1
|
Microtubule-Associated Protein 4 Is a Prognostic Factor and Promotes Tumor Progression in Lung Adenocarcinoma. DISEASE MARKERS 2018; 2018:8956072. [PMID: 29743960 PMCID: PMC5878896 DOI: 10.1155/2018/8956072] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 02/02/2023]
Abstract
Microtubule-associated protein 4 (MAP4) plays an important role in microtubule assembly and stabilization. The purpose of this study was to investigate the level of expression of MAP4 in lung adenocarcinoma (LADC) samples and to evaluate its prognostic value and the influence on cancer progression in LADC patients. The expression of MAP4 protein was analyzed using immunohistochemistry. The clinical significance and the prognostic significance of MAP4 expression were assessed by Kaplan-Meier analysis and Cox regression analysis. The roles of MAP4 in the migration and invasion of LADC cells were detected by wound-healing assays and transwell assays, respectively. We found the expression levels of MAP4 protein in LADC tissues to be significantly higher than those in noncancerous tissues. MAP4 expression was significantly correlated with differentiation, pathological T stage, and TNM stage. Kaplan-Meier survival analysis indicated that patients with high MAP4 expression had significantly poorer overall survival (OS). Cox regression analysis revealed that MAP4 expression level was an independent prognostic factor for OS. Functionally, in vitro studies showed that MAP4 knockdown efficiently suppressed the migration and invasion of LADC cells. Our data indicated that MAP4 protein may represent a novel prognostic biomarker and a potential therapeutic target for LADC.
Collapse
|
2
|
Salaverria I, Martín‐Garcia D, López C, Clot G, García‐Aragonés M, Navarro A, Delgado J, Baumann T, Pinyol M, Martin‐Guerrero I, Carrió A, Costa D, Queirós AC, Jayne S, Aymerich M, Villamor N, Colomer D, González M, López‐Guillermo A, Campo E, Dyer MJS, Siebert R, Armengol L, Beà S. Detection of chromothripsis-like patterns with a custom array platform for chronic lymphocytic leukemia. Genes Chromosomes Cancer 2015; 54:668-80. [PMID: 26305789 PMCID: PMC4832286 DOI: 10.1002/gcc.22277] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/04/2015] [Accepted: 06/04/2015] [Indexed: 02/04/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a common disease with highly variable clinical course. Several recurrent chromosomal alterations are associated with prognosis and may guide risk-adapted therapy. We have developed a targeted genome-wide array to provide a robust tool for ascertaining abnormalities in CLL and to overcome limitations of the 4-marker fluorescence in situ hybridization (FISH). DNA from 180 CLL patients were hybridized to the qChip®Hemo array with a high density of probes covering commonly altered loci in CLL (11q22-q23, 13q14, and 17p13), nine focal regions (2p15-p16.1, 2p24.3, 2q13, 2q36.3-q37.1, 3p21.31, 8q24.21, 9p21.3, 10q24.32, and 18q21.32-q21.33) and two larger regions (6q14.1-q22.31 and 7q31.33-q33). Overall, 86% of the cases presented copy number alterations (CNA) by array. There was a high concordance of array findings with FISH (84% sensitivity, 100% specificity); all discrepancies corresponded to subclonal alterations detected only by FISH. A chromothripsis-like pattern was detected in eight cases. Three showed concomitant shattered 5p with gain of TERT along with isochromosome 17q. Presence of 11q loss was associated with shorter time to first treatment (P = 0.003), whereas 17p loss, increased genomic complexity, and chromothripsis were associated with shorter overall survival (P < 0.001, P = 0.001, and P = 0.02, respectively). In conclusion, we have validated a targeted array for the diagnosis of CLL that accurately detects, in a single experiment, all relevant CNAs, genomic complexity, chromothripsis, copy number neutral loss of heterozygosity, and CNAs not covered by the FISH panel. This test may be used as a practical tool to stratify CLL patients for routine diagnostics or clinical trials.
