1
|
Papenberg BW, Ingles J, Gao S, Feng J, Allen JL, Markwell SM, Interval ET, Montague PA, Wen S, Weed SA. Copy number alterations identify a smoking-associated expression signature predictive of poor outcome in head and neck squamous cell carcinoma. Cancer Genet 2021; 256-257:136-148. [PMID: 34130230 PMCID: PMC8273756 DOI: 10.1016/j.cancergen.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/23/2021] [Accepted: 05/23/2021] [Indexed: 11/17/2022]
Abstract
Cigarette smoking is a risk factor for the development of head and neck squamous cell carcinoma (HNSCC), partially due to tobacco-induced large-scale chromosomal copy-number alterations (CNAs). Identifying CNAs caused by smoking is essential in determining how gene expression from such regions impact tumor progression and patient outcome. We utilized The Cancer Genome Atlas (TCGA) whole genome sequencing data for HNSCC to directly identify amplified or deleted genes correlating with smoking pack-year based on linear modeling. Internal cross-validation identified 35 CNAs that significantly correlated with patient smoking, independent of human papillomavirus (HPV) status. The most abundant CNAs were chromosome 11q13.3-q14.4 amplification and 9p23.1/9p24.1 deletion. Evaluation of patient amplicons reveals four different patterns of 11q13 gene amplification in HNSCC resulting from breakage-fusion-bridge (BFB) events. . Predictive modeling identified 16 genes from these regions that denote poorer overall and disease-free survival with increased pack-year use, constituting a smoking-associated expression signature (SAES). Patients with altered expression of signature genes have increased risk of death and enhanced cervical lymph node involvement. The identified SAES can be utilized as a novel predictor of increased disease aggressiveness and poor outcome in smoking-associated HNSCC.
Collapse
Affiliation(s)
| | | | - Si Gao
- Department of Biostatistics USA
| | | | - Jessica L Allen
- Department of Biochemistry, Program in Cancer Cell Biology USA
| | | | - Erik T Interval
- Department of Otolaryngology, Head and Neck Surgery, West Virginia University, Morgantown, West Virginia, 26506 USA
| | - Phillip A Montague
- Department of Otolaryngology, Head and Neck Surgery, West Virginia University, Morgantown, West Virginia, 26506 USA
| | | | - Scott A Weed
- Department of Biochemistry, Program in Cancer Cell Biology USA.
| |
Collapse
|
2
|
Zhang J, Wu J, Chen Y, Zhang W. Dlx5 promotes cancer progression through regulation of CCND1 in oral squamous cell carcinoma (OSCC). Biochem Cell Biol 2021; 99:424-434. [PMID: 34283652 DOI: 10.1139/bcb-2020-0523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genetic studies have revealed a critical role of the distal-less homeobox gene 5 (Dlx5) in the pathogenesis of ovarian cancer, lung cancer, and T-cell lymphoma; however, the role and underlying mechanisms of Dlx5 in oral squamous cell carcinoma (OSCC) are largely unknown. In this study, we demonstrated that Dlx5 is up-regulated in OSCC tissues and cell lines, compared with their control groups. The results from our immunohistochemistry (IHC) analyses show that high expression levels of Dlx5 correlated with advanced TNM stages (P = 0.0001), lymph node metastasis (P = 0.0049), poor cellular differentiation (P = 0.0491), location of the tumors (P = 0.0132), and poor prognosis for the patient. We also demonstrated that knockdown of Dlx5 inhibited the viability, proliferation, and colony formation of OSCC cell lines CAL-27 and WSU-HN6 cells, probably by blocking cell cycle in the G1 phase. Furthermore, we revealed that Dlx5 exerts its biological functions via direct regulation of CCND1 in CAL-27 and WSU-HN6 cells. Ultimately, we have demonstrated that silencing of Dlx5 inhibits the growth of xenograft tumors in vivo, and that Dlx5 affects the progression of OSCC both in vitro and in vivo via directly regulating CCND1, providing a potential diagnostic biomarker and therapeutic target for OSCC.
Collapse
Affiliation(s)
- Jianfei Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.,Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Jinyang Wu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.,Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Yang Chen
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.,Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Wenbin Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.,Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| |
Collapse
|
3
|
Toledo F. Mechanisms Generating Cancer Genome Complexity: Back to the Future. Cancers (Basel) 2020; 12:E3783. [PMID: 33334014 PMCID: PMC7765419 DOI: 10.3390/cancers12123783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
Understanding the mechanisms underlying cancer genome evolution has been a major goal for decades. A recent study combining live cell imaging and single-cell genome sequencing suggested that interwoven chromosome breakage-fusion-bridge cycles, micronucleation events and chromothripsis episodes drive cancer genome evolution. Here, I discuss the "interphase breakage model," suggested from prior fluorescent in situ hybridization data that led to a similar conclusion. In this model, the rapid genome evolution observed at early stages of gene amplification was proposed to result from the interweaving of an amplification mechanism (breakage-fusion-bridge cycles) and of a deletion mechanism (micronucleation and stitching of DNA fragments retained in the nucleus).
