1
|
Fakae LB, Harun MS, Ting DSJ, Dua HS, Cave GW, Zhu XQ, Stevenson CW, Elsheikha HM. Camellia sinensis solvent extract, epigallocatechin gallate and caffeine confer trophocidal and cysticidal effects against Acanthamoeba castellanii. Acta Trop 2023; 237:106729. [DOI: 10.1016/j.actatropica.2022.106729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022]
|
2
|
Sun W, Shahrajabian MH, Cheng Q. Fenugreek Cultivation with Emphasis on Historical Aspects and its uses in Traditional Medicine and Modern Pharmaceutical Science. Mini Rev Med Chem 2021; 21:724-730. [PMID: 33245271 DOI: 10.2174/1389557520666201127104907] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/26/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
Fenugreek (Trigonella foenum-graecum L.) is a native plant found in the parts of Iran to the North of India, and is presently planted also in other regions of the world. Fenugreek is considered a notable multipurpose medicinal and traditional herb in Iran, India, and China for several centuries. The most important components of fenugreek seeds are protein, neutral detergent fiber, gum, lipids, moisture, ash and starch. Fenugreek seeds and leaves are anti-cholesterolemic, anti-tumor, antiinflammatory, carminative, demulcent, deobstruent, emollient, expectorant, galactogogue, febrifuge, laxative, hypoglycaemic, restorative, parasiticide and uterine tonic and useful in burning sensation. Traditionally, fenugreek seeds being used worldwide are beneficial for bone and muscles, respiratory system, gastro-intestinal system, female reproductive system, cardio-vascular system, endocrinology and hepatic. Fenugreek helps reduce cholesterol, reduce cardiovascular risk, control diabetes, a good consolation for sore throats, a remedy for acid reflux, constipation, colon cancer prevention, appropriate for kidney trouble, skin infection, increase milk production, reduce menstrual discomfort, and reduce menopause symptoms. It is also an appetite suppressant that helps in weight loss. Both modern science and traditional medicine integration with novel technologies and discoveries will secure the cultivation of medicinal herbs and promote sustainability in the long-term and a wide-range.
Collapse
Affiliation(s)
- Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Qi Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Mitsuwan W, Sin C, Keo S, Sangkanu S, de Lourdes Pereira M, Jimoh TO, Salibay CC, Nawaz M, Norouzi R, Siyadatpanah A, Wiart C, Wilairatana P, Mutombo PN, Nissapatorn V. Potential anti- Acanthamoeba and anti-adhesion activities of Annona muricata and Combretum trifoliatum extracts and their synergistic effects in combination with chlorhexidine against Acanthamoeba triangularis trophozoites and cysts. Heliyon 2021; 7:e06976. [PMID: 34027178 PMCID: PMC8131895 DOI: 10.1016/j.heliyon.2021.e06976] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/17/2020] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
Plants with medicinal properties have been used in the treatment of several infectious diseases, including Acanthamoeba infections. The medicinal properties of Cambodian plant extracts; Annona muricata and Combretum trifoliatum were investigated against Acanthamoeba triangularis. A total of 39 plant extracts were evaluated and, as a result, 22 extracts showed positive anti-Acanthamoeba activity. Of the 22 extracts, 9 and 4 extracts showed anti-Acanthamoeba activity against trophozoites and cysts of A. triangularis, respectively. The minimum inhibitory concentration of A. muricata and C. trifoliatum extracts against trophozoites and cysts was 500 and 1,000 μg/mL, respectively. The combination of A. muricata at 1/4×MIC with chlorhexidine at 1/8×MIC demonstrated a synergistic effect against trophozoites, but partial synergy against cysts. A 40% reduction in trophozoites and 60% of cysts adhered to the plastic surface treated with both extracts at 1/2×MIC were noted comparing to the control (P < 0.05). Furthermore, a reduction of 80% and 90% of trophozoites adhered to the surface was observed after pre-treatment with A. muricata and C. trifoliatum extracts, respectively. A 90% of cysts adhered to the surface was decreased with pre-treatment of A. muricata at 1/2×MIC (P < 0.05). A 75% of trophozoites and cysts from Acanthamoeba adhered to the surface were removed after treatment with both extracts at 4×MIC (P < 0.05). In the model of contact lens, 1 log cells/mL of trophozoites and cysts was significantly decreased post-treatment with both extracts compared to the control. Trophozoites showed strong loss of acanthopodia and thorn-like projection pseudopodia, while cysts demonstrated retraction and folded appearance treated with both extracts when observed by SEM, which suggests the potential benefits of the medicinal plants A. muricata and C. trifoliatum as an option treatment against Acanthamoeba infections.
