1
|
Su J, Huang Y, Wang Y, Li R, Deng W, Zhang H, Xiong H. CPNE1 is a potential prognostic biomarker, associated with immune infiltrates and promotes progression of hepatocellular carcinoma. Cancer Cell Int 2022; 22:67. [PMID: 35139863 PMCID: PMC8826718 DOI: 10.1186/s12935-022-02485-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/22/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Copine1 (CPNE1), the first discovered CPNE1 family member, participates in the process of carcinogenesis and development of diverse tumors. Our study aimed to investigate the expression and prognostic value of CPNE1 gene in hepatocellular carcinoma (HCC), to explore its functional network in HCC and its effects on biological behaviors. METHODS HCCDB, CCLE, HPA and LinkedOmics online databases were used to explore the expression of CPNE1 gene and analyze the co-expression network of CPNE1 in hepatocellular carcinoma. Gene set enrichment analysis (GSEA) was used for GO functional annotation, KEGG pathway enrichment analysis and regulators of CPNE1 networks in LIHC. HepG2 and MHCC-97H cells were selected to construct CPNE1 knockdown cell lines by transfection with siRNA, and Hep3B cell was selected to construct CPNE1 overexpression cell line by transfection with plasmid. The effect of CPNE1 on the proliferation of hepatocellular carcinoma cells was examined by CCK8 assay and clone formation assay; the effect of CPNE1 on the migration ability of hepatocellular carcinoma cells was assessed by cell scratch assay and Transwell cell migration assay; finally, the expression of related signaling pathway proteins was examined by Western Blot. The correlation of CPNE1 expression with immune infiltration and immune checkpoint molecules in HCC tissues was analyzed using TIMER online database and GSEA. RESULTS CPNE1 was highly expressed in HCC tissues and significantly correlated with sex, age, cancer stage and tumor grade. Overall survival (OS) was significantly lower in patients with high CPNE1 expression than in patients with low CPNE1 expression, and CPNE1 could be used as an independent prognostic indicator for HCC. Knockdown of CPNE1 gene inhibited the AKT/P53 pathway, resulting in decreased proliferation, migration and invasion of HCC cells. Overexpression of CPNE1 gene showed the opposite results. The level of CPNE1 expression in HCC was significantly and positively correlated with the level of infiltration of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells (P < 0.001). GSEA results also showed that CPNE1 of LIHC was involved in some immune response regulating signaling pathways. CONCLUSIONS Our study firstly found the expression of CPNE1 was significantly higher in LIHC tissues than in normal liver tissues, and high CPNE1 expression was associated with poor prognosis. In addition, we identified the possible mechanism by which CPNE1 functioned in LIHC. CPNE1 influenced AKT/P53 pathway activation and LIHC cell proliferation and migration. There was a significant correlation between CPNE1 expression and tumor immune infiltration in LIHC.
Collapse
Affiliation(s)
- Jinfang Su
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yali Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wanjun Deng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Deng S, Lu X, Zhang Z, Meng R, Li M, Xia S. Identification and assessment of PLK1/2/3/4 in lung adenocarcinoma and lung squamous cell carcinoma: Evidence from methylation profile. J Cell Mol Med 2021; 25:6652-6663. [PMID: 34080290 PMCID: PMC8278123 DOI: 10.1111/jcmm.16668] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/25/2021] [Accepted: 05/13/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is a very aggressive cancer characterized with molecular heterogeneities in different subtypes, including lung adenocarcinoma and lung squamous cell carcinoma. However, few related molecular signatures have been established for the treatment of lung cancer subtypes. Polo-like kinase (PLK) family is a crucial regulator during cell division. Aberrant genetic and epigenetic alteration of PLK members plays a controversial role among different cancers. In this study, we performed an analysis of transcriptional and protein expression to identify overexpressed PLK1/4 and under-expressed PLK2/3 in lung cancer subtypes. We then analysed biological function of PLKs and related genes. Besides, we estimated a correlation of PLKs with patient's genders and TP53 mutation in lung cancer. Higher PLK1/4 expression was significantly associated with male patient and TP53 mutant status, separately. Moreover, we carried out a methylation profile analysis including methylation level, DNA methyltransferases correlation and survival analysis of global methylation. Global methylation survival analysis showed that prognostic value of PLK1/2/4 methylation remained the same significant trend between two lung cancer subtypes, whereas prognostic value of PLK3 methylation lacked consistency. Taken together, these results provided instructive insights into a comprehensive evaluation for advanced therapeutic strategy based on epigenetic evidences.