Collapse
Affiliation(s)
- Franck Toledo
- Genetics of Tumor Suppression, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR3244 Dynamics of Genetic Information, 26 rue d'Ulm, CEDEX 05, 75248 Paris, France
| |
Collapse
|
4
|
Impaired Replication Timing Promotes Tissue-Specific Expression of Common Fragile Sites. Genes (Basel) 2020; 11:genes11030326. [PMID: 32204553 PMCID: PMC7140878 DOI: 10.3390/genes11030326] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022] Open
Abstract
Common fragile sites (CFSs) are particularly vulnerable regions of the genome that become visible as breaks, gaps, or constrictions on metaphase chromosomes when cells are under replicative stress. Impairment in DNA replication, late replication timing, enrichment of A/T nucleotides that tend to form secondary structures, the paucity of active or inducible replication origins, the generation of R-loops, and the collision between replication and transcription machineries on particularly long genes are some of the reported characteristics of CFSs that may contribute to their tissue-specific fragility. Here, we validated the induction of two CFSs previously found in the human fetal lung fibroblast line, Medical Research Council cell strain 5 (MRC-5), in another cell line derived from the same fetal tissue, Institute for Medical Research-90 cells (IMR-90). After induction of CFSs through aphidicolin, we confirmed the expression of the CFS 1p31.1 on chromosome 1 and CFS 3q13.3 on chromosome 3 in both fetal lines. Interestingly, these sites were found to not be fragile in lymphocytes, suggesting a role for epigenetic or transcriptional programs for this tissue specificity. Both these sites contained late-replicating genes NEGR1 (neuronal growth regulator 1) at 1p31.1 and LSAMP (limbic system-associated membrane protein) at 3q13.3, which are much longer, 0.880 and 1.4 Mb, respectively, than the average gene length. Given the established connection between long genes and CFS, we compiled information from the literature on all previously identified CFSs expressed in fibroblasts and lymphocytes in response to aphidicolin, including the size of the genes contained in each fragile region. Our comprehensive analysis confirmed that the genes found within CFSs are longer than the average human gene; interestingly, the two longest genes in the human genome are found within CFSs: Contactin Associated Protein 2 gene (CNTNAP2) in a lymphocytes’ CFS, and Duchenne muscular dystrophy gene (DMD) in a CFS expressed in both lymphocytes and fibroblasts. This indicates that the presence of very long genes is a unifying feature of all CFSs. We also obtained replication profiles of the 1p31.1 and 3q13.3 sites under both perturbed and unperturbed conditions using a combination of fluorescent in situ hybridization (FISH) and immunofluorescence against bromodeoxyuridine (BrdU) on interphase nuclei. Our analysis of the replication dynamics of these CFSs showed that, compared to lymphocytes where these regions are non-fragile, fibroblasts display incomplete replication of the fragile alleles, even in the absence of exogenous replication stress. Our data point to the existence of intrinsic features, in addition to the presence of long genes, which affect DNA replication of the CFSs in fibroblasts, thus promoting chromosomal instability in a tissue-specific manner.
Collapse
|
5
|
Negri GL, Grande BM, Delaidelli A, El-Naggar A, Cochrane D, Lau CC, Triche TJ, Moore RA, Jones SJ, Montpetit A, Marra MA, Malkin D, Morin RD, Sorensen PH. Integrative genomic analysis of matched primary and metastatic pediatric osteosarcoma. J Pathol 2019; 249:319-331. [PMID: 31236944 DOI: 10.1002/path.5319] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/23/2019] [Accepted: 06/20/2019] [Indexed: 01/14/2023]
Abstract
Despite being the most common childhood bone tumor, the genomic characterization of osteosarcoma remains incomplete. In particular, very few osteosarcoma metastases have been sequenced to date, critical to better understand mechanisms of progression and evolution in this tumor. We performed an integrated whole genome and exome sequencing analysis of paired primary and metastatic pediatric osteosarcoma specimens to identify recurrent genomic alterations. Sequencing of 13 osteosarcoma patients including 13 primary, 10 metastatic, and 3 locally recurring tumors revealed a highly heterogeneous mutational landscape, including cases of hypermutation and microsatellite instability positivity, but with virtually no recurrent alterations except for mutations involving the tumor suppressor genes RB1 and TP53. At the germline level, we detected alterations in multiple cancer related genes in the majority of the cohort, including those potentially disrupting DNA damage response pathways. Metastases retained only a minimal number of short variants from their corresponding primary tumors, while copy number alterations showed higher conservation. One recurrently amplified gene, KDR, was highly expressed in advanced cases and associated with poor prognosis. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gian Luca Negri
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Bruno M Grande
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Amal El-Naggar
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Dawn Cochrane
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Ching C Lau
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Timothy J Triche
- Department of Pathology and Laboratory Medicine, Childrens Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pathology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Steven Jm Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Alexandre Montpetit
- Department of Human Genetics, McGill University and Research Institute, McGill University Health Centre, Montreal, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - David Malkin
- Division of Haematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
6
|
Relevance of chromosomal band 11q13 in oral carcinogenesis: An update of current knowledge. Oral Oncol 2017; 72:7-16. [DOI: 10.1016/j.oraloncology.2017.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/24/2017] [Indexed: 12/14/2022]
|
7
|
Chuerduangphui J, Pientong C, Patarapadungkit N, Chotiyano A, Vatanasapt P, Kongyingyoes B, Promthet S, Swangphon P, Bumrungthai S, Pimson C, Ekalaksananan T. Amplification of EGFR and cyclin D1 genes associated with human papillomavirus infection in oral squamous cell carcinoma. Med Oncol 2017; 34:148. [DOI: 10.1007/s12032-017-1010-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/20/2017] [Indexed: 12/28/2022]
|
8
|
Shoji H, Isomoto H, Yoshida A, Ikeda H, Minami H, Kanda T, Urabe S, Matsushima K, Takeshima F, Nakao K, Inoue H. MicroRNA-130a is highly expressed in the esophageal mucosa of achalasia patients. Exp Ther Med 2017; 14:898-904. [PMID: 28810541 PMCID: PMC5526122 DOI: 10.3892/etm.2017.4598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/13/2017] [Indexed: 12/18/2022] Open
Abstract
Esophageal achalasia is considered as a risk factor of esophageal cancer. The etiologies of esophageal achalasia remain unknown. Peroral endoscopic myotomy (POEM) has recently been established as a minimally invasive method with high curability. The aims of the present study were to identify the microRNAs (miRs) specific to esophageal achalasia, to determine their potential target genes and to assess their alteration following POEM. RNA was extracted from biopsy samples from middle esophageal mucosa and analyzed using a microarray. Differentially expressed miRs in achalasia patients compared with control samples were identified and analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Correlations between specific miR expression levels and the patients' clinical background were also investigated. In addition, alterations of selected miR expression levels before and after POEM were analyzed. The results of RT-qPCR analysis demonstrated that the miR-130a expression levels were significantly higher in patients with achalasia (P<0.0001). In addition, miR-130a expression was significantly correlated with male sex and smoking history in patients with achalasia. However, no significant change in miR-130a expression was observed between before and after POEM. In conclusion, miR-130a is highly expressed in the esophageal mucosa of patients with achalasia and may be a biomarker of esophageal achalasia.
