. These results are expected to help determine economically efficient processing conditions for specific purposes, in addition to solving industrial problems associated with the low hydration rate of adzuki beans.
Collapse
Affiliation(s)
- Hyengseop Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Changgeun Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Eunghee Kim
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Youngje Jo
- Research and Development Dept., B.E.T., Busan 48119, Republic of Korea
| | - Jiyoon Park
- Seoul International School, Seongnam 13113, Republic of Korea
| | - Choongjin Ban
- Department of Environmental Horticulture, University of Seoul, Seoul 02504, Republic of Korea
| | - Seokwon Lim
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
6
|
An NTH, Namutebi P, Van Loey A, Hendrickx ME. Quantitative assessment of molecular, microstructural, and macroscopic changes of red kidney beans (Phaseolus vulgaris L.) during cooking provides detailed insights in their cooking behavior. Food Res Int 2024; 181:114098. [PMID: 38448107 DOI: 10.1016/j.foodres.2024.114098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Quantitative changes at different length scales (molecular, microscopic, and macroscopic levels) during cooking were evaluated to better understand the cooking behavior of common beans. The microstructural evolution of presoaked fresh and aged red kidney beans during cooking at 95 °C was quantified using light microscopy coupled with image analysis. These data were related to macroscopic properties, being hardness and volume changes representing texture and swelling of the beans during cooking. Microstructural properties included the cell area (Acell), the fraction of intercellular spaces (%Ais), and the fraction of starch area within the cells (%As/c), reflecting respectively cell expansion, cell separation, and starch swelling. A strong linear correlation between hardness and %Ais (r = -0.886, p = 0.07), along with a significant relative change in %Ais (∼5 times), suggests that softening is predominantly due to cell separation rather than cell expansion. Regarding volume changes, substantial cell expansion (Acell increased by ∼1.5 times) during the initial 30 min of cooking was greatly associated with the increase in the cotyledon volume, while the significance of cell separation became more prominent during the later stages of cooking. Furthermore, we found that the seed coat, rather than the cotyledon, played a major role in the swelling of whole beans, which became less pronounced after aging. The macroscopic properties did not correlate with %As/c. However, the evolution of %As/c conveyed information on the swelling of the starch granules during cooking. During the initial phase, the starch granule swelling mainly filled the cells, while during the later phase, the further swelling was confined by the cell wall. This study provides strong microscopic evidence supporting the direct involvement of the cell wall/ middle lamella network in microstructural changes during cooking as affected by aging, which is in line with the results of molecular changes.
Collapse
Affiliation(s)
- Nguyen T H An
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| | - Patricia Namutebi
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium
| | - Ann Van Loey
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| | - Marc E Hendrickx
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| |
Collapse
|
7
|
Perucini-Avendaño M, Arzate-Vázquez I, Perea-Flores MDJ, Tapia-Maruri D, Méndez-Méndez JV, Nicolás-García M, Dávila-Ortiz G. Effect of cooking on structural changes in the common black bean ( Phaseolus vulgaris var. Jamapa). Heliyon 2024; 10:e25620. [PMID: 38380000 PMCID: PMC10877254 DOI: 10.1016/j.heliyon.2024.e25620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
The cooking process is fundamental for bean consumption and to increase the bioavailability of its nutritional components. The study aimed to determine the effect of cooking on bean seed coat through morphological analyses with different microscopy techniques and image analyses. The chemical composition and physical properties of raw black bean (RBB) and cooked black bean (CBB) seeds were determined. The surface and cross-sectional samples were studied by Optical microscopy (OM), environmental scanning electron microscopy (ESEM), atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). The composition of samples showed significant differences after the cooking process. OM images and gray level co-occurrence matrix algorithm (GLCM) analysis indicated that cuticle-deposited minerals significantly influence texture parameters. Seed coat surface ESEM images showed cluster cracking. Texture fractal dimension and lacunarity parameters were effective in quantitatively assessing cracks on CBB. AFM results showed arithmetic average roughness (Ra) (121.67 nm) and quadratic average roughness (Rq) (149.94 nm). The cross-sectional ESEM images showed a decrease in seed coat thickness. The CLSM results showed an increased availability of lipids along the different multilayer tissues in CBB. The results generated from this research work offer a valuable potential to carry out a strict control of bean seed cooking at industrial level, since the structural changes and biochemical components (cell wall, lipids and protein bodies) that occur in the different tissues of the seed are able to migrate from the inside to the outside through the cracks generated in the multilayer structure that are evidenced by the microscopic techniques used.
Collapse
Affiliation(s)
- Madeleine Perucini-Avendaño
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738, Mexico City, Mexico
| | - Israel Arzate-Vázquez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738, Mexico City, Mexico
| | - María de Jesús Perea-Flores
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738, Mexico City, Mexico
| | - Daniel Tapia-Maruri
- Centro de Desarrollo de Productos Bióticos-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla Km. 6, Calle CEPROBI No. 8, Col. San Isidro, Yautepec, C.P. 62731, Morelos, Mexico
| | - Juan Vicente Méndez-Méndez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738, Mexico City, Mexico
| | - Mayra Nicolás-García
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738, Mexico City, Mexico
- Tecnológico Nacional de México/ITS de Teziutlán, Ingeniería en Industrias Alimentarias, Fracción I y II, Aire Libre S/N, 73960, Teziutlán, Puebla, Mexico
| | - Gloria Dávila-Ortiz
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738, Mexico City, Mexico
| |
Collapse
|
8
|
Moresi M, Cimini A. A Comprehensive Study from Cradle-to-Grave on the Environmental Profile of Malted Legumes. Foods 2024; 13:655. [PMID: 38472768 DOI: 10.3390/foods13050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Three representative pulses from the Latium region of Italy (namely, Solco Dritto chickpeas, SDC, Gradoli Purgatory beans, GPB, and Onano lentils, OL) underwent malting to reduce their anti-nutrient content, such as phytic acid and flatulence-inducing oligosaccharides. This initiative targets the current low per capita consumption of pulses. Employing Life Cycle Analysis, their environmental impact was assessed, revealing an overall carbon footprint of 2.8 or 3.0 kg CO2e per kg of malted (M) and decorticated (D) SDCs or GPBs and OLs, respectively. The Overall Weighted Sustainability scores (OWSS) complying with the Product Environmental Footprint method ranged from 298 ± 30 to 410 ± 40 or 731 ± 113 µPt/kg for malted and decorticated SDCs, OLs, or GPBs, indicating an increase from 13% to 17% compared to untreated dry seeds. Land use impact (LU) was a dominant factor, contributing 31% or 42% to the OWSS for MDSDCs or MDOLs, respectively. In MDGPBs, LU constituted 18% of the OWSS, but it was overshadowed by the impact of water use arising from bean irrigation, accounting for approximately 52% of the OWSS. This underscores the agricultural phase's pivotal role in evaluating environmental impact. The climate change impact category (CC) was the second-largest contributor, ranging from 28% (MDSDCs) to 22% (MDOLs), and ranking as the third contributor with 12% of the OWSS for MDGPBs. Mitigation should prioritize the primary impact from the agricultural phase, emphasizing land and water utilization. Selecting drought-tolerant bean varieties could significantly reduce OWSSs. To mitigate climate change impact, actions include optimizing electricity consumption during malting, transitioning to photovoltaic electricity, upgrading transport vehicles, and optimizing pulse cooking with energy-efficient appliances. These efforts, aligning with sustainability goals, may encourage the use of malted and decorticated pulses in gluten-free, low fat, α-oligosaccharide, and phytate-specific food products for celiac, diabetic, and hyperlipidemic patients. Overall, this comprehensive approach addresses environmental concerns, supports sustainable practices, and fosters innovation in pulse utilization for improved dietary choices.
