1
|
Wu X, Zeng Z, Peng K, Ren D, Zhang L. Regulatory mechanism of DHRS2-modified human umbilical cord mesenchymal stem cells-derived exosomes in prostate cancer cell proliferation and apoptosis. Tissue Cell 2023; 82:102078. [PMID: 37060745 DOI: 10.1016/j.tice.2023.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
Prostate cancer (PCa) is a prevalent cause of morbidity and mortality. DHRS2-modified human umbilical cord mesenchymal stem cells-derived exosomes (hUC-MSCs-derived exos) function in PCa. We explored the mechanism of DHRS2-modified hUC-MSCs-derived exos in PCa cell malignant behaviors. DHRS2 expression levels in WPMY-1 cells and 4 PCa cell lines were detected by RT-qPCR and Western blot. 22Rv1/DU145 cells with high/low DHRS2 expression were selected to establish the low/high DHRS2 expression models by transfection. Cell proliferation and apoptosis were detected by CCK-8, colony formation assays, and flow cytometry. hUC-MSCs were identified by oil red O, alizarin staining, and flow cytometry. Exos were extracted from hUC-MSCs by ultracentrifugation and identified by transmission electron microscopy, Nano series-Nano-ZS, and Western blot. DU145 cells were selected for in vitro study to further study the effects of DHRS2-modified exos on cell proliferation and apoptosis. The effect of DHRS2-modified exos on cell cycle distribution was detected by flow cytometry. DHRS2 was repressed in PCa cells. DHRS2 overexpression suppressed PCa cell proliferation and promoted apoptosis. Exos were successfully isolated from hUC-MSC. DHRS2-modified hUC-MSCs-derived exos carried DHRS2 into PCa cells and blocked malignant behaviors. Briefly, DHRS2 was repressed in PCa cells. DHRS2-modified hUC-MSCs-derived exos blocked PCa cell proliferation and enhanced apoptosis.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Urology, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, Hunan Province, 410011, China
| | - Zhongyi Zeng
- Department of Urology, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, Hunan Province, 410011, China
| | - Kai Peng
- Department of Urology, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, Hunan Province, 410011, China
| | - Da Ren
- Department of Urology, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, Hunan Province, 410011, China
| | - Lei Zhang
- Department of Urology, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, Hunan Province, 410011, China.
| |
Collapse
|
2
|
Sırma Ekmekci S, Emrence Z, Abacı N, Sarıman M, Salman B, Ekmekci CG, Güleç Ç. LEF1 Induces DHRS2 Gene Expression in Human Acute Leukemia Jurkat T-Cells. Turk J Haematol 2020; 37:226-233. [PMID: 32586085 PMCID: PMC7702649 DOI: 10.4274/tjh.galenos.2020.2020.0144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease resulting from the accumulation of genetic changes that affect the development of T-cells. The precise role of lymphoid enhancer-binding factor 1 (LEF1) in T-ALL has been controversial since both overexpression and inactivating LEF1 mutations have been reported to date. Here, we investigate the potential gene targets of LEF1 in the Jurkat human T-cell leukemia cell line. Materials and Methods We used small interfering RNA (siRNA) technology to knock down LEF1 in Jurkat cells and then compared the gene expression levels in the LEF1 knockdown cells with non-targeting siRNA-transfected and non-transfected cells by employing microarray analysis. Results We identified DHRS2, a tumor suppressor gene, as the most significantly downregulated gene in LEF1 knockdown cells, and we further confirmed its downregulation by real-time quantitative polymerase chain reaction (qRT-PCR) in mRNA and at protein level by western blotting. Conclusion Our results revealed that DHRS2 is positively regulated by LEF1 in Jurkat cells, which indicates the capability of LEF1 as a tumor suppressor and, together with previous reports, suggests that LEF1 exhibits a regulatory role in T-ALL via not only its oncogenic targets but also tumor suppressor genes.