Collapse
Affiliation(s)
- Hiroyuki Shoji
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Hajime Isomoto
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan.,Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Tottori University School of Medicine, Yonago, Tottori 683-8504, Japan
| | - Akira Yoshida
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan.,Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa 224-8503, Japan
| | - Haruo Ikeda
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa 224-8503, Japan.,Digestive Disease Center, Showa University Koto Toyosu Hospital, Kotoku, Tokyo 135-8577, Japan
| | - Hitomi Minami
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Tsutomu Kanda
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Shigetoshi Urabe
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Kayoko Matsushima
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Fuminao Takeshima
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Haruhiro Inoue
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa 224-8503, Japan.,Digestive Disease Center, Showa University Koto Toyosu Hospital, Kotoku, Tokyo 135-8577, Japan
| |
Collapse
|
9
|
Ramos-García P, Gil-Montoya JA, Scully C, Ayén A, González-Ruiz L, Navarro-Triviño FJ, González-Moles MA. An update on the implications of cyclin D1 in oral carcinogenesis. Oral Dis 2017; 23:897-912. [DOI: 10.1111/odi.12620] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/07/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022]
Affiliation(s)
- P Ramos-García
- School of Dentistry; University of Granada; Granada Spain
| | - JA Gil-Montoya
- School of Dentistry; University of Granada; Granada Spain
- Instituto de Biomedicina; University of Granada; Granada Spain
| | - C Scully
- University College of London; London UK
| | - A Ayén
- School of Medicine; University of Granada; Granada Spain
| | - L González-Ruiz
- Servicio de Dermatología; Hospital General Universitario de Ciudad Real; Ciudad Real Spain
| | - FJ Navarro-Triviño
- Servicio de Dermatología; Complejo Hospitalario San Cecilio; Granada Spain
| | - MA González-Moles
- School of Dentistry; University of Granada; Granada Spain
- Instituto de Biomedicina; University of Granada; Granada Spain
| |
Collapse
|
10
|
Feng W, Chakraborty A. Fragility Extraordinaire: Unsolved Mysteries of Chromosome Fragile Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:489-526. [PMID: 29357071 DOI: 10.1007/978-981-10-6955-0_21] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chromosome fragile sites are a fascinating cytogenetic phenomenon now widely implicated in a slew of human diseases ranging from neurological disorders to cancer. Yet, the paths leading to these revelations were far from direct, and the number of fragile sites that have been molecularly cloned with known disease-associated genes remains modest. Moreover, as more fragile sites were being discovered, research interests in some of the earliest discovered fragile sites ebbed away, leaving a number of unsolved mysteries in chromosome biology. In this review we attempt to recount some of the early discoveries of fragile sites and highlight those phenomena that have eluded intense scrutiny but remain extremely relevant in our understanding of the mechanisms of chromosome fragility. We then survey the literature for disease association for a comprehensive list of fragile sites. We also review recent studies addressing the underlying cause of chromosome fragility while highlighting some ongoing debates. We report an observed enrichment for R-loop forming sequences in fragile site-associated genes than genomic average. Finally, we will leave the reader with some lingering questions to provoke discussion and inspire further scientific inquiries.
Collapse
Affiliation(s)
- Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Arijita Chakraborty
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
11
|
Gao G, Johnson SH, Vasmatzis G, Pauley CE, Tombers NM, Kasperbauer JL, Smith DI. Common fragile sites (CFS) and extremely large CFS genes are targets for human papillomavirus integrations and chromosome rearrangements in oropharyngeal squamous cell carcinoma. Genes Chromosomes Cancer 2016; 56:59-74. [PMID: 27636103 DOI: 10.1002/gcc.22415] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 01/04/2023] Open
Abstract
Common fragile sites (CFS) are chromosome regions that are prone to form gaps or breaks in response to DNA replication stress. They are often found as hotspots for sister chromatid exchanges, deletions, and amplifications in different cancers. Many of the CFS regions are found to span genes whose genomic sequence is greater than 1 Mb, some of which have been demonstrated to function as important tumor suppressors. CFS regions are also hotspots for human papillomavirus (HPV) integrations in cervical cancer. We used mate-pair sequencing to examine HPV integration events and chromosomal structural variations in 34 oropharyngeal squamous cell carcinoma (OPSCC). We used endpoint PCR and Sanger sequencing to validate each HPV integration event and found HPV integrations preferentially occurred within CFS regions similar to what is observed in cervical cancer. We also found that many of the chromosomal alterations detected also occurred at or near the cytogenetic location of CFSs. Several large genes were also found to be recurrent targets of rearrangements, independent of HPV integrations, including CSMD1 (2.1Mb), LRP1B (1.9Mb), and LARGE1 (0.7Mb). Sanger sequencing revealed that the nucleotide sequences near to identified junction sites contained repetitive and AT-rich sequences that were shown to have the potential to form stem-loop DNA secondary structures that might stall DNA replication fork progression during replication stress. This could then cause increased instability in these regions which could lead to cancer development in human cells. Our findings suggest that CFSs and some specific large genes appear to play important roles in OPSCC. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ge Gao
- Division of Experimental Pathology, Mayo Clinic, Rochester, MN
| | - Sarah H Johnson
- Biomarker Discovery Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - George Vasmatzis
- Biomarker Discovery Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | | | | | | | - David I Smith
- Division of Experimental Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
12
|
Samman M, Wood HM, Conway C, Stead L, Daly C, Chalkley R, Berri S, Senguven B, Ross L, Egan P, Chengot P, Ong TK, Pentenero M, Gandolfo S, Cassenti A, Cassoni P, Al Ajlan A, Samkari A, Barrett W, MacLennan K, High A, Rabbitts P. A novel genomic signature reclassifies an oral cancer subtype. Int J Cancer 2015; 137:2364-73. [PMID: 26014678 DOI: 10.1002/ijc.29615] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/15/2015] [Indexed: 12/22/2022]
Abstract
Verrucous carcinoma of the oral cavity (OVC) is considered a subtype of classical oral squamous cell carcinoma (OSCC). Diagnosis is problematic, and additional biomarkers are needed to better stratify patients. To investigate their molecular signature, we performed low-coverage copy number (CN) sequencing on 57 OVC and exome and RNA sequencing on a subset of these and compared the data to the same OSCC parameters. CN results showed that OVC lacked any of the classical OSCC patterns such as gain of 3q and loss of 3p and demonstrated considerably fewer genomic rearrangements compared to the OSCC cohort. OVC and OSCC samples could be clearly differentiated. Exome sequencing showed that OVC samples lacked mutations in genes commonly associated with OSCC (TP53, NOTCH1, NOTCH2, CDKN2A and FAT1). RNA sequencing identified genes that were differentially expressed between the groups. In silico functional analysis showed that the mutated and differentially expressed genes in OVC samples were involved in cell adhesion and keratinocyte proliferation, while those in the OSCC cohort were enriched for cell death and apoptosis pathways. This is the largest and most detailed genomic and transcriptomic analysis yet performed on this tumour type, which, as an example of non-metastatic cancer, may shed light on the nature of metastases. These three independent investigations consistently show substantial differences between the cohorts. Taken together, they lead to the conclusion that OVC is not a subtype of OSCC, but should be classified as a distinct entity.