Collapse
Affiliation(s)
- Mauro Moresi
- Department for Innovation in the Biological, Agrofood and Forestry Systems, University of Tuscia, Via S. C. de Lellis, 01100 Viterbo, Italy
| | - Alessio Cimini
- Department for Innovation in the Biological, Agrofood and Forestry Systems, University of Tuscia, Via S. C. de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
9
|
Zhu L, Chen D, Hendrickx M, Kyomugasho C. Texture classification and in situ cation measurements by SEM-EDX provide detailed quantitative insights into cell wall cation interaction changes during ageing, soaking, and cooking of red kidney beans. Food Res Int 2023; 174:113524. [PMID: 37986511 DOI: 10.1016/j.foodres.2023.113524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023]
Abstract
Hard-to-cook (HTC) is a textural defect that delays the softening of common bean seeds during cooking. While this defect is commonly associated with conventionally stored beans, soaking/cooking of beans in CaCl2 solutions or sodium acetate buffer can also prolong the cooking time of beans due to formation of Ca2+ crosslinked pectin retarding bean softening during cooking. In this study, the role of the cell wall-bound Mg2+/Ca2+ content and the degree of pectin methyl esterification (DM) was quantified, as important factors for bean texture-related changes stipulated in the pectin-cation-phytate hypothesis, the most plausible hypothesis of HTC development. Evaluation of texture changes during cooking of conventionally aged beans (35 °C and 83% RH for up to 20 weeks), beans soaked/cooked in CaCl2 solutions (0.01 to 0.1 M) or soaked in 0.1 M sodium acetate buffer (pH 4.4) revealed large bean-to-bean variations. Therefore a texture-based classification approach was used to better capture the relation between texture characteristics and cell wall polymer, in particular pectin, related changes. While cell wall-bound Ca2+ and pectin DM did not change/were not related to the texture variation during cooking of fresh beans, increased cell wall-bound Ca2+ and decreased pectin DM were associated with prolonged conventional storage of beans and their texture changes during subsequent cooking (due to pectin cross linking, retarding its solubilization during cooking). Exogenously added Ca2+ from pre-treating beans in CaCl2 solutions promoted to a great extent the cell wall-bound Ca2+ during soaking but even more so during cooking, complementing the harder texture associated with these beans during cooking (compared to conventionally stored and fresh beans). Similarly, free Ca2+ endogenously generated by phytase-catalysed phytate hydrolysis (beans treated by acetate buffer) promoted crosslinking of pectin by Ca2+ (cell wall-bound Ca2+), delaying softening of beans during cooking.
Collapse
Affiliation(s)
- Li Zhu
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| | - Dongyan Chen
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| | - Marc Hendrickx
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| | - Clare Kyomugasho
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| |
Collapse
|
10
|
Zhu L, Che AJC, Kyomugasho C, Chen D, Hendrickx M. Effect of bio-chemical changes due to conventional ageing or chemical soaking on the texture changes of common beans during cooking. Food Res Int 2023; 173:113377. [PMID: 37803715 DOI: 10.1016/j.foodres.2023.113377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
To establish the HTC defect development, the cooking kinetics of seeds of ten bean accessions (belonging to seven common bean market classes), fresh and conventionally aged (35 °C, 83% RH, 3 months) were compared to those obtained after soaking in specific salt solutions (in 0.1 M sodium acetate buffer at pH 4.4, 41 °C for 12 h, or 0.01 M CaCl2 at pH 6.2, 25 °C for 16 h and subsequently cooking in CaCl2 solution, or deionised water). The extent of phytate (inositol hexaphosphate, IP6) hydrolysis was evaluated to better understand the role of endogenous Ca2+ in the changes of the bean cooking kinetics. A significant decrease in the IP6 content was observed after conventional ageing and after soaking in a sodium acetate solution suggesting phytate hydrolysis (release of endogenous Ca2+). These changes were accompanied by an increase in the cooking time of the beans. Smaller changes in cooking times after soaking in a sodium acetate solution (compared to conventionally aged beans) was attributed to a lower ionisation level of the COOH groups in pectin (pH 4.4, being close to pKa value of pectin) limiting pectin Ca2+ cross-linking. In beans soaked in a CaCl2 solution, the uptake of exogenous cations increased the cooking times (with no IP6 hydrolysis). The change in cooking time of conventionally aged beans was strongly correlated with the extent of IP6 hydrolysis, although two groups of beans with low or high IP6 hydrolysis were distinguished. Comparable trends were observed when soaking in CaCl2 solution (r = 0.67, p = 0.14 or r = 0.97, p = 0.03 for two groups of beans with softer or harder texture during cooking). Therefore a test based on the Ca2+ sensitivity of the cooking times, implemented through a Ca2+ soaking experiment followed by cooking can be used as an accelerated test to predict susceptibility to HTC defect development during conventional ageing. On the other hand, a sodium acetate soaking experiment can be used to predict IP6 hydrolysis of conventionally aged bean accessions and changes of cooking times for these bean accessions (with exception of yellow bean-KATB1).
Collapse
Affiliation(s)
- Li Zhu
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| | - Asanji Jean Claude Che
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| | - Clare Kyomugasho
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| | - Dongyan Chen
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| | - Marc Hendrickx
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| |
Collapse
|
11
|
Wu C, Dhital S, Mo Y, Fu X, Huang Q, Zhang B. Salt adopted in soaking solution controls the yield and starch digestion kinetics of intact pulse cotyledon cells. Carbohydr Polym 2023; 314:120949. [PMID: 37173051 DOI: 10.1016/j.carbpol.2023.120949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Intact cellular powders have gained attention as a functional ingredient due to their lower glycemic response and potential benefits in colon. The isolation of intact cells in the laboratory and pilot plant settings is mainly achieved through thermal treatment with or without the use of limited salts. However, the effects of salt type and concentration on cell porosity, and their impact on the enzymic hydrolysis of encapsulated macro-nutrients such as starch, have been overlooked. In this study, different salt-soaking solutions were used to isolate intact cotyledon cells from white kidney beans. The use of Na2CO3 and Na3PO4 soaking treatments, with high pH (11.5-12.7) and high amount of Na ion (0.1, 0.5 M), greatly improved the yield of cellular powder (49.6-55.5 %), due to the solubilization of pectin through β-elimination and ion exchange. Intact cell walls serve as a physical barrier, significantly reducing the susceptibility of cell to amylolysis when compared to white kidney bean flour and starch counterparts. However, the solubilization of pectin may facilitate enzyme access into the cells by enlarging cell wall permeability. These findings provide new insights into the processing optimization to improve the yield and nutritional value of intact pulse cotyledon cells as a functional food ingredient.
Collapse
Affiliation(s)
- Chumin Wu
- South China University of Technology, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Sushil Dhital
- Monash University, Department of Chemical and Biological Engineering, Clayton Campus, VIC 3800, Australia
| | - Yongyi Mo
- South China University of Technology, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Xiong Fu
- South China University of Technology, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou 510640, China
| | - Qiang Huang
- South China University of Technology, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou 510640, China
| | - Bin Zhang
- South China University of Technology, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
12
|
Purwandari FA, Westerbos C, Lee K, Fogliano V, Capuano E. Proximate composition, microstructure, and protein and starch digestibility of seven collections of Jack bean (Canavalia ensiformis) with different optimal cooking times. Food Res Int 2023; 170:112956. [PMID: 37316048 DOI: 10.1016/j.foodres.2023.112956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/19/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Because of its high protein content, Jack bean (Canavalia ensiformis) is a promising alternative protein source. However, the utilization of Jack bean is limited due to the long cooking time to achieve palatable softness. We hypothesize that the cooking time may influence protein and starch digestibility. In this study, we characterized seven Jack bean collections with different optimal cooking times in terms of their proximate composition, microstructure and protein and starch digestibility. Kidney bean was included as a reference for microstructure and protein and starch digestibility. Proximate composition showed that Jack bean collections have a protein content ranging from 28.8 to 39.3%, a starch content ranging from 31 to 41%, a fiber content from 15.4 to 24.6%, and a concanavalin A content in the range 35-51 mg/g dry cotyledon. Particle sizes ranging between 125 and 250 µm were chosen as a representative sample of the whole bean to characterize microstructure and digestibility of the seven collections. Confocal laser microscopy (CLSM) revealed that Jack bean cells have an oval shape and contain starch granules embedded in a protein matrix similar to kidney bean cells. The diameter of Jack bean cells was measured by image analysis of CLSM micrographs and ranged from 103 to 123 µm, while the diameter of starch granules was 31-38 µm, comparatively larger than that of the kidney bean starch granules. Isolated intact cells were used to determine the starch and protein digestibility in the Jack beans collections. The digestion kinetics of starch followed a logistic model, whereas the digestion kinetics of protein followed a fractional conversion model. We found no correlation between optimal cooking time and kinetic parameters of protein and starch digestibility, implying that optimal cooking time is not predictive of protein and starch digestibility. In addition, we tested the effect of reduced cooking times on protein and starch digestibility on one Jack bean collection. The result showed that reducing cooking time significantly reduces starch digestibility, but not protein digestibility. The present study contributes to our understanding of the effect of food processing on protein and starch digestibility in legumes.