Collapse
Affiliation(s)
- Sema Sırma Ekmekci
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| | - Zeliha Emrence
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| | - Neslihan Abacı
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| | - Melda Sarıman
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| | - Burcu Salman
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| | - Cumhur Gökhan Ekmekci
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| | - Çağrı Güleç
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| |
Collapse
|
3
|
Yuan Y, Sheng Z, Liu Z, Zhang X, Xiao Y, Xie J, Zhang Y, Xu T. CMTM5-v1 inhibits cell proliferation and migration by downregulating oncogenic EGFR signaling in prostate cancer cells. J Cancer 2020; 11:3762-3770. [PMID: 32328181 PMCID: PMC7171480 DOI: 10.7150/jca.42314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Anomalous epidermal growth factor receptor (EGFR) signaling plays an important role in the progression of prostate cancer (PCa) and the transformation to castration-resistant PCa (CRPC). A novel tumor suppressor CKLF-like MARVEL transmembrane domain-containing member 5(CMTM5) has a MARVEL domain and may regulate transmembrane signaling. Thus, we postulated that CMTM5 could regulate EGFR and its downstream molecules to affect the biological behaviors of PCa cells. In this study, we found that CMTM5 was expressed in benign prostatic hyperplasia (BPH) tissues but was undetectable in PCa cells. However, the EGFR was upregulated in PCa cells, especially in two metastatic CRPC cell lines, PC3 and DU145. Furthermore, ectopic expression of CMTM5-v1 suppressed cell proliferation and migration and p-EGFR levels. Further investigation revealed that restoration of CMTM5-v1 inhibited not only EGF-mediated proliferation but also chemotactic migration by EGF in PC3 and DU145 cells. Moreover, mechanistic studies showed that CMTM5-v1 attenuated EGF-induced receptor signaling by repressing EGFR and Akt phosphorylation in PCa cells, which were essential for malignant features. Finally, CMTM5-v1can promote the sensitivity of PC3 cells to Gefetinib, a tyrosine kinase inhibitor (TKI) targeting the EGFR. These observations indicate that CMTM5-v1 suppressed PCa cells through EGFR signaling. The loss of CMTM5 may participate in the progression of PCa resulting from deregulated EGFR, and CMTM5 might be associated with the efficacy of TKIs in terms of their potent inhibition of EGFR and human epidermal growth factor-2 (HER2) activation.
Collapse
Affiliation(s)
- Yeqing Yuan
- Department of Urology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Zhengzuo Sheng
- Department of Thoracic Surgery, Fu Xing Hospital, Capital Medical University, Beijing, 100038, China
| | - Zhenhua Liu
- Department of Urology, Beijing Jishuitan Hospital, Beijing, 100096, China
| | - Xiaowei Zhang
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China
| | - Yunbei Xiao
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jing Xie
- Department of Urology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Yixiang Zhang
- Department of Urology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
4
|
Luo X, Li N, Zhao X, Liao C, Ye R, Cheng C, Xu Z, Quan J, Liu J, Cao Y. DHRS2 mediates cell growth inhibition induced by Trichothecin in nasopharyngeal carcinoma. J Exp Clin Cancer Res 2019; 38:300. [PMID: 31291971 PMCID: PMC6617617 DOI: 10.1186/s13046-019-1301-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/28/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cancer is fundamentally a deregulation of cell growth and proliferation. Cancer cells often have perturbed metabolism that leads to the alteration of metabolic intermediates. Dehydrogenase/reductase member 2 (DHRS2) belongs to short-chain alcohol dehydrogenase/reductase (SDR) superfamily, which is functionally involved in a number of intermediary metabolic processes and in the metabolism of lipid signaling molecules. DHRS2 displays closely association with the inhibition of cell proliferation, migration and quiescence in cancers. METHODS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4- sulfophenyl)-2H-tetrazolium (MTS), 5-ethynyl-2'-deoxyuridine (EdU) and colony formation assays were applied to evaluate the proliferative ability of nasopharyngeal carcinoma (NPC) cells. We performed lipid metabolite profiling using gas chromatography coupled with mass spectrometry (GC/MS) to identify the proximal metabolite changes linked to DHRS2 overexpression. RNA sequencing technique combined with differentially expressed genes analysis was applied to identify the expression of genes responsible for the anti-tumor effect of trichothecin (TCN), a natural sesquiterpenoid compound isolated from an endophytic fungus. RESULTS Our current findings reveal that DHRS2 affects lipid metabolite profiling to induce cell cycle arrest and growth inhibition in NPC cells. Furthermore, we demonstrate that TCN is able to induce growth inhibition of NPC in vitro and in vivo by up-regulating DHRS2. CONCLUSIONS Our report suggests that activating DHRS2 to reprogram lipid homeostasis may be a target for the development of targeted therapies against NPC. Moreover, TCN could be exploited for therapeutic gain against NPC by targeting DHRS2 and it may also be developed as a tool to enhance understanding the biological function of DHRS2.