Collapse
Affiliation(s)
- Manar Samman
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom.,Pathology and Clinical Laboratory Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Henry M Wood
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Caroline Conway
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Lucy Stead
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Catherine Daly
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Rebecca Chalkley
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Stefano Berri
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Burcu Senguven
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Lisa Ross
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Philip Egan
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Preetha Chengot
- St James's Institute of Oncology, St James's University Hospital, Leeds, United Kingdom
| | - Thian K Ong
- Leeds Dental Institute, Leeds General Infirmary, Leeds, United Kingdom
| | - Monica Pentenero
- Oral Medicine and Oral Oncology Unit, Department of Oncology, University of Torino, Turin, Italy
| | - Sergio Gandolfo
- Oral Medicine and Oral Oncology Unit, Department of Oncology, University of Torino, Turin, Italy
| | - Adele Cassenti
- Pathology Unit, Department of Medical Sciences, University of Torino, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Torino, Turin, Italy
| | | | - Alaa Samkari
- National Guard Health Affairs, Riyadh, Saudi Arabia
| | | | - Kenneth MacLennan
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom.,St James's Institute of Oncology, St James's University Hospital, Leeds, United Kingdom
| | - Alec High
- St James's Institute of Oncology, St James's University Hospital, Leeds, United Kingdom.,Leeds Dental Institute, Leeds General Infirmary, Leeds, United Kingdom
| | - Pamela Rabbitts
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
13
|
Savelyeva L, Brueckner LM. Molecular characterization of common fragile sites as a strategy to discover cancer susceptibility genes. Cell Mol Life Sci 2014; 71:4561-75. [PMID: 25231336 PMCID: PMC11114050 DOI: 10.1007/s00018-014-1723-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 12/19/2022]
Abstract
The cytogenetic hypothesis that common fragile sites (cFSs) are hotspots of cancer breakpoints is increasingly supported by recent data from whole-genome profiles of different cancers. cFSs are components of the normal chromosome structure that are particularly prone to breakage under conditions of replication stress. In recent years, cFSs have become of increasing interest in cancer research, as they not only appear to be frequent targets of genomic alterations in progressive tumors, but also already in precancerous lesions. Despite growing evidence of their importance in disease development, most cFSs have not been investigated at the molecular level and most cFS genes have not been identified. In this review, we summarize the current data on molecularly characterized cFSs, their genetic and epigenetic characteristics, and put emphasis on less-studied cFS genes as potential contributors to cancer development.
Collapse
Affiliation(s)
- Larissa Savelyeva
- Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany,
| | | |
Collapse
|
14
|
Ozeri-Galai E, Tur-Sinai M, Bester AC, Kerem B. Interplay between genetic and epigenetic factors governs common fragile site instability in cancer. Cell Mol Life Sci 2014; 71:4495-506. [PMID: 25297918 PMCID: PMC11113459 DOI: 10.1007/s00018-014-1719-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 11/28/2022]
Abstract
Common fragile sites (CFSs) are regions within the normal chromosomal structure that were characterized as hotspots for genomic instability in cancer almost 30 years ago. In recent years, many efforts have been made to understand the basis of CFS fragility and their involvement in the genomic signature of instability found in malignant tumors. CFSs are among the first regions to undergo genomic instability during cancer development because of their intrinsic sensitivity to replication stress conditions, which result from oncogene expression. The preferred sensitivity of CFSs to replication stress stems from various mechanisms including: replication fork arrest at AT-rich repeats, origin paucity along large genomic regions, failure in activation of dormant origins, late replication timing, collision between replication and transcription along large genes, all leading to incomplete replication of the CFS region and resulting in chromosomal instability. Here we review shared and unique characteristics of CFSs, their underlying causes and implications, particularly for the development of cancer.
Collapse
Affiliation(s)
- Efrat Ozeri-Galai
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - Michal Tur-Sinai
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - Assaf C. Bester
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Edmond J. Safra Campus, 91904 Jerusalem, Israel
| |
Collapse
|
15
|
Georgakilas AG, Tsantoulis P, Kotsinas A, Michalopoulos I, Townsend P, Gorgoulis VG. Are common fragile sites merely structural domains or highly organized "functional" units susceptible to oncogenic stress? Cell Mol Life Sci 2014; 71:4519-44. [PMID: 25238782 PMCID: PMC4232749 DOI: 10.1007/s00018-014-1717-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 01/07/2023]
Abstract
Common fragile sites (CFSs) are regions of the genome with a predisposition to DNA double-strand breaks in response to intrinsic (oncogenic) or extrinsic replication stress. CFS breakage is a common feature in carcinogenesis from its earliest stages. Given that a number of oncogenes and tumor suppressors are located within CFSs, a question that emerges is whether fragility in these regions is only a structural “passive” incident or an event with a profound biological effect. Furthermore, there is sparse evidence that other elements, like non-coding RNAs, are positioned with them. By analyzing data from various libraries, like miRbase and ENCODE, we show a prevalence of various cancer-related genes, miRNAs, and regulatory binding sites, such as CTCF within CFSs. We propose that CFSs are not only susceptible structural domains, but highly organized “functional” entities that when targeted, severe repercussion for cell homeostasis occurs.
