1
|
Peng F, Yu Z, Niu K, Du B, Wang S, Yang Y. In vivo absorption, in vitro digestion, and fecal fermentation properties of non-starch polysaccharides from Chinese chestnut kernels and their effects on human gut microbiota. Food Chem X 2024; 24:101829. [PMID: 39386154 PMCID: PMC11462219 DOI: 10.1016/j.fochx.2024.101829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Non-starch polysaccharides are major bioactive components in chestnuts, and can serve as water-soluble polysaccharides with potential prebiotic properties. This study aims to establish an in vitro digestion and fermentation model to reveal the digestive and fermentative characteristics of Non-starch polysaccharides from chestnut kernels (NSPCK). The results indicated that under simulated digestion, NSPCK was partially digested in gastric juice but remained significantly undigested in saliva and intestinal juice, demonstrating considerable resilience against hydrolysis. After digestion, NSPCK still exhibited stable rough, lamellar, and porous structure and maintained strong antioxidant capacity. Animal experiments revealed positive effects of NSPCK on blood lipid level, and colon tissue of mice. Moreover, NSPCK enhanced the accumulation of short-chain fatty acids during fermentation, particularly acetic acid, propionic acid, and butyric acid. Furthermore, NSPCK intervention increased the abundance of beneficial bacteria such as Lactobacillus and Bifidobacterium, and at the same time reduced that of harmful bacteria such as Enterococcus.
Collapse
Affiliation(s)
- Fei Peng
- Hebei Key Laboratory Of Active Components and Functions In Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao 066000, China
| | - Zuoqing Yu
- Hebei Key Laboratory Of Active Components and Functions In Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Kui Niu
- Hebei Key Laboratory Of Active Components and Functions In Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao 066000, China
| | - Bin Du
- Hebei Key Laboratory Of Active Components and Functions In Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao 066000, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuedong Yang
- Hebei Key Laboratory Of Active Components and Functions In Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao 066000, China
| |
Collapse
|
2
|
Yu P, Pan X, Chen M, Ma J, Xu B, Zhao Y. Ultrasound-assisted enzymatic extraction of soluble dietary Fiber from Hericium erinaceus and its in vitro lipid-lowering effect. Food Chem X 2024; 23:101657. [PMID: 39113740 PMCID: PMC11304871 DOI: 10.1016/j.fochx.2024.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Dietary fiber (DF) is an important active polysaccharide in Hericium erinaceus. Obesity can lead to a wide range of diseases. In this work, we investigated the in vitro lipid-lowering effect of soluble dietary fiber (SDF) from H. erinaceus, aiming to provide a basis for the subsequent development of lipid-lowering products. Ultrasound-assisted enzymatic extraction (UAEE) of SDF from H. erinaceus was performed. The optimal extraction parameters determined via single-factor experiments and response surface methodology (RSM) were as follows: Lywallzyme concentration, 1.0%; complex protease concentration, 1.2%; ultrasonication time, 35 min; and ultrasonication power, 150 W. In vitro lipid-lowering experiments revealed that the adsorption amount of cholesterol micelles by H. erinaceus SDF was 11.91 mg/g. The binding amount and binding rate of sodium taurocholate were 3.73 mg/g and 42.47%, respectively, and those of sodium glycocholate were 3.43 mg/g and 39.12%, respectively. The pancreatic lipase inhibition rate reached 52.11%, and the type of inhibition was competitive. Therefore, H. erinaceus SDF has good in vitro lipid-lowering ability.
Collapse
Affiliation(s)
- Panling Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xueyu Pan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jianshuai Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Baoting Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
3
|
Kang J, Wang L, Dong L, Yin M, Wei S, Luo P. Agrocybe cylindracea Dietary Fiber Modification: Sodium Hydroxide Treatment Outperforms High-Temperature, Cellulase, and Lactobacillus Fermentation. Molecules 2024; 29:3519. [PMID: 39124923 PMCID: PMC11314503 DOI: 10.3390/molecules29153519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/30/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Agrocybe cylindracea dietary fiber (ADF) contains 95% water-insoluble dietary fiber, resulting in poor application performance. To address this issue, ADF was modified by four methods (cellulase, sodium hydroxide, high-temperature, and Lactobacillus fermentation) in this paper. By comparing the physicochemical properties, microstructures, monosaccharide compositions, and functional characteristics (antioxidant and α-glucosidase inhibitory activities in vitro) of all modified ADF samples, the optimal modification method was selected. Results showed that sodium hydroxide treatment was deemed the most effective modification method for ADF, as alkali-treated ADF (ADF-A) revealed a higher oil-holding capacity (2.02 g/g), swelling capacity (8.38 mL/g), cholesterol adsorption (6.79 mg/g), and α-glucosidase inhibitory activity (more than 70% at 0.4-0.6 mg/mL) than the other modified samples. The looser microstructure in ADF-A might be attributed to molecular rearrangement and spatial structure disruption, which resulted in smaller molecular sizes and decreased viscosity, hence improving ADF's physicochemical and functional qualities. All these findings indicate the greater application potential of modified ADF products in food and weight-loss industries, providing a comprehensive reference for the industrial application of ADF.