Collapse
Affiliation(s)
- Fiametta Ayu Purwandari
- Food Quality and Design Group, Wageningen University and Research, 6700AA Wageningen, the Netherlands; Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University, Jalan Flora, Bulaksumur, Depok, Sleman, Yogyakarta 55281, Indonesia
| | - Christien Westerbos
- Food Quality and Design Group, Wageningen University and Research, 6700AA Wageningen, the Netherlands
| | - Keumwoo Lee
- Food Quality and Design Group, Wageningen University and Research, 6700AA Wageningen, the Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University and Research, 6700AA Wageningen, the Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Wageningen University and Research, 6700AA Wageningen, the Netherlands.
| |
Collapse
|
13
|
Huertas R, Karpinska B, Ngala S, Mkandawire B, Maling'a J, Wajenkeche E, Kimani PM, Boesch C, Stewart D, Hancock RD, Foyer CH. Biofortification of common bean ( Phaseolus vulgaris L.) with iron and zinc: Achievements and challenges. Food Energy Secur 2023; 12:e406. [PMID: 38440694 PMCID: PMC10909572 DOI: 10.1002/fes3.406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 03/06/2024] Open
Abstract
Micronutrient deficiencies (hidden hunger), particularly in iron (Fe) and zinc (Zn), remain one of the most serious public health challenges, affecting more than three billion people globally. A number of strategies are used to ameliorate the problem of micronutrient deficiencies and to improve the nutritional profile of food products. These include (i) dietary diversification, (ii) industrial food fortification and supplements, (iii) agronomic approaches including soil mineral fertilisation, bioinoculants and crop rotations, and (iv) biofortification through the implementation of biotechnology including gene editing and plant breeding. These efforts must consider the dietary patterns and culinary preferences of the consumer and stakeholder acceptance of new biofortified varieties. Deficiencies in Zn and Fe are often linked to the poor nutritional status of agricultural soils, resulting in low amounts and/or poor availability of these nutrients in staple food crops such as common bean. This review describes the genes and processes associated with Fe and Zn accumulation in common bean, a significant food source in Africa that plays an important role in nutritional security. We discuss the conventional plant breeding, transgenic and gene editing approaches that are being deployed to improve Fe and Zn accumulation in beans. We also consider the requirements of successful bean biofortification programmes, highlighting gaps in current knowledge, possible solutions and future perspectives.
Collapse
Affiliation(s)
- Raul Huertas
- Environmental and Biochemical SciencesThe James Hutton InstituteDundeeUK
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonUK
| | - Sophia Ngala
- Department of Plant Science and Crop Protection, College of Agriculture and Veterinary SciencesUniversity of NairobiNairobiKenya
| | - Bertha Mkandawire
- The Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN)PretoriaSouth Africa
| | - Joyce Maling'a
- Kenya Agriculture and Livestock Research Organization (KALRO)Food Crops Research InstituteKitaleKenya
| | - Elizabeth Wajenkeche
- Kenya Agriculture and Livestock Research Organization (KALRO)Food Crops Research InstituteKitaleKenya
| | - Paul M. Kimani
- Department of Plant Science and Crop Protection, College of Agriculture and Veterinary SciencesUniversity of NairobiNairobiKenya
| | | | - Derek Stewart
- Environmental and Biochemical SciencesThe James Hutton InstituteDundeeUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghUK
| | | | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonUK
| |
Collapse
|
14
|
Egea MB, De Sousa TL, Dos Santos DC, De Oliveira Filho JG, Guimarães RM, Yoshiara LY, Lemes AC. Application of Soy, Corn, and Bean By-products in the Gluten-free Baking Process: A Review. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Soaking beans for 12 h reduces split percent and cooking time regardless of type of water used for cooking. Heliyon 2022; 8:e10561. [PMID: 36119878 PMCID: PMC9474322 DOI: 10.1016/j.heliyon.2022.e10561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 01/31/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
Beans are one of the most important cheap source of protein in developing countries. However, their utilisation in the diets of many people remains limited due to long cooking time, among others. Therefore, it is imperative to identify ways to enhance utilisation of beans. The aim of the current study was to assess the effects of soaking and cooking in different types of water (tap, borehole, acidulated- 1.0 percent citric acid and soda- 0.2 percent sodium bicarbonate) on cooking time (CT), split percentage (SP) and total soluble solids (TSS) in broth of different varieties of beans. Results show that soaking significantly reduced CT across eight varieties from an average CT of 109.5–84.6 min in tap water, 109.5–85.2 min in borehole water, 115.9–92.7 min in acidulated water and 82.0–51.2 min in soda water representing 22.7%, 22.1%, 20.0% and 37.6% reduction in CT, respectively. Soaking generally decreased SP and varietal differences were observed suggesting beans are less likely to break when soaking precede cooking. Although cooking in soda water significantly reduced CT, unfortunately, it increased SP. Acidulated water extended CT but reduced SP in almost all varieties. Soaking generally decreased TSS in broth from 7.0 to 6.7% in tap water, 6.1–5.8% in borehole water and 11.3–7.7% in soda water while it increased TSS in acidulated water from 18.2 to 20.6% across all the eight varieties which suggest reduction in leaching out of bean solids into cooking water which is consistent with reduced SP of soaked beans. While use of soda water reduced cooking time and therefore saved time and energy, its effect of increasing split percent may not be appealing to some consumers. This study has demonstrated that bean soaking significantly reduced cooking time and split percent and these can also be affected by type of cooking water.
Collapse
|
16
|
Carvalho VS, de Oliveira LC, de Matos Jorge LM, Jorge RMM. Periodic operation as an alternative to intensify the hydration process of common beans (
Phaseolus vulgaris
). J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vanessa Souza Carvalho
- Laboratory of Process Engineering in Particulate Systems, Chemical Engineering Department, Graduate Program in Food Engineering Federal University of Paraná Curitiba Brazil
| | - Lucas Carvalho de Oliveira
- Laboratory of Process Engineering in Particulate Systems, Chemical Engineering Department, Graduate Program in Food Engineering Federal University of Paraná Curitiba Brazil
| | - Luiz Mário de Matos Jorge
- Chemical Engineering Department, Graduate Program in Chemical Engineering State University of Maringá Maringá Brazil
| | - Regina Maria Matos Jorge
- Laboratory of Process Engineering in Particulate Systems, Chemical Engineering Department, Graduate Program in Food Engineering Federal University of Paraná Curitiba Brazil
| |
Collapse
|
17
|
Transcriptome-Guided Identification of Pectin Methyl-Esterase-Related Enzymes and Novel Molecular Processes Effectuating the Hard-to-Cook Defect in Common Bean ( Phaseolus vulgaris L.). Foods 2022; 11:foods11121692. [PMID: 35741889 PMCID: PMC9222787 DOI: 10.3390/foods11121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
The hard-to-cook defect in common beans is dictated by the ability to achieve cell separation during cooking. Hydrolysis of pectin methyl-esters by the pectin methyl-esterase (PME) enzyme influences cell separation. However, the contributions of the PME enzyme and the cell wall to the hard-to-cook defect have not been studied using molecular tools. We compared relevant molecular processes in fast- and slow-cooking bean varieties to understand the mechanisms underpinning the hard-to-cook defect. A PME spectrophotometric assay showed minor differences in enzyme activity between varieties. Meanwhile, a PME HMMER search in the P. vulgaris genome unveiled 113 genes encoding PMEs and PME inhibitors (PMEIs). Through RNA sequencing, we compared the gene expression of the PME-related genes in both varieties during seed development. A PME (Phvul010g080300) and PMEI gene (Phvul005g007600) showed the highest expression in the fast- and slow-cooking beans, respectively. We further identified 2132 differentially expressed genes (DEGs). Genes encoding cell-wall-related enzymes, mainly glycosylphosphatidylinositol mannosyltransferase, xyloglucan O-acetyltransferase, pectinesterase, and callose synthase, ranked among the top DEGs, indicating novel relations to the hard-to-cook defect. Gene ontology mapping revealed hydrolase activity and protein phosphorylation as functional categories with the most abundant upregulated DEGs in the slow-cooking bean. Additionally, the cell periphery contained 8% of the DEGs upregulated in the slow-cooking bean. This study provides new insights into the role of pectin methyl-esterase-related genes and novel cell wall processes in the occurrence of the hard-to-cook defect.