Collapse
Affiliation(s)
- Sisi Deng
- Cancer CenterTongji Medical CollegeUnion HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoli Lu
- Cancer CenterTongji Medical CollegeUnion HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Zhi Zhang
- Cancer CenterTongji Medical CollegeUnion HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Rui Meng
- Cancer CenterTongji Medical CollegeUnion HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Mi Li
- Department of OrthopedicsTongji Medical CollegeTongji HospitalHuazhong University of Science and TechnologyWuhanChina
- Shenzhen Huazhong University of Science and Technology Research InstituteShenzhenChina
| | - Shilin Xia
- Clinical Laboratory of Integrative MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Palliative MedicineGraduate School of MedicineJuntendo UniversityTokyoJapan
| |
Collapse
|
3
|
Raab CA, Raab M, Becker S, Strebhardt K. Non-mitotic functions of polo-like kinases in cancer cells. Biochim Biophys Acta Rev Cancer 2021; 1875:188467. [PMID: 33171265 DOI: 10.1016/j.bbcan.2020.188467] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Inhibitors of mitotic protein kinases are currently being developed as non-neurotoxic alternatives of microtubule-targeting agents (taxanes, vinca alkaloids) which provide a substantial survival benefit for patients afflicted with different types of solid tumors. Among the mitotic kinases, the cyclin-dependent kinases, the Aurora kinases, the kinesin spindle protein and Polo-like kinases (PLKs) have emerged as attractive targets of cancer therapeutics. The functions of mammalian PLK1-5 are traditionally linked to the regulation of the cell cycle and to the stress response. Especially the key role of PLK1 and PLK4 in cellular growth and proliferation, their overexpression in multiple types of human cancer and their druggability, make them appealing targets for cancer therapy. Inhibitors for PLK1 and PLK4 are currently being tested in multiple cancer trials. The clinical success of microtubule-targeting agents is attributed not solely to the induction of a mitotic arrest in cancer cells, but also to non-mitotic effects like targeting intracellular trafficking on microtubules. This raises the question whether new cancer targets like PLK1 and PLK4 regulate critical non-mitotic functions in tumor cells. In this article we summarize the important roles of PLK1-5 for the regulation of non-mitotic signaling. Due to these functions it is conceivable that inhibitors for PLK1 or PLK4 can target interphase cells, which underscores their attractive potential as cancer drug targets. Moreover, we also describe the contribution of the tumor-suppressors PLK2, PLK3 and PLK5 to cancer cell signaling outside of mitosis. These observations highlight the urgent need to develop highly specific ATP-competitive inhibitors for PLK4 and for PLK1 like the 3rd generation PLK-inhibitor Onvansertib to prevent the inhibition of tumor-suppressor PLKs in- and outside of mitosis. The remarkable feature of PLKs to encompass a unique druggable domain, the polo-box-domain (PBD) that can be found only in PLKs offers the opportunity for the development of inhibitors that target PLKs exclusively. Beyond the development of mono-specific ATP-competitive PLK inhibitors, the PBD as drug target will support the design of new drugs that eradicate cancer cells based on the mitotic and non-mitotic function of PLK1 and PLK4.