Collapse
Affiliation(s)
- Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China. .,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, People's Republic of China. .,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078, Hunan, China. .,Molecular Imaging Research Center of Central South University, Changsha, 410078, Hunan, China.
| | - Namei Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078, Hunan, China
| | - Xu Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078, Hunan, China
| | - Chaoliang Liao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078, Hunan, China
| | - Runxin Ye
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078, Hunan, China
| | - Can Cheng
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Jing Quan
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078, Hunan, China
| | - Jikai Liu
- School of Pharmacy, South-central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078, Hunan, China.,Molecular Imaging Research Center of Central South University, Changsha, 410078, Hunan, China
| |
Collapse
|
5
|
FOXA1 reprograms the TGF-β-stimulated transcriptional program from a metastasis promoter to a tumor suppressor in nasopharyngeal carcinoma. Cancer Lett 2018; 442:1-14. [PMID: 30392786 DOI: 10.1016/j.canlet.2018.10.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/18/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a unique subtype of head and neck squamous carcinoma that is notorious for its high metastatic potential. In this study, we reported that FOXA1 protein was decreased in NPC cells. Loss of FOXA1 is associated with lymph node metastasis and poor prognosis. Silencing FOXA1 in NP69 and C666-1 NPC cells accelerated cell proliferation and migration, while re-expression of FOXA1 has opposite effects. Microarray and RNA-seq analysis revealed that re-expression of FOXA1 in NPC cells reprogrammed the TGF-β-stimulated transcription program, which is characterized by promotion of TGF-β-inducible tumor-suppressive targets but repression of TGF-β-inducible oncogenes expression in NPC cells, leading to restoration of NPC cell sensitivity to TGF-β's growth-inhibitory effect. BAMBI, a TGF-β responsive tumor suppressor, was induced by FOXA1 in NPC cells. FOXA1 binding on the BAMBI gene facilitated SMAD2/3 binding to the BAMBI promoter via increasing BAMBI associated H3K4me1 and H3K27ac modification. Enforced expression of BAMBI in NPC cells suppressed cell proliferation and invasiveness. Our data suggested that FOXA1 is a master factor in controlling the TGF-β-stimulated transcriptome and a regulator of TGF-β biological functions in NPC oncogenesis.
Collapse
|
6
|
Han Y, Song C, Wang J, Tang H, Peng Z, Lu S. HOXA13 contributes to gastric carcinogenesis through DHRS2 interacting with MDM2 and confers 5-FU resistance by a p53-dependent pathway. Mol Carcinog 2018; 57:722-734. [PMID: 29436749 DOI: 10.1002/mc.22793] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 01/23/2018] [Accepted: 02/12/2018] [Indexed: 02/03/2023]
Abstract
5-FU-based chemotherapy is recently most recommended as the first-line treatment for gastric cancer (GC). However, 5-FU resistance is common for many postoperative GC patients. Homeobox A13 (HOXA13) is a member of homeobox genes highly expressed in many human tumors. Its potential roles and mechanisms of resistance to 5-FU in GC are poorly understood. In this study, we discovered that HOXA13 played an oncogenic role in vivo and in vitro. The patients with HOXA13 overexpression were closely related with poor prognosis and more prone to be resistant to 5-FU. Moreover, dehydrogenase/reductase 2 (DHRS2) was identified as a downstream gene of HOXA13. HOXA13 played a role of carcinogenesis through directly down-regulating DHRS2 to increase MDM2. Furthermore, HOXA13 conferred 5-FU resistance through MRP1 by a p53-dependent pathway. Therefore, HOXA13 might serve as a potential signature that recognized patients who were insensitive to 5-FU, and timely recommended them to other chemotherapy regimens.