Collapse
Affiliation(s)
- Alexandros G Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780, Athens, Greece
| | | | | | | | | | | |
Collapse
|
16
|
Gollin SM. Cytogenetic alterations and their molecular genetic correlates in head and neck squamous cell carcinoma: a next generation window to the biology of disease. Genes Chromosomes Cancer 2014; 53:972-90. [PMID: 25183546 DOI: 10.1002/gcc.22214] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 08/15/2014] [Indexed: 01/14/2023] Open
Abstract
Cytogenetic alterations underlie the development of head and neck squamous cell carcinoma (HNSCC), whether tobacco and alcohol use, betel nut chewing, snuff or human papillomavirus (HPV) causes the disease. Many of the molecular genetic aberrations in HNSCC result from these cytogenetic alterations. This review presents a brief introduction to the epidemiology of HNSCC, and discusses the role of HPV in the disease, cytogenetic alterations and their frequencies in HNSCC, their molecular genetic and The Cancer Genome Atlas (TCGA) correlates, prognostic implications, and possible therapeutic considerations. The most frequent cytogenetic alterations in HNSCC are gains of 5p14-15, 8q11-12, and 20q12-13, gains or amplifications of 3q26, 7p11, 8q24, and 11q13, and losses of 3p, 4q35, 5q12, 8p23, 9p21-24, 11q14-23, 13q12-14, 18q23, and 21q22. To understand their effects on tumor cell biology and response to therapy, the cytogenetic findings in HNSCC are increasingly being examined in the context of the biochemical pathways they disrupt. The goal is to minimize morbidity and mortality from HNSCC using cytogenetic abnormalities to identify valuable diagnostic biomarkers for HNSCC, prognostic biomarkers of tumor behavior, recurrence risk, and outcome, and predictive biomarkers of therapeutic response to identify the most efficacious treatment for each individual patient's tumor, all based on a detailed understanding of the next generation biology of HNSCC.
Collapse
Affiliation(s)
- Susanne M Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA; Departments of Otolaryngology and Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA; University of Pittsburgh Cancer Institute, Pittsburgh, PA
| |
Collapse
|
17
|
Infection with retroviral vectors leads to perturbed DNA replication increasing vector integrations into fragile sites. Sci Rep 2014; 3:2189. [PMID: 23852038 PMCID: PMC3711054 DOI: 10.1038/srep02189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/18/2013] [Indexed: 01/16/2023] Open
Abstract
Genome instability is a hallmark of cancer. Common fragile sites (CFSs) are specific regions in the human genome that are sensitive to replication stress and are prone to genomic instability in different cancer types. Here we molecularly cloned a new CFS, FRA11H, in 11q13. The genomic region of FRA11H harbors a hotspot of chromosomal breakpoints found in different types of cancer, indicating that this region is unstable during cancer development. We further found that FRA11H is a hotspot for integrations of Murine Leukemia Virus (MLV)-based vectors, following CD34+ infections in vitro as well as ex-vivo during gene therapy trials. Importantly, we found that the MLV-based vector infection in-vitro leads to replication perturbation, DNA damage and increased CFS expression. This suggests that infection by MLV-based vectors leads to replication-induced genome instability, raising further concerns regarding the use of retroviral vectors in gene therapy trials.
Collapse
|
18
|
Gao G, Kasperbauer JL, Tombers NM, Wang V, Mayer K, Smith DI. A selected group of large common fragile site genes have decreased expression in oropharyngeal squamous cell carcinomas. Genes Chromosomes Cancer 2014; 53:392-401. [DOI: 10.1002/gcc.22150] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 01/11/2023] Open
Affiliation(s)
- Ge Gao
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester MN
| | | | | | - Vivian Wang
- Mayo Medical Genome Facilities; Mayo Clinic; Rochester MN
| | - Kevin Mayer
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester MN
| | - David I. Smith
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester MN
| |
Collapse
|
19
|
Parikh RA, Appleman LJ, Bauman JE, Sankunny M, Lewis DW, Vlad A, Gollin SM. Upregulation of the ATR-CHEK1 pathway in oral squamous cell carcinomas. Genes Chromosomes Cancer 2013; 53:25-37. [PMID: 24142626 DOI: 10.1002/gcc.22115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 12/30/2022] Open
Abstract
The ATR-CHEK1 pathway is upregulated and overactivated in Ataxia Telangiectasia (AT) cells, which lack functional ATM protein. Loss of ATM in AT confers radiosensitivity, although ATR-CHEK1 pathway overactivation compensates, leads to prolonged G(2) arrest after treatment with ionizing radiation (IR), and partially reverses the radiosensitivity. We observed similar upregulation of the ATR-CHEK1 pathway in a subset of oral squamous cell carcinoma (OSCC) cell lines with ATM loss. In the present study, we report copy number gain, amplification, or translocation of the ATR gene in 8 of 20 OSCC cell lines by FISH; whereas the CHEK1 gene showed copy number loss in 12 of 20 cell lines by FISH. Quantitative PCR showed overexpression of both ATR and CHEK1 in 7 of 11 representative OSCC cell lines. Inhibition of ATR or CHEK1 with their respective siRNAs resulted in increased sensitivity of OSCC cell lines to IR by the colony survival assay. siRNA-mediated ATR or CHEK1 knockdown led to loss of G(2) cell cycle accumulation and an increased sub-G(0) apoptotic cell population by flow cytometric analysis. In conclusion, the ATR-CHEK1 pathway is upregulated in a subset of OSCC with distal 11q loss and loss of the G(1) phase cell cycle checkpoint. The upregulated ATR-CHEK1 pathway appears to protect OSCC cells from mitotic catastrophe by enhancing the G(2) checkpoint. Knockdown of ATR and/or CHEK1 increases the sensitivity of OSCC cells to IR. These findings suggest that inhibition of the upregulated ATR-CHEK1 pathway may enhance the efficacy of ionizing radiation treatment of OSCC.