Collapse
Affiliation(s)
- Jingjing Kang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guian New Area, Guiyang 561113, China; (L.W.); (L.D.); (M.Y.); (S.W.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| | - Li Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guian New Area, Guiyang 561113, China; (L.W.); (L.D.); (M.Y.); (S.W.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| | - Ling Dong
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guian New Area, Guiyang 561113, China; (L.W.); (L.D.); (M.Y.); (S.W.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| | - Mingyue Yin
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guian New Area, Guiyang 561113, China; (L.W.); (L.D.); (M.Y.); (S.W.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guian New Area, Guiyang 561113, China; (L.W.); (L.D.); (M.Y.); (S.W.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guian New Area, Guiyang 561113, China; (L.W.); (L.D.); (M.Y.); (S.W.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| |
Collapse
|
4
|
Li X, Wang L, Tan B, Li R. Effect of structural characteristics on the physicochemical properties and functional activities of dietary fiber: A review of structure-activity relationship. Int J Biol Macromol 2024; 269:132214. [PMID: 38729489 DOI: 10.1016/j.ijbiomac.2024.132214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Dietary fibers come from a wide range of sources and have a variety of preparation methods (including extraction and modification). The different structural characteristics of dietary fibers caused by source, extraction and modification methods directly affect their physicochemical properties and functional activities. The relationship between structure and physicochemical properties and functional activities is an indispensable basic theory for realizing the directional transformation of dietary fibers' structure and accurately regulating their specific properties and activities. In this paper, since a brief overview about the structural characteristics of dietary fiber, the effect of structural characteristics on a variety of physicochemical properties (hydration, electrical, thermal, rheological, emulsifying property, and oil holding capacity, cation exchange capacity) and functional activities (hypoglycemic, hypolipidemic, antioxidant, prebiotic and harmful substances-adsorption activity) of dietary fiber explored by researchers in last five years are emphatically reviewed. Moreover, the future perspectives of structure-activity relationship are discussed. This review aims to provide theoretical foundation for the targeted regulation of properties and activities of dietary fiber, so as to improve the quality of their applied products and physiological efficiency, and then to realize high value utilization of dietary fiber resources.
Collapse
Affiliation(s)
- Xiaoning Li
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Liping Wang
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Bin Tan
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Ren Li
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Kang J, Yue Y, Wei S, Chen H, Luo P. Superior component compositions and antioxidant activity of Volvariella volvacea oil compared to those of Agrocybe cylindracea and two Lentinula edodes oils. Food Sci Nutr 2024; 12:268-279. [PMID: 38268882 PMCID: PMC10804078 DOI: 10.1002/fsn3.3750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 01/26/2024] Open
Abstract
The biological activity of an oil not only depends on its fatty acid composition but also the lipid composition and trace components. In this paper, to select the optimal mushroom oil, the component compositions (fatty acids, lipids, polyphenols, flavones, tocopherols, and unsaponifiable matters) and antioxidant activities in vitro of four mushroom oils (Agrocybe cylindracea, two Lentinula edodes, and Volvariella volvacea) were investigated and compared. The results showed that the four tested oils had the same fatty acid composition in different amounts, but the lipid component, minor components, and free radical scavenging activity in the tested oils varied widely depending on the type of mushroom. Overall, Volvariella volvacea oil was considered superior to the other three tested oils, as it had the largest contents of polar lipids, diglycerides, polyunsaturated fatty acids (74.38%), unsaponifiable matter (319.09 mg/kg), total phenols (124.08 mg/100 g), tocopherols (139.86 mg/100 g), as well as the highest ABTS and FRAP values (349.45 and 3801.70 μmol Trolox/100 g). This finding suggests that Volvariella volvacea oil is a promising resource that should be further researched.