Collapse
|
18
|
Calcium transport and phytate hydrolysis during chemical hardening of common bean seeds. Food Res Int 2022; 156:111315. [DOI: 10.1016/j.foodres.2022.111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
|
19
|
Dhlakama N, Chawafambira A, Tsotsoro K. Polyphenols, antioxidant activity, and functional properties of baobab ( Adansonia digitata L) seeds soaked in monovalent ion salts. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2082467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nyasha Dhlakama
- Department of Food Science and Technology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Armistice Chawafambira
- Department of Food Science and Technology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Kudakwashe Tsotsoro
- Department of Chemistry, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| |
Collapse
|
20
|
Sofi PA, Mir RR, Zargar SM, Rani S, Fatima S, Shafi S, Zaffar A. What makes the beans (Phaseolus vulgaris L.) soft: insights into the delayed cooking and hard to cook trait. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Kajiwara V, Moda-Cirino V, dos Santos Scholz MB. Studies on nutritional and functional properties of various genotypes of Andean beans. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1468-1477. [PMID: 35250070 PMCID: PMC8882544 DOI: 10.1007/s13197-021-05157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 11/29/2022]
Abstract
Andean bean group have a wide number of genotypes and are available as a source of nutrients and antioxidant compounds in a diet. Proteins, minerals, phenolic compounds, phytic acid, and antioxidant activity were evaluated in 14 white, red, and mottled seed coat genotypes. The Ca, Mg and Cu contents presented the greatest variability. The white seed coat genotypes presented lower phenolic compounds and antioxidant activity levels than the red and mottled seed coat genotypes. A strong correlation between phenolic compounds and antioxidant activity was observed, and hierarchical cluster analysis showed the formation of three groups (G1, G2 and G3). G1 and G2 can be recommended to individuals who want foods with a high content of antioxidant compounds, while any group can be consumed to meet the demand for a diet rich in minerals. G1 and G3 can be recommended to individuals who want a diet high in protein. Changes in eating habits are a barrier to incorporating new sources of nutrients into a traditional diet. However, Andean beans can easily be incorporated into the diets of those who already consume beans daily, as Andean beans can be prepared in the same manner as other beans. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13197-021-05157-7.
Collapse
Affiliation(s)
- Vania Kajiwara
- Master of Conservationist Agronomy, Agronomic Institute of Paraná State-IAPAR, Rod. Celso Garcia Cid Km 375, Londrina, Paraná 86047-902 Brazil
| | - Vânia Moda-Cirino
- Breeding Department, Agronomic Institute of Paraná State- IAPAR, Rod. Celso Garcia Cid Km 375, Londrina, Paraná 86047-902 Brazil
| | - Maria Brígida dos Santos Scholz
- Vegetal Physiology Department, Agronomic Institute of Paraná State- IAPAR, Rod. Celso Garcia Cid Km 375, Londrina, Paraná 86047-902 Brazil
| |
Collapse
|
22
|
Wainaina I, Lugumira R, Wafula E, Kyomugasho C, Sila D, Hendrickx M. Insight into pectin-cation-phytate theory of hardening in common bean varieties with different sensitivities to hard-to-cook. Food Res Int 2022; 151:110862. [PMID: 34980398 DOI: 10.1016/j.foodres.2021.110862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Abstract
In this study, a detailed quantitative analysis of the mechanisms linked with pectin-cation-phytate hypothesis of hard-to-cook development (HTC) was evaluated to assess the plausibility of this hypothesis. Several common bean varieties with varying sensitivities to HTC were characterized for pectin, cell wall bound calcium and inositol hexaphosphate (InsP6) content before and after ageing. Ageing resulted in a significant decrease in InsP6 content (resulting in calcium release) in all varieties. Despite not significantly changing during ageing, the cell wall bound calcium content significantly increased in most aged bean varieties upon short cooking indicating enhanced internal cation migration during the early phase of cooking in contrast to during ageing and soaking. Among the parameters evaluated in this study, the relative changes in InsP6 content significantly correlated with the change in cooking times as well as changes in cell wall bound calcium content. Results obtained in this study suggest that in some bean varieties, pectin-cation-phytate hypothesis is the predominant mechanism by which hardening occurs during storage while in other varieties, the role of other factors such as phenolic crosslinking as suggested in literature cannot be ruled out.
Collapse
Affiliation(s)
- Irene Wainaina
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| | - Robert Lugumira
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| | - Elizabeth Wafula
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium; Jomo Kenyatta University of Agriculture and Technology (JKUAT), Department of Food Science and Technology, P.O. Box 62, 000-00200 Nairobi, Kenya.
| | - Clare Kyomugasho
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| | - Daniel Sila
- Jomo Kenyatta University of Agriculture and Technology (JKUAT), Department of Food Science and Technology, P.O. Box 62, 000-00200 Nairobi, Kenya.
| | - Marc Hendrickx
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| |
Collapse
|
23
|
Duijsens D, Gwala S, Pallares AP, Pälchen K, Hendrickx M, Grauwet T. How postharvest variables in the pulse value chain affect nutrient digestibility and bioaccessibility. Compr Rev Food Sci Food Saf 2021; 20:5067-5096. [PMID: 34402573 DOI: 10.1111/1541-4337.12826] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 01/12/2023]
Abstract
Pulses are increasingly being put forward as part of healthy diets because they are rich in protein, (slowly digestible) starch, dietary fiber, minerals, and vitamins. In pulses, nutrients are bioencapsulated by a cell wall, which mostly survives cooking followed by mechanical disintegration (e.g., mastication). In this review, we describe how different steps in the postharvest pulse value chain affect starch and protein digestion and the mineral bioaccessibility of pulses by influencing both their nutritional composition and structural integrity. Processing conditions that influence structural characteristics, and thus potentially the starch and protein digestive properties of (fresh and hard-to-cook [HTC]) pulses, have been reported in literature and are summarized in this review. The effect of thermal treatment on the pulse microstructure seems highly dependent on pulse type-specific cell wall properties and postharvest storage, which requires further investigation. In contrast to starch and protein digestion, the bioaccessibility of minerals is not dependent on the integrity of the pulse (cellular) tissue, but is affected by the presence of mineral antinutrients (chelators). Although pulses have a high overall mineral content, the presence of mineral antinutrients makes them rather poorly accessible for absorption. The negative effect of HTC on mineral bioaccessibility cannot be counteracted by thermal processing. This review also summarizes lessons learned on the use of pulses for the preparation of foods, from the traditional use of raw-milled pulse flours, to purified pulse ingredients (e.g., protein), to more innovative pulse ingredients in which cellular arrangement and bioencapsulation of macronutrients are (partially) preserved.
Collapse
Affiliation(s)
- Dorine Duijsens
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Shannon Gwala
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Andrea Pallares Pallares
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Katharina Pälchen
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Marc Hendrickx
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Tara Grauwet
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Wafula EN, Wainaina IN, Buvé C, Kinyanjui PK, Saeys W, Sila DN, Hendrickx ME. Prediction of cooking times of freshly harvested common beans and their susceptibility to develop the hard-to-cook defect using near infrared spectroscopy. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Wainaina I, Wafula E, Sila D, Kyomugasho C, Grauwet T, Van Loey A, Hendrickx M. Thermal treatment of common beans (Phaseolus vulgaris L.): Factors determining cooking time and its consequences for sensory and nutritional quality. Compr Rev Food Sci Food Saf 2021; 20:3690-3718. [PMID: 34056842 DOI: 10.1111/1541-4337.12770] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 11/26/2022]
Abstract
Over the past years, the shift toward plant-based foods has largely increased the global awareness of the nutritional importance of legumes (common beans (Phaseolus vulgaris L.) in particular) and their potential role in sustainable food systems. Nevertheless, the many benefits of bean consumption may not be realized in large parts of the world, since long cooking time (lack of convenience) limits their utilization. This review focuses on the current insights in the cooking behavior (cookability) of common beans and the variables that have a direct and/or indirect impact on cooking time. The review includes the various methods to evaluate textural changes and the effect of cooking on sensory attributes and nutritional quality of beans. In this review, it is revealed that the factors involved in cooking time of beans are diverse and complex and thus necessitate a careful consideration of the choice of (pre)processing conditions to conveniently achieve palatability while ensuring maximum nutrient retention in beans. In order to harness the full potential of beans, there is a need for a multisectoral collaboration between breeders, processors, and nutritionists.
Collapse
Affiliation(s)
- Irene Wainaina
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| | - Elizabeth Wafula
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium.,Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Daniel Sila
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Clare Kyomugasho
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| | - Tara Grauwet
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| | - Ann Van Loey
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| | - Marc Hendrickx
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| |
Collapse
|
26
|
Nicolás-García M, Perucini-Avendaño M, Jiménez-Martínez C, Perea-Flores MDJ, Gómez-Patiño MB, Arrieta-Báez D, Dávila-Ortiz G. Bean phenolic compound changes during processing: Chemical interactions and identification. J Food Sci 2021; 86:643-655. [PMID: 33586793 DOI: 10.1111/1750-3841.15632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 09/08/2020] [Accepted: 01/10/2021] [Indexed: 12/18/2022]
Abstract
The common bean (Phaseolus vulgaris L.) represents one of the main crops for human consumption, due to its nutritional and functional qualities. Phenolic compounds have beneficial health effects, and beans are an essential source of these molecules, being found mainly in the seed coat and its color depends on the concentration and type of phenolic compounds present. The bean during storage and processing, such as cooking, germination, extrusion, and fermentation, undergoes physical, chemical, and structural changes that affect the bioavailability of its nutrients; these changes are related to the interactions between phenolic compounds and other components of the food matrix. This review provides information about the identification and quantification of phenolic compounds present in beans and the changes they undergo during processing. It also includes information on the interactions between the phenolic compounds and the components of the bean's cell wall and the analytical methods used to identify the interactions of phenolic compounds with macromolecules.