Collapse
Affiliation(s)
- Rahul A Parikh
- Department of Internal Medicine, Division of Hematology-Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA; University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | | | | | | | | | | | | |
Collapse
|
20
|
Common Fragile Site Profiling in Epithelial and Erythroid Cells Reveals that Most Recurrent Cancer Deletions Lie in Fragile Sites Hosting Large Genes. Cell Rep 2013; 4:420-8. [DOI: 10.1016/j.celrep.2013.07.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/05/2013] [Accepted: 07/02/2013] [Indexed: 01/22/2023] Open
|
21
|
Yang J, Liu N, Kang AJ, Zhao SP, Huang XZ, Su BS, Chen XL, Li ZF. Significance of TMEM16A expression in colorectal carcinoma. Shijie Huaren Xiaohua Zazhi 2012; 20:3464-3469. [DOI: 10.11569/wcjd.v20.i35.3464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of transmembrane protein 16A (TMEM16A) in colorectal carcinoma.
METHODS: The expression of TMEM16A was detected by immunohistochemistry in 67 surgical colorectal carcinoma specimens and matched tumor-adjacent colorectal specimens.
RESULTS: TMEM16A was expressed in both cytoplasm and cell membrane. Among 67 colorectal carcinoma specimens, TMEM16A expression was negative in 4 cases (5.97%), weakly positive in 11 cases (16.42%), positive in 20 cases (29.85%), and strongly positive in 32 cases (47.76%). Among 67 tumor-adjacent healthy tissue specimens, TMEM16A expression was negative in 27 cases (40.30%), weakly positive in 35 cases (52.24%), positive in 3 cases (4.48%), and strongly positive in 2 cases (2.99%). The positive ("positive" plus "strongly positive") rate of TMEM16A expression was significantly higher in colorectal carcinoma tissue than in tumor adjacent healthy tissue (77.61% vs 7.46%, P < 0.005).
CONCLUSION: Aberrant expression of TMEM16A is a frequent feature in colorectal carcinoma. TMEM16A can be used as a new candidate target for diagnosis and treatment of colorectal carcinoma.
Collapse
|
22
|
Bosco N, de Lange T. A TRF1-controlled common fragile site containing interstitial telomeric sequences. Chromosoma 2012; 121:465-74. [PMID: 22790221 PMCID: PMC3590843 DOI: 10.1007/s00412-012-0377-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
Mouse telomeres have been suggested to resemble common fragile sites (CFS), showing disrupted TTAGGG fluorescent in situ hybridization signals after aphidicolin treatment. This "fragile" telomere phenotype is induced by deletion of TRF1, a shelterin protein that binds telomeric DNA and promotes efficient replication of the telomeric ds[TTAGGG]n tracts. Here we show that the chromosome-internal TTAGGG repeats present at human chromosome 2q14 form an aphidicolin-induced CFS. TRF1 binds to and stabilizes CFS 2q14 but does not affect other CFS, establishing 2q14 as the first CFS controlled by a sequence-specific DNA binding protein. The data show that telomeric DNA is inherently fragile regardless of its genomic position and imply that CFS can be caused by a specific DNA sequence.
Collapse
Affiliation(s)
- Nazario Bosco
- Laboratory for Cell Biology and Genetics, The Rockefeller University, Box 159, 1230 York Avenue, New York, NY 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, Box 159, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
23
|
Hao JJ, Shi ZZ, Zhao ZX, Zhang Y, Gong T, Li CX, Zhan T, Cai Y, Dong JT, Fu SB, Zhan QM, Wang MR. Characterization of genetic rearrangements in esophageal squamous carcinoma cell lines by a combination of M-FISH and array-CGH: further confirmation of some split genomic regions in primary tumors. BMC Cancer 2012; 12:367. [PMID: 22920630 PMCID: PMC3561653 DOI: 10.1186/1471-2407-12-367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 08/17/2012] [Indexed: 01/29/2023] Open
Abstract
Background Chromosomal and genomic aberrations are common features of human cancers. However, chromosomal numerical and structural aberrations, breakpoints and disrupted genes have yet to be identified in esophageal squamous cell carcinoma (ESCC). Methods Using multiplex-fluorescence in situ hybridization (M-FISH) and oligo array-based comparative hybridization (array-CGH), we identified aberrations and breakpoints in six ESCC cell lines. Furthermore, we detected recurrent breakpoints in primary tumors by dual-color FISH. Results M-FISH and array-CGH results revealed complex numerical and structural aberrations. Frequent gains occurred at 3q26.33-qter, 5p14.1-p11, 7pter-p12.3, 8q24.13-q24.21, 9q31.1-qter, 11p13-p11, 11q11-q13.4, 17q23.3-qter, 18pter-p11, 19 and 20q13.32-qter. Losses were frequent at 18q21.1-qter. Breakpoints that clustered within 1 or 2 Mb were identified, including 9p21.3, 11q13.3-q13.4, 15q25.3 and 3q28. By dual-color FISH, we observed that several recurrent breakpoint regions in cell lines were also present in ESCC tumors. In particular, breakpoints clustered at 11q13.3-q13.4 were identified in 43.3% (58/134) of ESCC tumors. Both 11q13.3-q13.4 splitting and amplification were significantly correlated with lymph node metastasis (LNM) (P = 0.004 and 0.022) and advanced stages (P = 0.004 and 0.039). Multivariate logistic regression analysis revealed that only 11q13.3-q13.4 splitting was an independent predictor for LNM (P = 0.026). Conclusions The combination of M-FISH and array-CGH helps produce more accurate karyotypes. Our data provide significant, detailed information for appropriate uses of these ESCC cell lines for cytogenetic and molecular biological studies. The aberrations and breakpoints detected in both the cell lines and primary tumors will contribute to identify affected genes involved in the development and progression of ESCC.