Collapse
Affiliation(s)
- Yang Han
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenlong Song
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianying Wang
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huamei Tang
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Su Lu
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
CMTM5 is reduced in prostate cancer and inhibits cancer cell growth in vitro and in vivo. Clin Transl Oncol 2014; 17:431-7. [PMID: 25387568 DOI: 10.1007/s12094-014-1253-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/27/2014] [Indexed: 12/29/2022]
Abstract
PURPOSE A novel tumor suppressor CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) is reduced or undetectable in many kinds of cancers and inhibits tumor cells' malignant features. To explore its role in prostate cancer (PCa), we detected its expression patterns in prostate tissues and PCa cells, and determined its anti-proliferation functions in PCa cells in vitro and in vivo. METHODS The expression of CMTM5 in prostate tissue microarray, specimens and cell lines was evaluated by immunohistochemistry and Western blot, respectively. After being transfected with CMTM5 adenovirus or vector, the proliferation and migration of DU145 cells were detected by MTT assay and transwell assay, respectively. Furthermore, the effects of CMTM5 on tumor growth were performed in nude mice xenograft in vivo. RESULTS We found CMTM5 was reduced in PCa tissues and cells compared with BPH tissues, and its expression in PCa tissues was related to the Gleason score. Moreover, after being transfected with adenovirus, ectopic expression of CMTM5-v1 in DU145 cells led to significant inhibition of cell proliferation and migration compared with the control, which may be attributed to decreased Akt activity. Finally, restoration of CMTM5 significantly suppressed tumor growth in vivo. CONCLUSIONS These results indicate that CMTM5 is down-regulated in PCa and exhibit tumor suppressor activities in androgen-independent PCa cells. Loss of CMTM5 protein may be contributed to the development of PCa and it is a potential therapeutic target for castration-resistant prostate cancer.
Collapse
|
8
|
Physiological β-catenin signaling controls self-renewal networks and generation of stem-like cells from nasopharyngeal carcinoma. BMC Cell Biol 2013; 14:44. [PMID: 24073846 PMCID: PMC3819748 DOI: 10.1186/1471-2121-14-44] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 09/25/2013] [Indexed: 12/30/2022] Open
Abstract
Background A few reports suggested that low levels of Wnt signaling might drive cell reprogramming, but these studies could not establish a clear relationship between Wnt signaling and self-renewal networks. There are ongoing debates as to whether and how the Wnt/β-catenin signaling is involved in the control of pluripotency gene networks. Additionally, whether physiological β-catenin signaling generates stem-like cells through interactions with other pathways is as yet unclear. The nasopharyngeal carcinoma HONE1 cells have low expression of β-catenin and wild-type expression of p53, which provided a possibility to study regulatory mechanism of stemness networks induced by physiological levels of Wnt signaling in these cells. Results Introduction of increased β-catenin signaling, haploid expression of β-catenin under control by its natural regulators in transferred chromosome 3, resulted in activation of Wnt/β-catenin networks and dedifferentiation in HONE1 hybrid cell lines, but not in esophageal carcinoma SLMT1 hybrid cells that had high levels of endogenous β-catenin expression. HONE1 hybrid cells displayed stem cell-like properties, including enhancement of CD24+ and CD44+ populations and generation of spheres that were not observed in parental HONE1 cells. Signaling cascades were detected in HONE1 hybrid cells, including activation of p53- and RB1-mediated tumor suppressor pathways, up-regulation of Nanog-, Oct4-, Sox2-, and Klf4-mediated pluripotency networks, and altered E-cadherin expression in both in vitro and in vivo assays. qPCR array analyses further revealed interactions of physiological Wnt/β-catenin signaling with other pathways such as epithelial-mesenchymal transition, TGF-β, Activin, BMPR, FGFR2, and LIFR- and IL6ST-mediated cell self-renewal networks. Using β-catenin shRNA inhibitory assays, a dominant role for β-catenin in these cellular network activities was observed. The expression of cell surface markers such as CD9, CD24, CD44, CD90, and CD133 in generated spheres was progressively up-regulated compared to HONE1 hybrid cells. Thirty-four up-regulated components of the Wnt pathway were identified in these spheres. Conclusions Wnt/β-catenin signaling regulates self-renewal networks and plays a central role in the control of pluripotency genes, tumor suppressive pathways and expression of cancer stem cell markers. This current study provides a novel platform to investigate the interaction of physiological Wnt/β-catenin signaling with stemness transition networks.
