1
|
Fu S, Li J, You J, Liu S, Dong Q, Fu Y, Luo R, Sun Y, Tian X, Liu W, Zhang J, Ding Y, Zhang Y, Wang W, Guo L, Qiu Y. Baicalin attenuates PD-1/PD-L1 axis-induced immunosuppression in piglets challenged with Glaesserella parasuis by inhibiting the PI3K/Akt/mTOR and RAS/MEK/ERK signalling pathways. Vet Res 2024; 55:95. [PMID: 39075562 PMCID: PMC11285455 DOI: 10.1186/s13567-024-01355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Infection of piglets with Glaesserella parasuis (G. parasuis) induces host immunosuppression. However, the mechanism underlying the immunosuppression of piglets remains unclear. Activation of the PD-1/PD-L1 axis has been shown to trigger host immunosuppression. Baicalin possesses anti-inflammatory and immunomodulatory functions. However, whether baicalin inhibits PD-1/PD-L1 activation and thus alleviates host immunosuppression has not been investigated. In this study, the effect of baicalin on the attenuation of piglet immunosuppression induced by G. parasuis was evaluated. Seventy piglets were randomly divided into the control group, infection group, levamisole group, BMS-1 group, 25 mg/kg baicalin group, 50 mg/kg baicalin group and 100 mg/kg baicalin group. Following pretreatment with levamisole, BMS-1 or baicalin, the piglets were challenged with 1 × 108 CFU of G. parasuis. Our results showed that baicalin, levamisole and BMS-1 modified routine blood indicators and biochemical parameters; downregulated IL-1β, IL-10, IL-18, TNF-α and IFN-γ mRNA expression; and upregulated IL-2 and IL-8 mRNA expression in blood. Baicalin, levamisole and BMS-1 increased the proportions of CD3+ T cells, CD3+CD4+ T cells, CD3+CD8+ T cells and CD3-CD21+ B cells in the splenocyte population, increased the proportions of CD3+ T cells, CD3+CD4+ T cells and CD3+CD8+ T cells in the blood, and inhibited PD-1/PD-L1 and TIM-3 activation. Baicalin, levamisole and BMS-1 reduced p-PI3K, p-Akt, and p-mTOR expression, the p-MEK1/2/MEK1/2 and p-ERK1/2/ERK1/2 ratios and increased RAS expression. Baicalin, levamisole and BMS-1 provided substantial protection against G. parasuis challenge and relieved tissue histopathological damage. Our findings might provide new strategies for controlling G. parasuis infection and other immunosuppressive diseases.
Collapse
Affiliation(s)
- Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China
| | - Jingyang Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China
| | - Jiarui You
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Siyu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China
| | - Qiaoli Dong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China
| | - Yunjian Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China
| | - Ronghui Luo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China
| | - Yamin Sun
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China
| | - Xinyue Tian
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China
| | - Wei Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China
| | - Jingyi Zhang
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yu Ding
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yitian Zhang
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Wutao Wang
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China.
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, China.
| |
Collapse
|
2
|
Xu T, Hong A, Zhang X, Xu Y, Wang T, Zheng Q, Wei T, He Q, Ren Z, Qin T. Preparation and adjuvanticity against PCV 2 of Viola philippica polysaccharide loaded in Chitosan-Gold nanoparticle. Vaccine 2024; 42:2608-2620. [PMID: 38472066 DOI: 10.1016/j.vaccine.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
The present Porcine circovirus type 2 virus (PCV2) vaccine adjuvants suffer from numerous limitations, such as adverse effects, deficient cell-mediated immune responses, and inadequate antibody production. In this study, we explored the potential of a novel nanoparticle (CS-Au NPs) based on gold nanoparticles (Au NPs) and chitosan (CS) that modified Viola philippica polysaccharide (VPP) as efficient adjuvants for PCV2 vaccine. The characterization demonstrated that CS-Au-VPP NPs had a mean particle size of 507.42 nm and a zeta potential value of -21.93 mV. CS-Au-VPP NPs also exhibited good dispersion and a stable structure, which did not alter the polysaccharide properties. Additionally, the CS-Au-VPP NPs showed easy absorption and utilization by the organism. To investigate their immune-enhancing potential, mice were immunized with a mixture of CS-Au-VPP NPs and PCV2 vaccine. The evaluation of relevant immunological indicators, including specific IgG antibodies and their subclasses, cytokines, and T cell subpopulations, confirmed their immune-boosting effects. The in vivo experiments revealed that the medium-dose CS-Au-VPP NPs significantly elevated the levels of specific IgG antibodies and their subclasses, cytokines, and T cell subpopulations in PCV2-immunized mice. These findings suggest that CS-Au-VPP NPs can serve as a promising vaccine adjuvant due to their stable structure and immunoenhancement capabilities.
Collapse
Affiliation(s)
- Ting Xu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ancan Hong
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xueli Zhang
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yizhou Xu
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tao Wang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qiang Zheng
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tiantian Wei
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qiuyue He
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhe Ren
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Tao Qin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
3
|
Wang J, Wang L, Tan J, Chai R, Wang Y, Wang Y, Zhao S, Wang X, Bian Y, Liu J. Toxicity studies of condensed fuzheng extract in mice and rats. Heliyon 2024; 10:e24780. [PMID: 38318056 PMCID: PMC10838742 DOI: 10.1016/j.heliyon.2024.e24780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Nutritional supplements have been used to improve immune function. Condensed fuzheng extract (CFE) is a well-known traditional Chinese medicine (TCM) formula that is predominantly made from sheep placenta, Astragalus mongholicus Bunge, and Polygonatum kingianum Collett & Hemsl. However, the toxicological profile of CFE has not been determined. In this study, we investigated the acute (14 days) and sub-chronic (90 days) oral toxicities of CFE in mice and rats and the phytochemical composition of CFE. Materials and methods For the assessment of acute toxicity, 80 ICR mice of both sexes were randomly divided into four groups. Three groups were treated with 4500, 2250 and 1125 mg/kg/d bw CFE daily (n = 10/group per sex) for 14 days; a separate group was used as control. To test the sub-chronic toxicity, male and female Sprague Dawley rats were orally administered 8150, 4075 or 2037 mg/kg bw of CFE for 90 days; a control group was included. Hematological, biochemical, and histopathological markers were tested at the end of the experiment. The chemical composition of CFE was determined by UPLC-HRMS method. Results In both acute and sub-chronic toxicity studies, no mortalities, indications of abnormality, or treatment-related adverse effects were observed. The LD50 of CFE was higher than 4500 mg/kg. There were no significant changes in the hematological and biochemical data in the treatment group compared with the control group (p > 0.05). Histopathological analyses of the heart, liver, spleen, lungs, kidneys, thymus, testes (male rats) and ovaries (female rats) revealed no anatomical changes of each organ. Phytochemical analysis of CFE revealed the presence of flavonoids (highest abundance), phenols and alkaloids. In conclusion, our results showed that CFE is a safe and non-toxic formula. We also reported phytochemicals in CFE that may possess important pharmacological effects.
Collapse
Affiliation(s)
- JiDa Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li Wang
- Pharmaceutical Department, Tianjin Second People’s Hospital, Tianjin, China
- Pharmaceutical Department, Tianjin University, Tianjin, China
| | - Junzhen Tan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - RunDong Chai
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - ShuWu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - XiangLing Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - YuHong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - JianWei Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|