Collapse
Affiliation(s)
- Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Science, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Duvvuri U, Shiwarski DJ, Xiao D, Bertrand C, Huang X, Edinger RS, Rock JR, Harfe BD, Henson BJ, Kunzelmann K, Schreiber R, Seethala RS, Egloff AM, Chen X, Lui VW, Grandis JR, Gollin SM. TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression. Cancer Res 2012; 72:3270-81. [PMID: 22564524 DOI: 10.1158/0008-5472.can-12-0475-t] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Frequent gene amplification of the receptor-activated calcium-dependent chloride channel TMEM16A (TAOS2 or ANO1) has been reported in several malignancies. However, its involvement in human tumorigenesis has not been previously studied. Here, we show a functional role for TMEM16A in tumor growth. We found TMEM16A overexpression in 80% of head and neck squamous cell carcinoma (SCCHN), which correlated with decreased overall survival in patients with SCCHN. TMEM16A overexpression significantly promoted anchorage-independent growth in vitro, and loss of TMEM16A resulted in inhibition of tumor growth both in vitro and in vivo. Mechanistically, TMEM16A-induced cancer cell proliferation and tumor growth were accompanied by an increase in extracellular signal-regulated kinase (ERK)1/2 activation and cyclin D1 induction. Pharmacologic inhibition of MEK/ERK and genetic inactivation of ERK1/2 (using siRNA and dominant-negative constructs) abrogated the growth effect of TMEM16A, indicating a role for mitogen-activated protein kinase (MAPK) activation in TMEM16A-mediated proliferation. In addition, a developmental small-molecule inhibitor of TMEM16A, T16A-inh01 (A01), abrogated tumor cell proliferation in vitro. Together, our findings provide a mechanistic analysis of the tumorigenic properties of TMEM16A, which represents a potentially novel therapeutic target. The development of small-molecule inhibitors against TMEM16A may be clinically relevant for treatment of human cancers, including SCCHN.
Collapse
Affiliation(s)
- Umamaheswar Duvvuri
- Department of Otolaryngology, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine and Magee-Women's Research Institute, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ozeri-Galai E, Bester AC, Kerem B. The complex basis underlying common fragile site instability in cancer. Trends Genet 2012; 28:295-302. [PMID: 22465609 DOI: 10.1016/j.tig.2012.02.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
Common fragile sites (CFSs) were characterized almost 30 years ago as sites undergoing genomic instability in cancer. Recently, in vitro studies have found that oncogene-induced replication stress leads to CFS instability. In vivo, CFSs were found to be preferentially unstable during early stages of cancer development and to leave a unique signature of instability. It is now increasingly clear that, along the spectrum of replication features characterizing CFSs, failure of origin activation is a common feature. This and other features of CFSs, together with the replication stress characterizing early stages of cancer development, lead to incomplete replication that results in genomic instability preferentially at CFSs. Here, we review the shared and unique characteristics of CFSs, their underlying causes and their implications, particularly with respect to the development of cancer.
Collapse
Affiliation(s)
- Efrat Ozeri-Galai
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | | | | |
Collapse
|
26
|
Fungtammasan A, Walsh E, Chiaromonte F, Eckert KA, Makova KD. A genome-wide analysis of common fragile sites: what features determine chromosomal instability in the human genome? Genome Res 2012; 22:993-1005. [PMID: 22456607 PMCID: PMC3371707 DOI: 10.1101/gr.134395.111] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chromosomal common fragile sites (CFSs) are unstable genomic regions that break under replication stress and are involved in structural variation. They frequently are sites of chromosomal rearrangements in cancer and of viral integration. However, CFSs are undercharacterized at the molecular level and thus difficult to predict computationally. Newly available genome-wide profiling studies provide us with an unprecedented opportunity to associate CFSs with features of their local genomic contexts. Here, we contrasted the genomic landscape of cytogenetically defined aphidicolin-induced CFSs (aCFSs) to that of nonfragile sites, using multiple logistic regression. We also analyzed aCFS breakage frequencies as a function of their genomic landscape, using standard multiple regression. We show that local genomic features are effective predictors both of regions harboring aCFSs (explaining ∼77% of the deviance in logistic regression models) and of aCFS breakage frequencies (explaining ∼45% of the variance in standard regression models). In our optimal models (having highest explanatory power), aCFSs are predominantly located in G-negative chromosomal bands and away from centromeres, are enriched in Alu repeats, and have high DNA flexibility. In alternative models, CpG island density, transcription start site density, H3K4me1 coverage, and mononucleotide microsatellite coverage are significant predictors. Also, aCFSs have high fragility when colocated with evolutionarily conserved chromosomal breakpoints. Our models are predictive of the fragility of aCFSs mapped at a higher resolution. Importantly, the genomic features we identified here as significant predictors of fragility allow us to draw valuable inferences on the molecular mechanisms underlying aCFSs.
Collapse
Affiliation(s)
- Arkarachai Fungtammasan
- The Integrative Biosciences Graduate Program, Bioinformatics and Genomics Option, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
27
|
Guenthoer J, Diede SJ, Tanaka H, Chai X, Hsu L, Tapscott SJ, Porter PL. Assessment of palindromes as platforms for DNA amplification in breast cancer. Genome Res 2011; 22:232-45. [PMID: 21752925 DOI: 10.1101/gr.117226.110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
DNA amplification, particularly of chromosomes 8 and 11, occurs frequently in breast cancer and is a key factor in tumorigenesis, often associated with poor prognosis. The mechanisms involved in the amplification of these regions are not fully understood. Studies from model systems have demonstrated that palindrome formation can be an early step in DNA amplification, most notably seen in the breakage-fusion-bridge (BFB) cycle. Therefore, palindromes might be associated with gene amplicons in breast cancer. To address this possibility, we coupled high-resolution palindrome profiling by the Genome-wide Analysis of Palindrome Formation (GAPF) assay with genome-wide copy-number analyses on a set of breast cancer cell lines and primary tumors to spatially associate palindromes and copy-number gains. We identified GAPF-positive regions distributed nonrandomly throughout cell line and tumor genomes, often in clusters, and associated with copy-number gains. Commonly amplified regions in breast cancer, chromosomes 8q and 11q, had GAPF-positive regions flanking and throughout the copy-number gains. We also identified amplification-associated GAPF-positive regions at similar locations in subsets of breast cancers with similar characteristics (e.g., ERBB2 amplification). These shared positive regions offer the potential to evaluate the utility of palindromes as prognostic markers, particularly in premalignant breast lesions. Our results implicate palindrome formation in the amplification of regions with key roles in breast tumorigenesis, particularly in subsets of breast cancers.