Collapse
Affiliation(s)
- Itziar Salaverria
- Hematopathology Unit, Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - David Martín‐Garcia
- Hematopathology Unit, Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Cristina López
- Hematopathology Unit, Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Institute of Human Genetics, University Hospital Schleswig‐Holstein, Campus Kiel/Christian‐Albrechts UniversityKielGermany
| | - Guillem Clot
- Hematopathology Unit, Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Manel García‐Aragonés
- R&D, Department, Quantitative Genomic Medicine Laboratories (qGenomics)BarcelonaSpain
| | - Alba Navarro
- Hematopathology Unit, Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Julio Delgado
- Department of HematologyHospital Clínic, IDIBAPSBarcelonaSpain
| | - Tycho Baumann
- Department of HematologyHospital Clínic, IDIBAPSBarcelonaSpain
| | - Magda Pinyol
- Genomics UnitInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Idoia Martin‐Guerrero
- Institute of Human Genetics, University Hospital Schleswig‐Holstein, Campus Kiel/Christian‐Albrechts UniversityKielGermany
- Department of Genetics, Physical Anthropology and Animal PhysiologyUniversity of the Basque CountryLeioaSpain
| | - Ana Carrió
- Hematopathology Unit, Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Dolors Costa
- Hematopathology Unit, Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Ana C. Queirós
- Hematopathology Unit, Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Sandrine Jayne
- Ernest and Helen Scott Haematological Research Institute, Department of Biochemistry, University of LeicesterLeicesterUK
| | - Marta Aymerich
- Hematopathology Unit, Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Neus Villamor
- Hematopathology Unit, Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Dolors Colomer
- Hematopathology Unit, Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Marcos González
- Department of HematologyHospital Clínico‐IBSAL, Cancer Institute of Salamanca‐IBMCC (USAL‐CSIC)SalamancaSpain
| | | | - Elías Campo
- Hematopathology Unit, Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Martin J. S. Dyer
- Ernest and Helen Scott Haematological Research Institute, Department of Biochemistry, University of LeicesterLeicesterUK
| | - Reiner Siebert
- Institute of Human Genetics, University Hospital Schleswig‐Holstein, Campus Kiel/Christian‐Albrechts UniversityKielGermany
| | - Lluís Armengol
- R&D, Department, Quantitative Genomic Medicine Laboratories (qGenomics)BarcelonaSpain
| | - Sílvia Beà
- Hematopathology Unit, Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| |
Collapse
|
3
|
Marimuthu A, Huang TC, Selvan LDN, Renuse S, Nirujogi RS, Kumar P, Pinto SM, Rajagopalan S, Pandey A, Harsha H, Chatterjee A. Identification of targets of miR-200b by a SILAC-based quantitative proteomic approach. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
4
|
Vincendeau M, Nagel D, Eitelhuber AC, Krappmann D. MALT1 paracaspase: a unique protease involved in B-cell lymphomagenesis. Int J Hematol Oncol 2013. [DOI: 10.2217/ijh.13.45] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
SUMMARY MALT1 is a key regulator of adaptive immunity. MALT1-dependent signaling events control survival, proliferation and differentiation of lymphocytes in response to T- or B-cell receptor stimulation. MALT1 not only regulates physiological lymphocyte activation, but also controls oncogenic signaling in distinct lymphoid malignancies. The fusion protein API2–MALT1 generated by the chromosomal translocation t(11;18) acts as an oncoprotein in the late stages of mucosa-associated lymphoid tissue lymphoma. Moreover, MALT1 is critical for survival and proliferation of the activated B-cell type of diffuse large B-cell lymphomas, one of the most aggressive entities of malignant lymphomas. On the molecular level, MALT1 serves a dual role by functioning as a signaling adaptor and a protease. Both of these functions are critical for triggering the adaptive immune response and for promoting lymphomagenesis. Recent data emphasize that MALT1 is a promising drug target for the treatment of aggressive lymphomas.
Collapse
Affiliation(s)
- Michelle Vincendeau
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology & Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Daniel Nagel
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology & Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Andrea C Eitelhuber
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology & Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology & Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| |
Collapse
|
7
|
Vater I, Wagner F, Kreuz M, Berger H, Martín-Subero JI, Pott C, Martinez-Climent JA, Klapper W, Krause K, Dyer MJS, Gesk S, Harder L, Zamo A, Dreyling M, Hasenclever D, Arnold N, Siebert R. GeneChip analyses point to novel pathogenetic mechanisms in mantle cell lymphoma. Br J Haematol 2008; 144:317-31. [PMID: 19016712 DOI: 10.1111/j.1365-2141.2008.07443.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The translocation t(11;14)(q13;q32) is the genetic hallmark of mantle cell lymphoma (MCL) but is not sufficient for inducing lymphomagenesis. Here we performed genome-wide 100K GeneChip Mapping in 26 t(11;14)-positive MCL and six MCL cell lines. Partial uniparental disomy (pUPD) was shown to be a recurrent chromosomal event not only in MCL cell lines but also in primary MCL. Remarkably, pUPD affected recurrent targets of deletion like 11q, 13q and 17p. Moreover, we identified 12 novel regions of recurrent gain and loss as well as 12 high-level amplifications and eight homozygously deleted regions hitherto undescribed in MCL. Interestingly, GeneChip analyses identified different genes, encoding proteins involved in microtubule dynamics, such as MAP2, MAP6 and TP53, as targets for chromosomal aberration in MCL. Further investigation, including mutation analyses, fluorescence in situ hybridisation as well as epigenetic and expression studies, revealed additional aberrations frequently affecting these genes. In total, 19 of 20 MCL cases, which were subjected to genetic and epigenetic analyses, and five of six MCL cell lines harboured at least one aberration in MAP2, MAP6 or TP53. These findings provide evidence that alterations of microtubule dynamics might be one of the critical events in MCL lymphomagenesis contributing to chromosomal instability.
Collapse
Affiliation(s)
- Inga Vater
- Institute of Human Genetics, Christian-Albrechts University Kiel, Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|