Collapse
Affiliation(s)
| | - Monika Raab
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Sven Becker
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, Frankfurt, Germany; German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, Frankfurt, Germany.
| |
Collapse
|
4
|
Abstract
The cellular hypoxic response contributes to cell transformation and tumor progression. Hypoxia-inducible factor 1 (HIF-1) is a key transcription factor that mediates transcription of genes whose products are essential for cellular adaptation to hypoxia. The activity of HIF-1 is largely regulated by the abundance of its alpha subunit (HIF-1α), which is primarily regulated by an oxygen-dependent and ubiquitin/proteasome-mediated degradation process. The HIF-1α protein level is also regulated by protein kinases through phosphorylation. Polo-like kinase 3 (Plk3) is a serine/threonine protein kinase with a tumor suppressive function. Plk3 phosphorylates and destabilizes HIF-1α. Plk3 also phosphorylates and stabilizes PTEN, a known regulator of HIF-1α stability via the PI3K pathway. Our latest study showed that the Plk3 protein is suppressed by hypoxia or nickel treatment via the ubiquitin/proteasome system. We discovered that Seven in Absentia Homologue 2 (SIAH2) is the E3 ubiquitin ligase of Plk3 and that Plk3 in turn destabilizes SIAH2. Given the role of SIAH2 in promoting stability of HIF-1α, our work reveals a novel mutual regulatory mechanism between Plk3 and SIAH2, which may function to fine-tune the cellular hypoxic response. Here we discuss the role of Plk3 in the hypoxic response and tumorigenesis in light of these latest findings.
Collapse
Affiliation(s)
- Dazhong Xu
- a Department of Pathology , New York Medical College School of Medicine , Valhalla , NY , USA
| | - Wei Dai
- b Department of Environmental Medicine , New York University Langone Medical Center , Tuxedo , NY , USA
| | - Cen Li
- a Department of Pathology , New York Medical College School of Medicine , Valhalla , NY , USA
| |
Collapse
|
5
|
Li C, Park S, Zhang X, Dai W, Xu D. Mutual regulation between Polo-like kinase 3 and SIAH2 E3 ubiquitin ligase defines a regulatory network that fine-tunes the cellular response to hypoxia and nickel. J Biol Chem 2017; 292:11431-11444. [PMID: 28515325 DOI: 10.1074/jbc.m116.767178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 05/11/2017] [Indexed: 11/06/2022] Open
Abstract
Elevated cellular response to hypoxia, which contributes to cell transformation and tumor progression, is a prominent feature of malignant cells in solid tumors. Polo-like kinase 3 (Plk3) is a serine/threonine protein kinase known to inhibit the cellular response to hypoxia and tumorigenesis. Nickel compounds are well-established human carcinogens that induce tumorigenesis partly through their hypoxia-mimicking effects. Despite previous research efforts, the role of Plk3 in the hypoxic response induced by hypoxia or nickel is not completely understood. Here, we show that NiCl2 (Ni(II)) or hypoxia reduces the protein level and shortens the half-life of cytoplasmic Plk3 in a ubiquitin-proteasome-dependent manner. We identify SIAH2, a RING finger E3 ubiquitin ligase associated with the cellular hypoxic response, to be the ubiquitin E3 ligase that mediates the degradation of Plk3. We show that SIAH2 binds to Plk3 and mediates its ubiquitination primarily through its polo-box domain. We report that USP28, a deubiquitinase known to be inhibitable by Ni(II) or hypoxia, may also contribute to the suppression of the Plk3 protein by Ni(II). We also show that Plk3 in turn suppresses the SIAH2 protein level in a kinase activity-dependent manner. Our study revealed an interesting mutual regulation between Plk3 and SIAH2 and uncovered a regulatory network that functions to fine-tune the cellular hypoxic response. We propose that suppression of Plk3 expression contributes to carcinogenesis and tumor progression induced by nickel compounds.