Collapse
Affiliation(s)
- Mayra Nicolás-García
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - Madeleine Perucini-Avendaño
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - Cristian Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - María de Jesús Perea-Flores
- Centro de Nanociencias y Micro y Nanotecnologías (IPN), Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - Mayra Beatriz Gómez-Patiño
- Centro de Nanociencias y Micro y Nanotecnologías (IPN), Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - Daniel Arrieta-Báez
- Centro de Nanociencias y Micro y Nanotecnologías (IPN), Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| | - Gloria Dávila-Ortiz
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, C.P. 07738, México
| |
Collapse
|
27
|
Pallares Pallares A, Gwala S, Pälchen K, Duijsens D, Hendrickx M, Grauwet T. Pulse seeds as promising and sustainable source of ingredients with naturally bioencapsulated nutrients: Literature review and outlook. Compr Rev Food Sci Food Saf 2021; 20:1524-1553. [DOI: 10.1111/1541-4337.12692] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/24/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Andrea Pallares Pallares
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Shannon Gwala
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Katharina Pälchen
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Dorine Duijsens
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Marc Hendrickx
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Tara Grauwet
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| |
Collapse
|
28
|
Adeleye OO, Awodiran ST, Ajayi AO, Ogunmoyela TF. Influence of extrusion cooking on physicochemical properties and starch digestion kinetics of Sphenostylis stenocarpa, Cajanus cajan, and Vigna subterranean grains. PLoS One 2020; 15:e0242697. [PMID: 33259524 PMCID: PMC7707511 DOI: 10.1371/journal.pone.0242697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/08/2020] [Indexed: 11/18/2022] Open
Abstract
Thermal degradation of sugars and amino acids, and depolymerization of macromolecules such as starch, proteins and fibre occasioned by high-temperature short-time extrusion cooking modify the physicochemical and functional properties of raw materials. High-temperature short-time extrusion cooking holds promise for the expanded use of non-conventional ingredients as food/feed due to its practicality, increased productivity and efficiency, and ability to retain thermally degradable nutrients during cooking. However, little is known about the effect of the high-temperature short-time extrusion cooking process on the physicochemical properties and starch digestibility of lesser-known grain legumes such as African yam beans (Sphenostylis stenocarpa), Pigeon pea (Cajanus cajan), and Bambara peanut (Vigna subterranean). In this study, we investigate the effect of high-temperature short-time extrusion cooking and extrusion cooking temperature; low (100°C) vs high (140°C) temperatures in a single screw extruder, on hydration characteristics, viscoamylolytic properties, in vitro starch digestibility and digestion kinetics of these grain legumes. We show that water holding capacity and swelling power increased (p < 0.05) with increasing extrusion temperature for Sphenostylis stenocarpa and Vigna subterranean but not Cajanus cajan extrudates. Significant effects of extrusion cooking (i.e unextruded vs 100°C and unextruded vs 140°C) and extrusion temperatures (i.e. 100°C vs 140°C) were observed in peak, trough, final and setback viscosities of all extrudates. Starch digestibility and digestion characteristics were modified with increase in extrusion temperature, however, no effect of extrusion temperatures (i.e. 100°C vs 140°C) on starch digestion kinetics was observed for Sphenostylis stenocarpa and Vigna subterranean except for hydrolysis index (34.77 vs 40.77%). Nutritional and physiological implications of extruded grain legumes in monogastric animal feeding were also highlighted. The Information presented herein will influence expanded use of extruded grain legumes as feed ingredients for intensive monogastric animal feeding.
Collapse
Affiliation(s)
- Oluwafunmilayo O. Adeleye
- Agricultural Biochemistry and Nutrition Laboratory, Department of Animal Science, University of Ibadan, Ibadan, Nigeria
| | - Seun T. Awodiran
- Agricultural Biochemistry and Nutrition Laboratory, Department of Animal Science, University of Ibadan, Ibadan, Nigeria
| | - Atinuke O. Ajayi
- Agricultural Biochemistry and Nutrition Laboratory, Department of Animal Science, University of Ibadan, Ibadan, Nigeria
| | - Toluwalope F. Ogunmoyela
- Agricultural Biochemistry and Nutrition Laboratory, Department of Animal Science, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
29
|
Mapping the variability in physical, cooking, and nutritional properties of Zamnè, a wild food in Burkina Faso. Food Res Int 2020; 138:109810. [PMID: 33288185 PMCID: PMC7575534 DOI: 10.1016/j.foodres.2020.109810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
Zamnè is an Acacia seed used as a terroir food in Burkina Faso. It has been introduced as a famine-resilience crop and has become a cultural diet. However, little is known about its culinary and nutritional properties. This study aimed to explore the cooking and nutritional properties of Zamnè (Senegalia macrostachya (Reichenb. ex DC.) Kyal. & Boatwr.). Zamnè presented characteristics of medium size, flattened, dry, and hard-to-cook legume. The moisture, cylindrical ratio, diameter, thickness, weight, true density, coat percentage, coat thickness, and cooking time of the seeds were in the range of 4.5-5.8%, 1.1, 7.4-8.0 mm, 1.6-1.8 mm, 65.0-76.4 mg, 1.1 g/ml, 16.8-22.2%, 9.0-11.9 mg/cm2, and 180 min, respectively. The raw Zamnè showed 39.8-43.6, 9.7-11.5, 16.6-29.4, 13.3-20.2, 16.6-26.4, and 3.7-3.9 (g/100 g dry weight) of protein, fat, total dietary fiber, insoluble dietary fiber, digestible carbohydrate, and ash contents, respectively. The traditional cooking process improved most of the parameters determining the proximate compositions but resulted in 51-52% of protein and 47-50% carbohydrate losses into the cooking wastewater. Besides, pseudoZamnè, a famine-emergency crop similar to Zamnè, revealed inferior cooking quality than Zamnè. The data reported here provide a basis for alternative cooking techniques and further investigations of Zamnè and pseudoZamnè seeds' nutritional quality.
Collapse
|
30
|
Classification, Force Deformation Characteristics and Cooking Kinetics of Common Beans. Processes (Basel) 2020. [DOI: 10.3390/pr8101227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Post-harvest characteristics of common beans influences its classification, which significantly affects processing time and energy requirements. In this work, ten bean cultivars were classified as either easy-to-cook (ETC) or hard-to-cook (HTC) based on a traditional subjective finger pressing test and a scientific objective hardness test. The hardness study used seed coat rigidity to explain the structural deformation observed during cooking. The result shows that the average hardness of raw dry ETC and HTC beans was 102.4 and 170.8 N, respectively. The maximum seed coat resistance is observed within the first 30 min of cooking regardless of the classification. The results show that a modified three-parameter non-linear regression model could accurately predict the rate of bean softening (R2 = 0.994–0.999 and RMSE = 3.3–14.7%). The influence of bean softeners such as potassium carbonate (K2CO3) and sodium chloride (NaCl) to reduce cooking time was also investigated. The results showed that the addition of K2CO3 to the cooking water significantly reduced the cooking time by up to 50% for ETC and 57% for HTC.
Collapse
|
31
|
Kajiwara V, Moda-Cirino V, Scholz MBDS. The influence of chemical composition diversity in the cooking quality of Andean bean genotypes. Food Chem 2020; 339:127917. [PMID: 32950898 DOI: 10.1016/j.foodchem.2020.127917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 10/23/2022]
Abstract
Andean beans (Phaseolus vulgaris) chemical compositions and cooking characteristics contribute to a healthy diet. The objective of this study was to evaluate the influence of chemical composition on the cooking quality of 14 Andean beans genotypes with different seed coat colors. More specifically, water retention (WR), cooking time (CT), and solids released in the broth, were analysed. WR values ranged from 128.4% to 160.7% and CT ranged from 13.7 (BRS Embaixador) to 21.7 min (KID44). Andean beans showed variability in chemical composition, mainly starch content (39.43 g 100 g-1, BRS Realce to 51.92 g 100 g-1, LP15-04) and polymer composition. The profile of starch and interactions among minerals and chemical compounds influenced the cooking profiles than do the individual compounds. Andean beans traits of cooking, mainly CT, were influenced by their chemical composition; however they can be incorporated into diets without drastic changes in preparation methods.