Collapse
|
9
|
Deciphering the molecular genetic basis of NPC through functional approaches. Semin Cancer Biol 2011; 22:87-95. [PMID: 22154888 DOI: 10.1016/j.semcancer.2011.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 11/22/2011] [Indexed: 11/23/2022]
Abstract
The identification of cancer genes in sporadic cancers has been recognized as a major challenge in the field. It is clear that deletion mapping, genomic sequencing, comparative genomic hybridization, or global gene expression profiling alone would not have easily identified candidate tumor suppressor genes (TSGs) from the huge array of lost regions or genes observed in nasopharyngeal carcinoma (NPC). In addition, the epigenetically silenced genes would not have been recognized by the mapping of deleted regions. In this review, we describe how functional approaches using monochromosome transfer may be used to circumvent the above problems and identify TSGs in NPC. A few examples of selected NPC TSGs and their functional roles are reviewed. They regulate a variety of gene functions including cell growth and proliferation, adhesion, migration, invasion, epithelial-mesenchymal transition, metastasis, and angiogenesis. These studies show the advantages of using functional approaches for identification of TSGs.
Collapse
|
10
|
Huang C, Tang H, Zhang W, She X, Liao Q, Li X, Wu M, Li G. Integrated analysis of multiple gene expression profiling datasets revealed novel gene signatures and molecular markers in nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 2011; 21:166-75. [PMID: 22068284 DOI: 10.1158/1055-9965.epi-11-0593] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To identify the novel gene signatures and molecular markers of nasopharyngeal carcinoma (NPC) by integrated bioinformatics analysis of multiple gene expression profiling datasets. EXPERIMENTAL DESIGN Seven published gene expression profiling studies and one of our unpublished works were reanalyzed to identify the common significantly dysregulated (CSD) genes in NPC. Overrepresentation analysis of cytogenetic bands, Gene Ontology (GO) categories, pathways were used to explore CSD genes functionally associated with carcinogenesis. The protein expressions of selected CSD genes were examined by immunohistochemistry on tissue microarrays, and the correlations of their expressions with clinical outcomes were evaluated. RESULTS Using the criteria (genes reported deregulated in more than one study), a total of 962 genes were identified as the CSD genes in NPC. Four upregulated (BUB1B, CCND2, CENPF, and MAD2L1) and two downregulated (LTF and SLPI) genes were markedly reported in six studies. The enrichments of chromosome aberrations were 2q23, 2q31, 7p15, 12q15, 12q22, 18q11, and 18q12 in upregulated genes and 14q32 and 16q13 in downregulated genes. The activated GO categories and pathways related to proliferation, adhesion, invasion, and downregulated immune response had been functionally associated with NPC. SLPI significantly downregulated in nasopharyngeal adenocarcinoma. Furthermore, the high expression of BUB1B or CENPF was associated with poor overall survival of patients. CONCLUSION It was first clearly identified the dysregulated expression of BUB1B and SLPI in NPC tissues. IMPACT Further studies of the CSD genes as gene signatures and molecular markers of NPC might improve the understanding of the disease and identify new therapeutic targets.
Collapse
Affiliation(s)
- Chen Huang
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mitochondrial Hep27 is a c-Myb target gene that inhibits Mdm2 and stabilizes p53. Mol Cell Biol 2010; 30:3981-93. [PMID: 20547751 DOI: 10.1128/mcb.01284-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ever-expanding knowledge of the role of p53 in cellular metabolism, apoptosis, and cell cycle control has led to increasing interest in defining the stress response pathways that regulate Mdm2. In an effort to identify novel Mdm2 binding partners, we performed a large-scale immunoprecipitation of Mdm2 in the osteosarcoma U2OS cell line. One significant binding protein identified was Hep27, a member of the short-chain alcohol dehydrogenase/reductase (SDR) family of enzymes. Here, we demonstrate that the Hep27 preprotein contains an N-terminal mitochondrial targeting signal that is cleaved following mitochondrial import, resulting in mitochondrial matrix accumulation of mature Hep27. A fraction of the mitochondrial Hep27 translocates to the nucleus, where it binds to Mdm2 in the central domain, resulting in the attenuation of Mdm2-mediated p53 degradation. In addition, Hep27 is regulated at the transcriptional level by the proto-oncogene c-Myb and is required for c-Myb-induced p53 stabilization. Breast cancer gene expression analysis correlated estrogen receptor (ER) status with Hep27 expression and p53 function, providing a potential in vivo link between estrogen receptor signaling and p53 activity. Our data demonstrate a unique c-Myb-Hep27-Mdm2-p53 mitochondria-to-nucleus signaling pathway that may have functional significance for ER-positive breast cancers.