Collapse
Affiliation(s)
- Jingjing Kang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public HealthGuizhou Medical UniversityGuiyangChina
| | - Yue Yue
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public HealthGuizhou Medical UniversityGuiyangChina
| | - Shaofeng Wei
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public HealthGuizhou Medical UniversityGuiyangChina
| | - Huifang Chen
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public HealthGuizhou Medical UniversityGuiyangChina
| | - Peng Luo
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public HealthGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
6
|
Qian X, Bi X, Xu Y, Yang Z, Wei T, Xi M, Li J, Chen L, Li H, Sun S. Variation in community structure and network characteristics of spent mushroom substrate (SMS) compost microbiota driven by time and environmental conditions. BIORESOURCE TECHNOLOGY 2022; 364:127915. [PMID: 36089128 DOI: 10.1016/j.biortech.2022.127915] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Global mushroom production is growing rapidly, raising concerns about polluting effects of spent mushroom substrate (SMS) and interest in uses in composts. In this study, SMS composting trials and high-throughput sequencing were carried out to investigate to better understand how the structure, co-occurrence patterns, and functioning of bacterial and fungal communities vary through compost time and across environmental conditions. The results suggested that both bacterial and fungal microbiota displayed significant variation in community composition across different composting stages. Enzyme activity levels showed both directional and fluctuating changes during composting, and the activity dynamics of carboxymethyl cellulase, polyphenol oxidase, laccase, and catalase correlated significantly with the succession of microbial community composition. The co-occurrence networks are "small-world" and modularized and the topological properties of each subnetwork were significantly influenced by the environmental factors. Finally, seed germination and seedling experiments were performed to verify the biosafety and effectiveness of the final composting products.
Collapse
Affiliation(s)
- Xin Qian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaohui Bi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanfei Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziwei Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Taotao Wei
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meijuan Xi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahuan Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liding Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanzhou Li
- Wuhan Benagen Technology Company, Wuhan 430000, China
| | - Shujing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Tian B, Pan Y, Wang J, Cai M, Ye B, Yang K, Sun P. Insoluble Dietary Fibers From By-Products of Edible Fungi Industry: Basic Structure, Physicochemical Properties, and Their Effects on Energy Intake. Front Nutr 2022; 9:851228. [PMID: 35360689 PMCID: PMC8961438 DOI: 10.3389/fnut.2022.851228] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
With the rapid development of the edible fungi industry in the world, especially in China, the resource utilization of edible fungi by-products has become an urgent problem for the industry's sustainable development. The waste residue of edible fungi after polysaccharide extraction by water accounts for a large proportion, which contains a large amount of water-insoluble dietary fiber (IDF). At present, the extracted residue is generally treated as fertilizer or solid waste, which not only pollutes the environment, but wastes resources too. In order to develop these by-products, expand their potential utilization in the food industry, the structure characterization, physicochemical properties, and the influence of IDF on dietary energy intake were studied. The IDF from the residues of polysaccharides extracted from four edible fungi was extracted using the Association of Official Analytical Chemists (AOAC) method. The results showed that IDF in the four kinds of edible fungi residues was similar in composition but different in texture. Cellulose and hemicellulose are the main IDF extracted from four kinds of edible fungi. Among them, Hericium erinaceus is the softest without obvious granular texture, following Lentinus edodes, while Ganoderma lucidum and Grifola frondosa have a relatively hard texture. The yield of four kinds of IDF from high to low came from Ganoderma lucidum, Hericium erinaceus, Lentinus edodes, and Grifola frondosa. Fourier transform IR (FTIR) and X-ray diffraction (XRD) spectra showed that the four IDFs had similar functional groups and all of them contained a large amount of cellulose. Physical and chemical analysis showed that all the four IDFs had certain water holding capacity, water binding capacity, and oil holding capacity. In-vitro digestion experiments showed that the four IDFs could inhibit the digestion of starch and fat to a certain extent. By-products of edible fungi are an ideal material for the recovery of IDFs, which have the potential to be processed into functional food materials due to their physicochemical properties and physiological functions.