Collapse
Affiliation(s)
- Vania Kajiwara
- Conservationist Agronomy Master, Agronomic Institute of Paraná State, Londrina, Brazil
| | - Vânia Moda-Cirino
- Department of Plant Breeding, Agronomic Institute of Paraná State, Londrina, Brazil
| | | |
Collapse
|
32
|
Sabadoti VD, Miano AC, Augusto PED. Automation of a Mattson Bean Cooker: A simple and a low‐cost approach. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Viviane Deroldo Sabadoti
- Department of Agri‐food Industry, Food and Nutrition (LAN) Luiz de Queiroz College of Agriculture (ESALQ) University of São Paulo (USP) Piracicaba Brazil
| | - Alberto Claudio Miano
- Department of Agri‐food Industry, Food and Nutrition (LAN) Luiz de Queiroz College of Agriculture (ESALQ) University of São Paulo (USP) Piracicaba Brazil
- Dirección de Investigación y Desarrollo Universidad Privada del Norte (UPN) Trujillo Perú
| | - Pedro Esteves Duarte Augusto
- Department of Agri‐food Industry, Food and Nutrition (LAN) Luiz de Queiroz College of Agriculture (ESALQ) University of São Paulo (USP) Piracicaba Brazil
- Food and Nutrition Research Center (NAPAN) University of São Paulo (USP) São Paulo Brazil
| |
Collapse
|
33
|
Gwala S, Pallares Pallares A, Pälchen K, Hendrickx M, Grauwet T. In vitro starch and protein digestion kinetics of cooked Bambara groundnuts depend on processing intensity and hardness sorting. Food Res Int 2020; 137:109512. [PMID: 33233147 DOI: 10.1016/j.foodres.2020.109512] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 11/19/2022]
Abstract
When pulse seeds from a single batch are cooked, considerable variability of hardness values in the population is usually observed. Sorting the seeds into hardness categories could reduce the observed diversity and increase uniformity. Therefore, we investigated the effect of processing intensity whether or not combined with sorting into hardness categories on the in vitro starch and protein digestion kinetics of cooked Bambara groundnuts (cooking times 40 min and 120 min). The average hardness values were 89 ± 32 N and 42 ± 20 N for 40 min and 120 min cooking time, respectively. The high standard deviation of hardness for each cooking time revealed a high level of diversity amongst the seeds. Individual cells were isolated from (non-)sorted seeds before simulating digestion. The estimated lag phase describing the initial phase of starch digestion was not significantly different despite the processing intensity or the hardness category, implying that cell wall barrier properties for these samples were not majorly different. However, the rate constants and the extents of starch digestion of samples cooked for 40 min were significantly higher for the low hardness (50-65 N) compared to the high hardness (80-95 N) category (0.71 vs 1.02 starch%/min and 63 vs 77%, respectively). Kinetic evaluation of digested soluble protein (after acid hydrolysis of the digestive supernatant) showed that low hardness samples were digested faster than high hardness samples (0.037 vs 0.050 min-1). The faster protein hydrolysis in the low hardness samples was accompanied by faster starch digestion, indicating the possible role of the protein matrix barrier. Individual cells of comparable hardness obtained from the two different processing times had similar starch and protein digestion kinetics. Our work demonstrated that, beyond cooking time, hardness is a suitable food design attribute that can be used to modulate starch and protein digestion kinetics of pulse cotyledon cells.
Collapse
Affiliation(s)
- Shannon Gwala
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Andrea Pallares Pallares
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Katharina Pälchen
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Marc Hendrickx
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Tara Grauwet
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| |
Collapse
|
34
|
Corzo-Ríos LJ, Sánchez-Chino XM, Cardador-Martínez A, Martínez-Herrera J, Jiménez-Martínez C. Effect of cooking on nutritional and non-nutritional compounds in two species of Phaseolus (P. vulgaris and P. coccineus) cultivated in Mexico. Int J Gastron Food Sci 2020. [DOI: 10.1016/j.ijgfs.2020.100206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Berry M, Izquierdo P, Jeffery H, Shaw S, Nchimbi-Msolla S, Cichy K. QTL analysis of cooking time and quality traits in dry bean (Phaseolus vulgaris L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2291-2305. [PMID: 32377883 DOI: 10.1007/s00122-020-03598-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Three robust QTL for dry bean cooking time shortened cooking time 11-26 min and co-localized with QTL for increased cooked seed protein concentration. Cooking time is a major factor associated with consumer preference of dry beans (Phaseolus vulgaris L.). The genetic control of cooking time was investigated with a quantitative trait loci (QTL) study on a recombinant inbred line (RIL) population developed from TZ-27 (slow cooking) and TZ-37 (fast cooking). The RIL population of 146 lines was grown on research farms over 2 years in Arusha and Morogoro, Tanzania. Arusha is an important mid-altitude bean-growing region, with moderate temperatures and reliable rainfall, whereas the low altitude and high temperatures in Morogoro make it unfavorable for bean production. The population exhibited large variation for cooking time with a range of 22-98 min. On average, beans grown in Arusha cooked 15 min faster than those grown in Morogoro. A linkage map developed with 1951 SNP markers was used for QTL analysis. Ten QTL were identified for cooking time, three of which were found in multiple environments. RILs with all three QTL (CT3.1, CT6.1, and CT11.2) cooked on average 11 min faster in Arusha and 26 min faster in Morogoro than RILs with none. Seed attributes were related to cooking time such that seeds with greater seed mass and less seed coat percentage cooked faster. Cooked seed protein concentration ranged from 17.8 to 30.8% across the years and locations. All three of the most robust cooking time QTL co-localized with QTL for protein concentration, and TZ-37 always contributed faster cooking time and increased protein concentration.
Collapse
Affiliation(s)
- M Berry
- Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - P Izquierdo
- Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - H Jeffery
- Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - S Shaw
- Sugarbeet and Bean Research Unit, USDA-ARS, Michigan State University, 1066 Bogue St. A366, East Lansing, MI, 48824, USA
| | | | - K Cichy
- Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
- Sugarbeet and Bean Research Unit, USDA-ARS, Michigan State University, 1066 Bogue St. A366, East Lansing, MI, 48824, USA.
| |
Collapse
|
36
|
Hydrothermal effects on physicochemical, sensory attributes, vitamin C, and antioxidant activity of frozen immature Dolichos lablab. Heliyon 2020; 6:e03136. [PMID: 31909287 PMCID: PMC6940680 DOI: 10.1016/j.heliyon.2019.e03136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 09/27/2019] [Accepted: 12/24/2019] [Indexed: 12/01/2022] Open
Abstract
Immature Dolichos bean is popular in the Asian region, which is a potent source of vitamin C, antioxidants as well as other macro and micronutrients. Extending shelf life with retaining maximum quality parameters through hydrothermal treatments (HTT) followed by freezing of immature Dolichos bean were carried out. In particular, samples were undergone HTT (n = 9), cooled at room temperature, packed in HDPE packs and stored in a freezer (-18 °C±2), whereas samples without HTT considered as control. The samples were analyzed for physicochemical, sensory attributes, vitamin C and antioxidant activity after three months of freeze storage. In the case of vitamin C, antioxidant activity and color retention, significant differences (p < 0.05) were observed among HTT samples. HTT resulted in improving the cooking quality, sensory characteristics and retaining fresh like traits especially antioxidant activity and vitamin C in Dolichos bean. The study revealed that higher temperature (85 °C-98 °C) HTT for a shorter period of time (3 min) could be suitable for immature Dolichos bean to retain quality parameters without great loss during storage.
Collapse
|
37
|
Effect of process-induced common bean hardness on structural properties of in vivo generated boluses and consequences for in vitro starch digestion kinetics. Br J Nutr 2019; 122:388-399. [PMID: 31266547 DOI: 10.1017/s0007114519001624] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the present study, we evaluated the effect of process-induced common bean hardness on structural properties of in vivo generated boluses and the consequences for in vitro starch digestion. Initially, the impact of human mastication on the particle size distribution (PSD) of oral boluses from common beans with different process-induced hardness levels was investigated through a mastication study. Then the effect of structural properties of selected boluses on in vitro starch digestion kinetics was assessed. For a particular process-induced hardness level, oral boluses had similar PSD despite differences in masticatory parameters between participants of the mastication study. At different hardness levels, a clear effect of processing (P<0·0001) was observed. However, the effect of mastication behaviour (P=0·1141) was not significant. Two distinctive fractions were present in all boluses. The first one was a cotyledon-rich fraction consisting of majorly small particles (40-125 µm), which could be described as individual cells based on microscopic observations. This fraction increased with a decrease in process-induced hardness. The second fraction (>2000 µm) mostly contained seed coat material and did not change based on hardness levels. The in vitro starch digestion kinetics of common bean boluses was only affected by process-induced hardness. After kinetic modelling, significant differences were observed between the reaction rate constant of boluses generated from the hardest beans and those obtained from softer ones. Overall this work demonstrated that the in vitro nutritional functionality of common beans is affected to a greater extent by structural properties induced by processing than by mechanical degradation in the mouth.