Collapse
|
12
|
Chromosome 14 transfer and functional studies identify a candidate tumor suppressor gene, mirror image polydactyly 1, in nasopharyngeal carcinoma. Proc Natl Acad Sci U S A 2009; 106:14478-83. [PMID: 19667180 DOI: 10.1073/pnas.0900198106] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromosome 14 allelic loss is common in nasopharyngeal carcinoma (NPC) and may reflect essential tumor suppressor gene loss in tumorigenesis. An intact chromosome 14 was transferred to an NPC cell line using a microcell-mediated chromosome transfer approach. Microcell hybrids (MCHs) containing intact exogenously transferred chromosome 14 were tumor suppressive in athymic mice, demonstrating that intact chromosome 14 NPC MCHs are able to suppress tumor growth in mice. Comparative analysis of these MCHs and their derived tumor segregants identified 4 commonly eliminated tumor-suppressive CRs. Here we provide functional evidence that a gene, Mirror-Image POLydactyly 1 (MIPOL1), which maps within a single 14q13.1-13.3 CR and that hitherto has been reported to be associated only with a developmental disorder, specifically suppresses in vivo tumor formation. MIPOL1 gene expression is down-regulated in all NPC cell lines and in approximately 63% of NPC tumors via promoter hypermethylation and allelic loss. SLC25A21 and FOXA1, 2 neighboring genes mapping to this region, did not show this frequent down-regulated gene expression or promoter hypermethylation, precluding possible global methylation effects and providing further evidence that MIPOL1 plays a unique role in NPC. The protein localizes mainly to the nucleus. Re-expression of MIPOL1 in the stable transfectants induces cell cycle arrest. MIPOL1 tumor suppression is related to up-regulation of the p21(WAF1/CIP1) and p27(KIP1) protein pathways. This study provides compelling evidence that chromosome 14 harbors tumor suppressor genes associated with NPC and that a candidate gene, MIPOL1, is associated with tumor development.
Collapse
|
13
|
Yue W, Sun Q, Landreneau R, Wu C, Siegfried JM, Yu J, Zhang L. Fibulin-5 suppresses lung cancer invasion by inhibiting matrix metalloproteinase-7 expression. Cancer Res 2009; 69:6339-46. [PMID: 19584278 DOI: 10.1158/0008-5472.can-09-0398] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The high mortality rate of lung cancer is largely due to the spread of disease to other organs. However, the molecular changes driving lung cancer invasion and metastasis remain unclear. In this study, we identified fibulin-5, a vascular ligand for integrin receptors, as a suppressor of lung cancer invasion and metastasis. Fibulin-5 was silenced by promoter hypermethylation in a majority of lung cancer cell lines and primary tumors. It inhibited lung cancer cell invasion and down-regulated matrix metalloproteinase-7 (MMP-7), which promoted lung cancer cell invasion. Knockdown of fibulin-5 was sufficient to stimulate cell invasion and MMP-7 expression. The expression levels of fibulin-5 and MMP-7 were inversely correlated in lung tumors. Suppression of MMP-7 expression by fibulin-5 was mediated by an integrin-binding RGD motif via the extracellular signal-regulated kinase (ERK) pathway. Furthermore, overexpression of fibulin-5 in H460 lung cancer cells inhibited metastasis in mice. Collectively, these results suggest that epigenetic silencing of fibulin-5 promotes lung cancer invasion and metastasis by activating MMP-7 expression through the ERK pathway.