Collapse
Affiliation(s)
- Watcharapong Mitsuwan
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team), World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand.,Akkhraratchakumari Veterinary College and Research Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat, Thailand
| | - Chea Sin
- Faculty of Health Sciences, University of Puthisastra, Phnom Penh, Cambodia
| | - Samell Keo
- Academic Center for Education and Training (ACET), Phnom Penh, Cambodia
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team), World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Tajudeen O Jimoh
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Department of Biochemistry, Habib Medical School, Islamic University in Uganda, Kampala, Uganda
| | - Cristina C Salibay
- College of Science and Computer Studies, De La Salle University-Dasmarinas, Dasmarinas City, Cavite, Philippines
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Christophe Wiart
- School of Pharmacy, University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Polydor Ngoy Mutombo
- Independent Consultant, Neglected Tropical Diseases, Melbourne, Victoria, Australia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team), World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
4
|
In vitro amoebicidal effect of Aloe vera ethanol extract and honey against Acanthamoeba spp. cysts. J Parasit Dis 2021; 45:159-168. [PMID: 33746401 DOI: 10.1007/s12639-020-01292-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022] Open
Abstract
This study evaluated in vitro effect of different concentrations of Aloe vera (A. vera) ethanol extract and honey against Acanthamoeba spp. cysts in comparison with chlorhexidine (the drug of choice for treatment of Acanthamoeba infection) at different incubation periods. Four different concentrations of the tested agents were used, 100, 200, 400, and 600 μg/ml for A. vera ethanol extract and 25, 50, 100, and 200 μg/ml for honey. Isolated Acanthamoeba spp. cysts from keratitis patients were incubated with different concentrations of the tested agents as well as chlorhexidine 0.02% (drug control) for different incubation periods (24, 48, 72 h). After each incubation period, the effect of A. vera extract and honey against Acanthamoeba cysts was assessed by counting the number of viable cysts, determining the inhibitory percentage and detecting the morphological alternations of treated cysts compared to non-treated and drug controls. Both A. vera ethanol extract and honey showed a concentration and time-dependent effect on the viability of Acanthamoeba cysts. In comparison with chlorhexidine (the drug control), A. vera ethanol extract possessed a potent cysticidal activity at all tested concentrations throughout different incubation periods, except for concentration 100 μg/ml which recorded the lower inhibitory effect. With increasing the dose of A. vera ethanol extract to 200, 400, 600 µg/ml, the recorded inhibitory percentages of Acanthamoeba cysts viability were 82.3%, 92.9% and 97.9% respectively, after 72 h compared to 76.3% of chlorhexidine. Similarly, honey at concentrations of 50-100 µg/ml gave higher inhibitory effect of 59% and 76.7%, respectively compared to chlorhexidine which showed an inhibitory percentage of 55.7% after 24 h. Meanwhile, the lowest tested concentration of honey (25 µg/ml) gave an inhibitory effect by 47.7-67% which was less than that of chlorhexidine throughout different incubation periods. With increasing the dose of honey to 200 µg/ml, the inhibitory effect was 98.9% after 72 h higher than that of chlorhexidine (76.9%). Using a scanning electron microscope, Acanthamoeba cysts treated by A. vera ethanol extract showed alternations in their shapes with flattening, collapsing, and laceration of their walls. Also, treated cysts by honey were highly distorted and difficult to identify because most of them were shrinkage and collapsed to a tiny size. On the other hand, chlorhexidine showed less structural and morphological changes of Acanthamoeba cysts. A. vera ethanol extract and honey had considerable cysticidal effects on Acanthamoeba cysts. They may give promising results for treatment of Acanthamoeba keratitis.
Collapse
|
5
|
Fakae LB, Stevenson CW, Zhu XQ, Elsheikha HM. In vitro activity of Camellia sinensis (green tea) against trophozoites and cysts of Acanthamoeba castellanii. Int J Parasitol Drugs Drug Resist 2020; 13:59-72. [PMID: 32512260 PMCID: PMC7281304 DOI: 10.1016/j.ijpddr.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 01/06/2023]
Abstract
The effect of Camellia sinensis (green tea) on the growth of Acanthamoeba castellanii trophozoites was examined using a microplate based-Sulforhodamine B (SRB) assay. C. sinensis hot and cold brews at 75% and 100% concentrations significantly inhibited the growth of trophozoites. We also examined the structural alterations in C. sinensis-treated trophozoites using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). This analysis showed that C. sinensis compromised the cell membrane integrity and caused progressive destruction of trophozoites. C. sinensis also significantly inhibited the parasite's ability to form cysts in a dose-dependent manner and reduced the rate of excystation from cysts to trophozoites. C. sinensis exhibited low cytotoxic effects on primary corneal stromal cells. However, cytotoxicity was more pronounced in SV40-immortalized corneal epithelial cells. Chromatographic analysis showed that both hot and cold C. sinensis brews contained the same number and type of chemical compounds. This work demonstrated that C. sinensis has anti-acanthamoebic activity against trophozoite and cystic forms of A. castellanii. Further studies are warranted to identify the exact substances in C. sinensis that have the most potent anti-acanthamoebic effect.
Collapse
Affiliation(s)
- Lenu B Fakae
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK; School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK; Rivers State University, Nkpolu - Oroworukwo P.M.B 5080, Port Harcourt, Rivers State, Nigeria
| | - Carl W Stevenson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Hany M Elsheikha
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| |
Collapse
|
6
|
Savchenko OM, Khazieva FM. Exogenous regulation of biological productivity of fenugreek. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20201700193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the article the results of the effect on Trigonella foenum-graecum L. productivity by organic fertilizers EcoFus and Siliplant and presowing inoculation of seeds with the Rizotorphyn are presented. We investigated effect of organic-mineral fertilizers “EcoFus” and “Siliplant” and presowing inoculation by “Rhizotorphyn”. ”EcoFus” and “Siliplant” increase herb yield by 24.8 and 18.8 % compare to control. “Rhizotorphyn” increasing yield of seeds production by 32.1 % compared to control. For the first time we present the data of the study devoted to the effect of foliar treatments with micronutrients and presowing seed inoculation on the quantitative content of flavonoids in fenugreek seeds. The highest flavonoid content was found in seeds subjected to foliar treatments with a binary mixture of “EcoFus + Siliplant” (1.59 %). Work is performed under the topic of the research project No. 0576-2019-0007.
Collapse
|