Collapse
|
38
|
Chigwedere CM, Njoroge DM, Van Loey AM, Hendrickx ME. Understanding the Relations Among the Storage, Soaking, and Cooking Behavior of Pulses: A Scientific Basis for Innovations in Sustainable Foods for the Future. Compr Rev Food Sci Food Saf 2019; 18:1135-1165. [PMID: 33337000 DOI: 10.1111/1541-4337.12461] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
The world faces challenges that require sustainable solutions: food and nutrition insecurity; replacement of animal-based protein sources; and increasing demand for convenient, nutritious, and health-beneficial foods; as well as functional ingredients. The irrefutable potential of pulses as future sustainable food systems is undermined by the hardening phenomenon that develops upon their storage under adverse conditions of temperature and relative humidity. Occurrence of this phenomenon indicates storage instability. In this review, the application of a material science approach, in particular the glass transition temperature concept, is presented to explain phenomena of storage instability such as the occurrence of hardening and loss of viability under adverse storage conditions. In addition to storage (in)stability, application of this concept during processing of pulses is discussed. The state-of-the-art on how hardening occurs, that is, mechanistic insights, is provided, including a critical evaluation of some of the existing postulations using recent research findings. Moreover, the influence of hardening on the properties and processing of pulses is included. Prevention of hardening and curative actions for pulses affected by the hardening phenomenon are described in addition to the current trends on uses of pulses and pulse-derived products. Based on the knowledge progress presented in this review, suggestions for the future include: first, the need for innovation toward implementation of recommended solutions for the prevention of hardening; second, the optimization of the identified most effective and efficient curative action against hardening; and third, areas to focus on for elucidation of mechanisms of hardening, although existing analytical methods require advancement.
Collapse
Affiliation(s)
- Claire M Chigwedere
- Laboratory of Food Technology, Dept. of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Kasteelpark Arenberg 22, Box 2457, 3001, Heverlee, Belgium
| | - Daniel M Njoroge
- Inst. of Food Bioresources Technology, Dedan Kimathi Univ. of Technology, Private Bag, Dedan Kimathi, Nyeri, Kenya
| | - Ann M Van Loey
- Laboratory of Food Technology, Dept. of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Kasteelpark Arenberg 22, Box 2457, 3001, Heverlee, Belgium
| | - Marc E Hendrickx
- Laboratory of Food Technology, Dept. of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Kasteelpark Arenberg 22, Box 2457, 3001, Heverlee, Belgium
| |
Collapse
|
39
|
Mba O, Kwofie E, Ngadi M. Kinetic modelling of polyphenol degradation during common beans soaking and cooking. Heliyon 2019; 5:e01613. [PMID: 31193372 PMCID: PMC6526231 DOI: 10.1016/j.heliyon.2019.e01613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/01/2019] [Accepted: 04/26/2019] [Indexed: 11/26/2022] Open
Abstract
Phenolic compounds are phytonutrients with anti-inflammatory attributes that are significant for brain, heart and gut health. Losses of natural phenolic compounds in foods occur due to degradation during processing. The extent of degradation depends on the processing conditions applied. In this study, the degradation of total phenolic compounds during the processing of common beans (Phaseolus vulgaris L.) cultivars was investigated. The effects of soaking time, soaking water temperature and cooking conditions on polyphenol degradation were examined. The total phenolic compounds were determined as gallic acid equivalents. The result shows that increase of hydration time and process water temperature significantly (p < 0.05) increased polyphenol degradation. There was a strong positive Pearson correlation (r > 0. 85) between the rate of water uptake and polyphenol degradation regardless of the water temperature and cultivar. The rate of degradation varied from 0.041 - 0.098 and 0.014-0.069 mg/g per hour for Kabulangeti and Maine cultivar, respectively. The addition sodium chloride (NaCl) and potassium carbonate (K2CO3) during cooking to soften the beans significantly increased the degree of degradation. The activation energy for degradation was estimated as 45.4 and 26.3 kJ/mol for Kabulangeti and Maine cultivar, respectively.
Collapse
Affiliation(s)
| | | | - M. Ngadi
- McGill University, Department of Bioresource Engineering, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| |
Collapse
|
40
|
Gwala S, Wainana I, Pallares Pallares A, Kyomugasho C, Hendrickx M, Grauwet T. Texture and interlinked post-process microstructures determine the in vitro starch digestibility of Bambara groundnuts with distinct hard-to-cook levels. Food Res Int 2019; 120:1-11. [PMID: 31000218 DOI: 10.1016/j.foodres.2019.02.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 02/05/2023]
Abstract
Particular storage conditions are described to promote the development of the hard-to-cook (HTC) phenomenon for most legumes. However, it is not clearly established whether the HTC phenomenon influences starch digestion kinetics. Therefore, this study explored how the HTC phenomenon influences in vitro starch digestion of Bambara groundnuts, taking into account three distinct HTC levels. Stored Bambara groundnuts required prolonged cooking times. Increasing storage time led to a decrease in the rate constant of texture degradation, signifying the development of the HTC phenomenon. For cooking times of 60 min and 120 min, high HTC level samples exhibited higher rate constants and extents of starch digestion compared to the fresh sample. The higher rate of digestion was attributed to the high hardness that resulted in greater cell rupture and faster access of amylase to starch. Adapting cooking times of Bambara groundnuts with distinct HTC levels to obtain equivalent hardness values and microstructures resulted in comparable starch digestion kinetics. Spectrophotometric analysis overestimated the amount of digested starch, in contrast to the more accurate HPLC analysis, which further provided more insight by quantifying multiple digestion products. This work demonstrates that it is the hardness and interlinked pattern of cell failure (microstructure) that determines starch digestion of Bambara groundnuts with distinct HTC levels.
Collapse
Affiliation(s)
- Shannon Gwala
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Irene Wainana
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Andrea Pallares Pallares
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Clare Kyomugasho
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Marc Hendrickx
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Tara Grauwet
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| |
Collapse
|
41
|
Instability of common beans during storage causes hardening: The role of glass transition phenomena. Food Res Int 2018; 121:506-513. [PMID: 31108775 DOI: 10.1016/j.foodres.2018.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 11/23/2022]
Abstract
Long-term storage of common beans leads to loss of cooking quality and an ill-defined solution, appropriate storage, is recommended. Therefore, the polymer science theory of glasses that hypothesizes stability of a system below its glass transition temperature (Tg) was applied to determine bean stability during storage in relation to cooking behavior. Since composition influences Tg, powders of cotyledons and seed coats in addition to whole beans were equilibrated above different saturated salt solutions in order to generate materials with different moisture contents. A thermal mechanical compression test which measures compressibility changes in a system upon reaching its glass-rubber transition temperature region was conducted to obtain the Tg. A Tg-moisture relation was established, whose relevance was confirmed by storage and cooking experiments which showed development of hard-to-cook in beans stored above Tg but not below it. Therefore, this relation constitutes a stability map for storage of common beans.
Collapse
|
42
|
Aguilera JM. Relating Food Engineering to Cooking and Gastronomy. Compr Rev Food Sci Food Saf 2018; 17:1021-1039. [PMID: 33350113 DOI: 10.1111/1541-4337.12361] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022]
Abstract
Modern consumers are increasingly eating meals away from home and are concerned about food quality, taste, and health aspects. Food engineering (FE) has traditionally been associated with the industrial processing of foods; however, most underlying phenomena related to FE also take place in the kitchen during meal preparation. Although chemists have positively interacted with acclaimed chefs and physicists have used foods as materials to demonstrate some of their theories, this has not been always the case with food engineers. This review addresses areas that may broaden the vision of FE by interfacing with cooking and gastronomy. Examples are presented where food materials science may shed light on otherwise empirical gastronomic formulations and cooking techniques. A review of contributions in modeling of food processing reveals that they can also be adapted to events going on in pots and ovens, and that results can be made available in simple terms to cooks. Industrial technologies, traditional and emerging, may be adapted to expand the collection of culinary transformations, while novel equipment, digital technologies, and laboratory instruments are equipping the 21st-century kitchens. FE should become a part of food innovation and entrepreneurship now being led by chefs. Finally, it is suggested that food engineers become integrated into gastronomy's concerns about safety, sustainability, nutrition, and a better food use.