Collapse
Affiliation(s)
- Wen Yue
- Department of Pharmacology and Chemical Biolog, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Shao L, Cui Y, Li H, Liu Y, Zhao H, Wang Y, Zhang Y, Ng KM, Han W, Ma D, Tao Q. CMTM5 exhibits tumor suppressor activities and is frequently silenced by methylation in carcinoma cell lines. Clin Cancer Res 2007; 13:5756-62. [PMID: 17908965 DOI: 10.1158/1078-0432.ccr-06-3082] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE CMTM5 (CKLF-like MARVEL transmembrane domain containing member 5) is located at 14q11.2, a locus associated with multiple cancers. It has six RNA splicing variants with CMTM5-v1 as the major one. We explored its expression pattern in normal tissues and tumor cell lines, as well as its functions in carcinoma cells. EXPERIMENTAL DESIGN We evaluated CMTM5 expression by semiquantitative reverse transcription-PCR (RT-PCR) in normal tissues and carcinoma cell lines of cervical, breast, nasopharyngeal, lung, hepatocellular, esophageal, gastric, colon, and prostate. We further examined CMTM5 promoter methylation in these cell lines. We also analyzed CMTM5 expression after 5-aza-2'-deoxycytidine treatment and genetic demethylation and the functional consequences of restoring CMTM5 in HeLa and PC-3 cells. RESULTS CMTM5-v1 is broadly expressed in human normal adult and fetal tissues, but undetectable or down-regulated in most carcinoma cell lines. Its promoter methylation was detected in virtually all the silenced or down-regulated cell lines. The silencing of CMTM5 could be reversed by pharmacologic demethylation or genetic double-knockout of DNMT1 and DNMT3B, indicating methylation-mediated mechanism. Restoration of CMTM5-v1 suppressed carcinoma cell proliferation, migration, and invasion. CONCLUSIONS These results indicate that CMTM5 exhibits tumor suppressor activities, but with frequent epigenetic inactivation in carcinoma cell lines.
Collapse
Affiliation(s)
- Luning Shao
- Peking University Center for Human Disease Genomics, 38 [corrected] Xueynun Road, Beijing, 100083, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Yau WL, Lung HL, Zabarovsky ER, Lerman MI, Sham JST, Chua DTT, Tsao SW, Stanbridge EJ, Lung ML. Functional studies of the chromosome 3p21.3 candidate tumor suppressor geneBLU/ZMYND10 in nasopharyngeal carcinoma. Int J Cancer 2006; 119:2821-6. [PMID: 16929489 DOI: 10.1002/ijc.22232] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Chromosome 3p plays an important role in tumorigenesis in many cancers, including nasopharyngeal carcinoma (NPC). We have previously shown chromosome 3p can suppress tumor growth in vivo by using the monochromosome transfer approach, which indicated the chromosome 3p21.3 region was critical for tumor suppression. BLU/ZMYND10 is one of the candidate tumor suppressor genes mapping in the 3p21.3 critical region and is a candidate TSG for NPC. By quantitative RT-PCR, it is frequently downregulated in NPC cell lines (83%) and NPC biopsies (80%). However, no functional studies have yet verified the functional role of BLU/ZMYND10 as a tumor suppressor gene. In the current study, a gene inactivation test (GIT) utilizing a tetracycline regulation system was used to study the functional role of BLU/ZMYND10. When BLU/ZMYND10 is expressed in the absence of doxycycline, the stable transfectants were able to induce tumor suppression in nude mice. In contrast, downregulation of BLU/ZMYND10 in these tumor suppressive clones by doxycycline treatment restored the tumor formation ability. This study provides the first significant evidence to demonstrate BLU/ZMYND10 can functionally suppress tumor formation in vivo and is, therefore, likely to be one of the candidate tumor suppressor genes involved in NPC.
Collapse
Affiliation(s)
- Wing Lung Yau
- Department of Biology and Center for Cancer Research, The Hong Kong University of Science and Technology, Hong Kong (SAR), China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Meaburn KJ, Parris CN, Bridger JM. The manipulation of chromosomes by mankind: the uses of microcell-mediated chromosome transfer. Chromosoma 2005; 114:263-74. [PMID: 16133353 DOI: 10.1007/s00412-005-0014-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 05/29/2005] [Accepted: 06/21/2005] [Indexed: 12/20/2022]
Abstract
Microcell-mediated chromosome transfer (MMCT) was a technique originally developed in the 1970s to transfer exogenous chromosome material into host cells. Although, the methodology has not changed considerably since this time it is being used to great success in progressing several different fields in modern day biology. MMCT is being employed by groups all over the world to hunt for tumour suppressor genes associated with specific cancers, DNA repair genes, senescence-inducing genes and telomerase suppression genes. Some of these genomic discoveries are being investigated as potential treatments for cancer. Other fields have taken advantage of MMCT, and these include assessing genomic stability, genomic imprinting, chromatin modification and structure and spatial genome organisation. MMCT has also been a very useful method in construction and manipulation of artificial chromosomes for potential gene therapies. Indeed, MMCT is used to transfer mainly fragmented mini-chromosome between cell types and into embryonic stem cells for the construction of transgenic animals. This review briefly discusses these various uses and some of the consequences and advancements made by different fields utilising MMCT technology.