Collapse
Affiliation(s)
- Baoming Tian
- Food Natural Product and Nutritional Health Research Center, College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Yizhu Pan
- Food Natural Product and Nutritional Health Research Center, College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Jian Wang
- Food Natural Product and Nutritional Health Research Center, College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Ming Cai
- Food Natural Product and Nutritional Health Research Center, College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| | - Bangwei Ye
- Zhejiang WisePlus Health Technology Co., Ltd, Lishui, China
| | - Kai Yang
- Food Natural Product and Nutritional Health Research Center, College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
- *Correspondence: Kai Yang
| | - Peilong Sun
- Food Natural Product and Nutritional Health Research Center, College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China
| |
Collapse
|
8
|
Lu YF, Li DX, Zhang R, Zhao LL, Qiu Z, Du Y, Ji S, Tang DQ. Chemical Antioxidant Quality Markers of Chrysanthemum morifolium Using a Spectrum-Effect Approach. Front Pharmacol 2022; 13:809482. [PMID: 35197853 PMCID: PMC8859431 DOI: 10.3389/fphar.2022.809482] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Traditionally, the quality evaluation of Chrysanthemum morifolium (CM) cv. (Juhua) attributes its habitats and processing methods, however, this strategy of neglecting bioactive ingredients usually results in deviation of quality evaluation. This study aims to explore the quality marker (Q-marker) based on spectrum-effect relationship and quality control strategy of CMs. The chromatographic fingerprint of 30 flower head samples of CMs from five different habitats including Hang-baiju, Gongju, Huaiju, Taiju and Boju were constructed by high performance liquid chromatography and analyzed through chemometrics methods such as similarity analysis (SA), cluster analysis (CA) and principal component analysis (PCA). The common peaks were quantified by external standard method and relative correction factor method. The in-vitro radical scavenging capacity assays of DPPH·, ·OH and ABTS were carried out. The Q-marker was explored by the correlation analysis between the contents of common peaks and in-vitro radical scavenging capacity, and then used to evaluate the quality of 30 flower head samples of CMs. A total of eight common peaks were appointed in 30 flower head samples of CMs, and their similarities ranged from 0.640 to 0.956. CA results showed that 30 flower head samples of CMs could be divided into five categories with reference to the Euclidean distance of 5. PCA results showed that common peaks played a major role in differential contribution of CMs. The quantification of common peaks hinted that their contents possessed significant variation whether for different accessions or the same accessions of CMs. The correlation analysis showed that chlorogenic acid, 3,5-O-dicaffeoylquinic acid, unknown peak 1, 4,5-O-dicaffeoylquinic acid and kaempferol-3-O-rutinoside could be used as the Q-markers for the quality evaluation of 30 flower head samples of commercially available CMs. The analysis strategy that combines chromatographic fingerprint analysis, multiple ingredients quantification, in-vitro chemical anti-oxidant activity evaluation and spectrum-effect relationship analysis clarified the therapeutic material basis and discovered the Q-markers, which possibly offers a more comprehensive quality assessment of CMs.
Collapse
Affiliation(s)
- Yi-Fan Lu
- The Second Clinical College, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ding-Xiang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Lin-Lin Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhen Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
| | - Dao-Quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Dao-Quan Tang,
| |
Collapse
|
9
|
ZHENG Z, DENG W, LI Y, SONG H, CHEN S. Extraction, physiological function and application of soluble dietary fiber from edible fungi: a review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.35422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Wei DENG
- Fujian Agriculture and Forestry University, China
| | - Yibin LI
- Fujian Academy of Agricultural Sciences, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, China
| | - HongBo SONG
- Fujian Agriculture and Forestry University, China
| | | |
Collapse
|
10
|
Ultrasound-Assisted Modification of Insoluble Dietary Fiber from Chia (Salvia hispanica L.) Seeds. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5035299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modification of insoluble dietary fiber (IDF) to soluble dietary fiber (SDF) improves not only the various health benefits but also the functional properties for improved product development. This research aimed to examine the effects of sonication treatment on the functional and physicochemical properties with possible structural changes in chia seeds dietary fiber. Central composite design was applied to optimize the sonication treatment process (amplitude 55%, time 20 min, and temperature 40°C) based on the oil holding capacity (OHC) and water holding capacity (WHC) as responses. Under these optimum conditions, ultrasound-treated IDF exhibited better functional and physicochemical properties such as OHC, WHC, glucose adsorption capacity (GAC), and water retention capacity (WRC) than untreated IDF. Fourier-transform infrared spectroscopy further confirmed the structural changes in treated and untreated IDF to explain the changes in the studied parameters.
Collapse
|