Collapse
Affiliation(s)
- José Miguel Aguilera
- the Dept. of Chemical and Bioprocess Engineering, Univ. Católica de Chile, Santiago, Chile
| |
Collapse
|
43
|
Mechanistic insight into softening of Canadian wonder common beans (Phaseolus vulgaris) during cooking. Food Res Int 2018; 106:522-531. [DOI: 10.1016/j.foodres.2018.01.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 11/18/2022]
|
44
|
Miano AC, Augusto PED. The Hydration of Grains: A Critical Review from Description of Phenomena to Process Improvements. Compr Rev Food Sci Food Saf 2018; 17:352-370. [DOI: 10.1111/1541-4337.12328] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Alberto Claudio Miano
- Dept. of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz Coll. of Agriculture (ESALQ); Univ. of São Paulo (USP); Piracicaba SP Brazil
| | - Pedro Esteves Duarte Augusto
- Dept. of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz Coll. of Agriculture (ESALQ); Univ. of São Paulo (USP); Piracicaba SP Brazil
| |
Collapse
|
45
|
Sandhu KS, You FM, Conner RL, Balasubramanian PM, Hou A. Genetic analysis and QTL mapping of the seed hardness trait in a black common bean ( Phaseolus vulgaris) recombinant inbred line (RIL) population. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2018; 38:34. [PMID: 29568229 PMCID: PMC5842266 DOI: 10.1007/s11032-018-0789-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/31/2018] [Indexed: 05/19/2023]
Abstract
Seed hardness trait has a profound impact on cooking time and canning quality in dry beans. This study aims to identify the unknown genetic factors and associated molecular markers to better understand and tag this trait. An F2:7 recombinant inbred line (RIL) population was derived from a cross between the hard and soft seeded black bean parents (H68-4 and BK04-001). Eighty-five RILs and the parental lines were grown at two locations in southern Manitoba during years 2014-2016. Seed samples were harvested manually at maturity to test for seed hardness traits. The hydration capacity and stone seed count were estimated by soaking the seeds overnight at room temperature following AACC method 56-35.01. Seed samples from 2016 tests were also cooked to determine effect of seed hardness on cooking quality. For mapping of genomic regions contributing to the traits, the RIL population was genotyped using the genotype by sequencing (GBS) approach. The QTL mapping revealed that in addition to the major QTL on chromosome 7 at a genomic location previously reported to affect seed-hydration, two novel QTL with significant effects were also detected on chromosomes 1 and 2. In addition, a major QTL affecting the visual appeal of cooked bean was mapped on chromosome 4. This multi-year-site study shows that despite large environmental effects, seed hardness is an oligo-genic and highly heritable trait, which is inherited independently of the cooking quality scored as visual appeal of cooked beans. The identification of the QTLs and development of SNP markers associated with seed hardness can be applied for common bean variety improvement and genetic exploitation of these traits.
Collapse
Affiliation(s)
- K. S. Sandhu
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5 Canada
| | - F. M. You
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5 Canada
| | - R. L. Conner
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5 Canada
| | - P. M. Balasubramanian
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1 Canada
| | - Anfu Hou
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5 Canada
| |
Collapse
|
46
|
Mendoza FA, Cichy KA, Sprague C, Goffnett A, Lu R, Kelly JD. Prediction of canned black bean texture (Phaseolus vulgaris L.) from intact dry seeds using visible/near infrared spectroscopy and hyperspectral imaging data. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:283-290. [PMID: 28585253 DOI: 10.1002/jsfa.8469] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/27/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Texture is a major quality parameter for the acceptability of canned whole beans. Prior knowledge of this quality trait before processing would be useful to guide variety development by bean breeders and optimize handling protocols by processors. The objective of this study was to evaluate and compare the predictive power of visible and near infrared reflectance spectroscopy (visible/NIRS, 400-2498 nm) and hyperspectral imaging (HYPERS, 400-1000 nm) techniques for predicting texture of canned black beans from intact dry seeds. Black beans were grown in Michigan (USA) over three field seasons. The samples exhibited phenotypic variability for canned bean texture due to genetic variability and processing practice. Spectral preprocessing methods (i.e. smoothing, first and second derivatives, continuous wavelet transform, and two-band ratios), coupled with a feature selection method, were tested for optimizing the prediction accuracy in both techniques based on partial least squares regression (PLSR) models. RESULTS Visible/NIRS and HYPERS were effective in predicting texture of canned beans using intact dry seeds, as indicated by their correlation coefficients for prediction (Rpred ) and standard errors of prediction (SEP). Visible/NIRS was superior (Rpred = 0.546-0.923, SEP = 7.5-1.9 kg 100 g-1 ) to HYPERS (Rpred = 0.401-0.883, SEP = 7.6-2.4 kg 100 g-1 ), which is likely due to the wider wavelength range collected in visible/NIRS. However, a significant improvement was reached in both techniques when the two-band ratios preprocessing method was applied to the data, reducing SEP by at least 10.4% and 16.2% for visible/NIRS and HYPERS, respectively. Moreover, results from using the combination of the three-season data sets based on the two-band ratios showed that visible/NIRS (Rpred = 0.886, SEP = 4.0 kg 100 g-1 ) and HYPERS (Rpred = 0.844, SEP = 4.6 kg 100 g-1 ) models were consistently successful in predicting texture over a wide range of measurements. CONCLUSION Visible/NIRS and HYPERS have great potential for predicting the texture of canned beans; the robustness of the models is impacted by genotypic diversity, planting year and phenotypic variability for canned bean texture used for model building, and hence, robust models can be built based on data sets with high phenotypic diversity in textural properties, and periodically maintained and updated with new data. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fernando A Mendoza
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Karen A Cichy
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- USDA/ARS, Bogue Street, Michigan State University, East Lansing, MI, USA
| | - Christy Sprague
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Amanda Goffnett
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Renfu Lu
- USDA/ARS, Shaw Lane, Michigan State University, East Lansing, MI, USA
| | - James D Kelly
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
47
|
Affiliation(s)
- Jennifer A. Wood
- Tamworth Agricultural Institute, NSW Department of Primary Industries, 4 Marsden Park Road, Calala, NSW 2340, Australia
| |
Collapse
|
48
|
Yi J, Njoroge DM, Sila DN, Kinyanjui PK, Christiaens S, Bi J, Hendrickx ME. Detailed analysis of seed coat and cotyledon reveals molecular understanding of the hard-to-cook defect of common beans (Phaseolus vulgaris L.). Food Chem 2016; 210:481-90. [DOI: 10.1016/j.foodchem.2016.05.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/04/2016] [Accepted: 05/02/2016] [Indexed: 11/29/2022]
|
49
|
Kinyanjui PK, Njoroge DM, Makokha AO, Christiaens S, Sila DN, Hendrickx M. Quantifying the Effects of Postharvest Storage and Soaking Pretreatments on the Cooking Quality of Common Beans (Phaseolus vulgaris
). J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.13036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter K. Kinyanjui
- Department of Food Science and Technology, Faculty of Agriculture; Jomo Kenyatta University of Agriculture and Technology; P.O. Box 62000-00200 Nairobi Kenya
| | - Daniel M. Njoroge
- Laboratory of Food Technology, Leuven Food Science Nutrition Research Center (LFoRCe), Department of Microbial and Molecular Systems (M S); KU Leuven; Kasteelpark Arenberg 22 Box 2457 3001 Heverlee Belgium
| | - Anselimo O. Makokha
- Department of Food Science and Technology, Faculty of Agriculture; Jomo Kenyatta University of Agriculture and Technology; P.O. Box 62000-00200 Nairobi Kenya
| | - Stefanie Christiaens
- Laboratory of Food Technology, Leuven Food Science Nutrition Research Center (LFoRCe), Department of Microbial and Molecular Systems (M S); KU Leuven; Kasteelpark Arenberg 22 Box 2457 3001 Heverlee Belgium
| | - Daniel N. Sila
- Department of Food Science and Technology, Faculty of Agriculture; Jomo Kenyatta University of Agriculture and Technology; P.O. Box 62000-00200 Nairobi Kenya
| | - Marc Hendrickx
- Laboratory of Food Technology, Leuven Food Science Nutrition Research Center (LFoRCe), Department of Microbial and Molecular Systems (M S); KU Leuven; Kasteelpark Arenberg 22 Box 2457 3001 Heverlee Belgium
| |
Collapse
|
50
|
Mechanistic insight into common bean pectic polysaccharide changes during storage, soaking and thermal treatment in relation to the hard-to-cook defect. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.12.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|