Collapse
Affiliation(s)
- Karen J Meaburn
- Cell and Chromosome Biology Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge UB8 3PH, UK
| | | | | |
Collapse
|
18
|
Ko JMY, Yau WL, Chan PL, Lung HL, Yang L, Lo PHY, Tang JCO, Srivastava G, Stanbridge EJ, Lung ML. Functional evidence of decreased tumorigenicity associated with monochromosome transfer of chromosome 14 in esophageal cancer and the mapping of tumor-suppressive regions to 14q32. Genes Chromosomes Cancer 2005; 43:284-93. [DOI: 10.1002/gcc.20190] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
19
|
Free Radicals and Medicine. BIOMEDICAL EPR, PART A: FREE RADICALS, METALS, MEDICINE, AND PHYSIOLOGY 2005. [PMCID: PMC7121688 DOI: 10.1007/0-387-26741-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Huang Z, Desper R, Schäffer AA, Yin Z, Li X, Yao K. Construction of tree models for pathogenesis of nasopharyngeal carcinoma. Genes Chromosomes Cancer 2004; 40:307-15. [PMID: 15188453 DOI: 10.1002/gcc.20036] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Pathogenesis of nasopharyngeal carcinoma (NPC) is a multistep and multipathway process that cannot be fully explained by a fixed linear progression model. We used distance-based and branching-tree methods to construct more general tree-like models for NPC carcinogenesis from 170 comparative genomic hybridization (CGH) samples previously published in five smaller studies. Imbalances were classified into "overlap regions," each containing the most commonly gained or lost band on each chromosome arm as well as adjacent bands that were gained or lost almost as often. The chromosome abnormalities associated with NPC were -3p26-13 (48.9%), -11q22-25 (38.1%), -16q12-24 (38.1%), -14q24-32 (32.4%), -13q21-32 (22.3%), -9p23-21(21.6%), +12p12 (46%), +12q13-15 (43.9%), +1q22-32 (33.1%), +3q13.1-26.2 (30.2%), and +8q22.1-24.2 (27.3%). NPC can be classified into two groups, one marked by +12p12 and +8q22.1-24.2 and the other by -3p26-13, -11q22-25, -14q24-32, and +1q22-32. The tree models predicted -3p26-13 and +12p12 as early events and +8q22.1-24.2 as a late event. The predictions for -3p26-13 and +8q22.1-24.2 were consistent with previous studies. The prediction for +12p12 is being reported for the first time. Many known NPC-related genes on chromosomal regions of these tree models are discussed, some of which may merit additional study. The potential applications of tree models are also discussed.
Collapse
Affiliation(s)
- Zhongxi Huang
- Cancer Institute, Department of Pathology, First Military Medical University, Guangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Cheng Y, Lung HL, Wong PS, Hao DC, Man CS, Stanbridge EJ, Lung ML. Chromosome 13q12 region critical for the viability and growth of nasopharyngeal carcinoma hybrids. Int J Cancer 2004; 109:357-62. [PMID: 14961573 DOI: 10.1002/ijc.11704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Allelic losses of chromosome 13 are often detected in nasopharyngeal carcinoma (NPC) and other cancers, implicating the presence of possible tumor suppressor genes (TSGs) on this chromosome. To identify candidate regions from larger and multiple lost areas observed from direct tumor studies, the technique of monochromosome transfer was utilized to provide functional evidence to verify and define these deletion findings. An intact chromosome 13 was transferred into the NPC HONE1 cell line. Resultant hybrids were used to map putative TSG activity. A critical region at 13q12 was non-randomly eliminated in all surviving microcell hybrids around the marker D13S893; these hybrids were uniformly tumorigenic. Although a known TSG, BRCA2, is mapped close to this critical region, no aberrant expression of this gene was detected in microcell hybrids and other NPC cell lines. These results suggest that at least one novel growth control gene on chromosome 13q12, which is not the BRCA2 gene, is essential for hybrid selection and may play a critical role in tumorigenicity.
Collapse
Affiliation(s)
- Yue Cheng
- Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (SAR), People's Republic of China
| | | | | | | | | | | | | |
Collapse
|