Collapse
Affiliation(s)
- Cen Li
- From the Department of Pathology, School of Medicine, New York Medical College, Valhalla, New York 10595 and
| | - Soyoung Park
- From the Department of Pathology, School of Medicine, New York Medical College, Valhalla, New York 10595 and
| | - Xiaowen Zhang
- From the Department of Pathology, School of Medicine, New York Medical College, Valhalla, New York 10595 and
| | - Wei Dai
- the Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Dazhong Xu
- From the Department of Pathology, School of Medicine, New York Medical College, Valhalla, New York 10595 and
| |
Collapse
|
6
|
Xu D, Wang Q, Jiang Y, Zhang Y, Vega-Saenzdemiera E, Osman I, Dai W. Roles of Polo-like kinase 3 in suppressing tumor angiogenesis. Exp Hematol Oncol 2012; 1:5. [PMID: 23210979 PMCID: PMC3506990 DOI: 10.1186/2162-3619-1-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/18/2012] [Indexed: 02/08/2023] Open
Abstract
Angiogenesis is essential for promoting growth and metastasis of solid tumors by ensuring blood supply to the tumor mass. Targeting angiogenesis is therefore an attractive approach to therapeutic intervention of cancer. Tumor angiogenesis is a process that is controlled by a complex network of molecular components including sensors, signaling transducers, and effectors, leading to cellular responses under hypoxic conditions. Positioned at the center of this network are the hypoxia-inducible factors (HIFs). HIF-1 is a major transcription factor that consists of two subunits, HIF-1α and HIF-1β. It mediates transcription of a spectrum of gene targets whose products are essential for mounting hypoxic responses. HIF-1α protein level is very low in the normoxic condition but is rapidly elevated under hypoxia. This dramatic change in the cellular HIF-1α level is primarily regulated through the proteosome-mediated degradation process. In the past few years, scientific progress has clearly demonstrated that HIF-1α phosphorylation is mediated by several families of protein kinases including GSK3β and ERKs both of which play crucial roles in the regulation of HIF-1α stability. Recent research progress has identified that Polo-like kinase 3 (Plk3) phosphorylates HIF-1α at two previously unidentified serine residues and that the Plk3-mediated phosphorylation of these residues results in destabilization of HIF-1α. Plk3 has also recently been found to phosphorylate and stabilize PTEN phosphatase, a known regulator of HIF-1α and tumor angiogenesis. Given the success of targeting protein kinases and tumor angiogenesis in anti-cancer therapies, Plk3 could be a potential molecular target for the development of novel and effective therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Dazhong Xu
- Department of Environmental Medicine, New York University Langone Medical Center, 57 Old Forge Road, Tuxedo, NY 10987, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Lens SMA, Voest EE, Medema RH. Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer 2010; 10:825-41. [PMID: 21102634 DOI: 10.1038/nrc2964] [Citation(s) in RCA: 481] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Large numbers of inhibitors for polo-like kinases and aurora kinases are currently being evaluated as anticancer drugs. Interest in these drugs is fuelled by the idea that these kinases have unique functions in mitosis. Within the polo-like kinase family, the emphasis for targeted therapies has been on polo-like kinase 1 (PLK1), and in the aurora kinase family drugs have been developed to specifically target aurora kinase A (AURKA; also known as STK6) and/or aurora kinase B (AURKB; also known as STK12). Information on the selectivity of these compounds in vivo is limited, but it is likely that off-target effects within the same kinase families will affect efficacy and toxicity profiles. In addition, it is becoming clear that interplay between polo-like kinases and aurora kinases is much more extensive than initially anticipated, and that both kinase families are important factors in the response to classical chemotherapeutics that damage the genome or the mitotic spindle. In this Review we discuss the implications of these novel insights on the clinical applicability of polo-like kinase and aurora kinase inhibitors.
Collapse
Affiliation(s)
- Susanne M A Lens
- Department of Medical Oncology and Cancer Genomics Centre, UMC Utrecht, Universiteitsweg 100, Stratenum 2. 118, Utrecht 3584 CG, The Netherlands.
| | | | | |
Collapse
|
8
|
Sang M, Ando K, Okoshi R, Koida N, Li Y, Zhu Y, Shimozato O, Geng C, Shan B, Nakagawara A, Ozaki T. Plk3 inhibits pro-apoptotic activity of p73 through physical interaction and phosphorylation. Genes Cells 2009; 14:775-88. [PMID: 19490146 DOI: 10.1111/j.1365-2443.2009.01309.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Plk3, one of Polo-like kinase family members, is involved in the regulation of cell cycle progression and DNA damage response. In this study, we found that Plk3 inhibits pro-apoptotic activity of p73 through physical interaction and phosphorylation. During cisplatin (CDDP)-mediated apoptosis, Plk3 was transcriptionally induced, whereas its protein level was kept at basal level, suggesting that Plk3 might rapidly degrade in response to CDDP. Immunoprecipitation and in vitro pull-down experiments demonstrated that Plk3 interacts with p73. Luciferase reporter assays and RT-PCR experiments revealed that Plk3 inhibits p73-mediated transcriptional activity. Consistent with these results, pro-apoptotic activity of p73 was blocked by Plk3. Additionally, Plk3 decreased the stability of p73. Intriguingly, kinase-deficient Plk3 failed to inhibit p73 function, indicating that kinase activity of Plk3 is required for Plk3-mediated inhibition of p73. Indeed, in vitro kinase reaction showed that NH(2)-terminal portion of p73 is phosphorylated by Plk3. In accordance with these observations, knocking down of Plk3 increased the stability of p73 and promoted CDDP-mediated apoptosis in association with up-regulation of p73. Collectively, our present findings suggest that Plk3 plays an important role in the regulation of cell fate determination in response to DNA damage through the inhibition of p73.
Collapse
Affiliation(s)
- Meixiang Sang
- Division of Biochemistry, Chiba Cancer Center Research Institute, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Moriarty KJ, Koblish H, Johnson DL, Galemmo RA. Progress in the Development of Agents to Control the Cell Cycle. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/7355_2006_006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
10
|
Abstract
Polo-like kinases (Plks) play pivotal roles in the regulation of cell cycle progression. Plk1, the best characterized family member among mammalian Plks, strongly promotes the progression of cells through mitosis. Furthermore, Plk1 is found to be overexpressed in a variety of human tumors and its expression correlates with cellular proliferation and prognosis of tumor patients. Although all Plks share two conserved elements, the N-terminal Ser/Thr kinase domain and a highly homologues C-terminal region termed the polo-box motif, their functions diverge considerably. While Plk1 is inhibited by different checkpoint pathways, Plk2 and Plk3 are activated by the spindle checkpoint or the DNA damage checkpoint. Thus, Plk2 and Plk3 seem to inhibit oncogenic transformation. Deregulation of Plk1 activity contributes to genetic instability, which in turn leads to oncogenic transformation. In contrast, Plk2 and Plk3 are involved in checkpoint-mediated cell cycle arrest to ensure genetic stability, thereby inhibiting the accumulation of genetic defects. In this review, we shall discuss the roles of Plks in oncogenesis and Plk1 as a target for therapeutic intervention against cancer.
Collapse
Affiliation(s)
- Frank Eckerdt
- Department of Gynecology and Obstetrics, Medical School, JW Goethe-University, Theodor-Stern-Kai 7, Frankfurt D-60590, Germany.
| | | | | |
Collapse
|
11
|
Abstract
Deregulated centrosome duplication or maturation often results in increased centrosome size and/or centrosome number, both of which show a positive and significant correlation with aneuploidy and chromosomal instability, thus contributing to cancer formation. Given the role of Polo-like kinases (Plks) in the centrosome cycle, it is not unexpected that deregulated expression of Plks is detected in many types of cancer and is associated with oncogenesis. Extensive studies have shown that Plk1 expression is elevated in non-small-cell lung cancer, head and neck cancer, esophageal cancer, gastric cancer, melanomas, breast cancer, ovarian cancer, endometrial cancer, colorectal cancer, gliomas, and thyroid cancer. Plk1 gene and protein expression has been proposed as a new prognostic marker for many types of malignancies, and Plk1 is a potential target for cancer therapy. In contrast to Plk1, several studies have observed that Plk3 expression is negatively correlated with the development of certain cancers.
Collapse
Affiliation(s)
- Noriyuki Takai
- Department of Obstetrics and Gynecology, Oita University Faculty of Medicine, Hasama-machi, Oita 879-5593, Japan.
| | | | | | | |
Collapse
|