Collapse
Affiliation(s)
- Jamie Guenthoer
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Wang XC, Tian LL, Wu HL, Jiang XY, Du LQ, Zhang H, Wang YY, Wu HY, Li DG, She Y, Liu QF, Fan FY, Meng AM. Expression of miRNA-130a in nonsmall cell lung cancer. Am J Med Sci 2010; 340:385-8. [PMID: 20625274 DOI: 10.1097/maj.0b013e3181e892a0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
MicroRNAs are short regulatory RNAs that negatively modulate gene expression at the posttranscriptional level and are deeply involved in the pathogenesis of several types of cancer. The miRNA-130a has been shown to play a role in antagonizing the inhibitory effects of GAX on endothelial cell proliferation, migration and tube formation, and antagonizing the inhibitory effects of HoxA5 on tube formation in vitro. Here the authors show, for the first time, that miRNA-130a expression is increased in nonsmall cell lung cancer (NSCLC) tissues. Statistical analysis showed that overexpression of miRNA-130a was strongly associated with lymph node metastasis, stage of tumor node metastasis classification and poor prognosis. Moreover, there was a significant difference in miRNA-130a expression levels between smoking and nonsmoking patients. Multivariate Cox regression analysis showed that miRNA-130a was an independent prognostic factor for patients with NSCLC. Together, these data suggest that miRNA-130a may comprise a potential novel prognostic marker for this disease.
Collapse
Affiliation(s)
- Xiao-Chun Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Brown JD, O'Neill RJ. Chromosomes, conflict, and epigenetics: chromosomal speciation revisited. Annu Rev Genomics Hum Genet 2010; 11:291-316. [PMID: 20438362 DOI: 10.1146/annurev-genom-082509-141554] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since Darwin first noted that the process of speciation was indeed the "mystery of mysteries," scientists have tried to develop testable models for the development of reproductive incompatibilities-the first step in the formation of a new species. Early theorists proposed that chromosome rearrangements were implicated in the process of reproductive isolation; however, the chromosomal speciation model has recently been questioned. In addition, recent data from hybrid model systems indicates that simple epistatic interactions, the Dobzhansky-Muller incompatibilities, are more complex. In fact, incompatibilities are quite broad, including interactions among heterochromatin, small RNAs, and distinct, epigenetically defined genomic regions such as the centromere. In this review, we will examine both classical and current models of chromosomal speciation and describe the "evolving" theory of genetic conflict, epigenetics, and chromosomal speciation.
Collapse
Affiliation(s)
- Judith D Brown
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
30
|
Pelliccia F, Bosco N, Rocchi A. Breakages at common fragile sites set boundaries of amplified regions in two leukemia cell lines K562 - Molecular characterization of FRA2H and localization of a new CFS FRA2S. Cancer Lett 2010; 299:37-44. [PMID: 20851513 DOI: 10.1016/j.canlet.2010.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/04/2010] [Accepted: 08/09/2010] [Indexed: 11/18/2022]
Abstract
Genome amplification is often observed in human tumors. The breakage-fusion-bridge (BFB) cycle is the mechanism that often underlies duplicated regions. Some research has indicated common fragile sites (CFS) as possible sites of chromosome breakages at the origin of BFB cycles. Here we searched two human genome regions known as amplification hot spots for any DNA copy number amplifications by analyzing 21 cancer cell lines to investigate the relationship between genomic fragility and amplification. We identified a duplicated region on a chromosomes der(2) present in the karyotype of two analysed leukemia cell lines K562. The two duplicated regions are organized into large palindromes, which suggests that one BFB cycle has occurred. Our findings show that the three breakpoints are localized in the sequence of three CFSs: FRA2H (2q32.1-q32.2), which here has been characterized molecularly; FRA2S (2q22.3-q23.3), a newly localized aphidicolin inducible CFS; and FRA2G (2q24.3-q31).
Collapse
Affiliation(s)
- Franca Pelliccia
- Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, P.le Aldo Moro 5, 00185 Roma, Italy.
| | | | | |
Collapse
|
31
|
ANO1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions in HNSCC cell lines. Br J Cancer 2010; 103:715-26. [PMID: 20664600 PMCID: PMC2938263 DOI: 10.1038/sj.bjc.6605823] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is associated with poor survival. To identify prognostic and diagnostic markers and therapeutic targets, we studied ANO1, a recently identified calcium-activated chloride channel (CaCC). Methods: High-resolution genomic and transcriptomic microarray analysis and functional studies using HNSCC cell line and CaCC inhibitors. Results: Amplification and overexpression of genes within the 11q13 amplicon are associated with the propensity for future distance metastasis of HPV-negative HNSCC. ANO1 was selected for functional studies based on high correlations, cell surface expression and CaCC activity. ANO1 overexpression in cells that express low endogenous levels stimulates cell movement, whereas downregulation in cells with high endogenous levels has the opposite effect. ANO1 overexpression also stimulates attachment, spreading, detachment and invasion, which could account for its effects on migration. CaCC inhibitors decrease movement, suggesting that channel activity is required for the effects of ANO1. In contrast, ANO1 overexpression does not affect cell proliferation. Interpretation: ANO1 amplification and expression could be markers for distant metastasis in HNSCC. ANO1 overexpression affects cell properties linked to metastasis. Inhibitors of CaCCs could be used to inhibit the tumourigenic properties of ANO1, whereas activators developed to increase CaCC activity could have adverse effects.
Collapse
|
32
|
Henson BJ, Bhattacharjee S, O'Dee DM, Feingold E, Gollin SM. Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes Chromosomes Cancer 2009; 48:569-82. [PMID: 19396866 DOI: 10.1002/gcc.20666] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Altered microRNA (miRNA) expression profiles have been observed in numerous malignancies, including oral squamous cell carcinoma (OSCC). However, their role in disease is not entirely clear. Several genetic aberrations are characteristic of OSCC, with amplification of chromosomal band 11q13 and loss of distal 11q being among the most prevalent. It is not known if the expression levels of miRNAs in these regions are altered or whether they play a role in disease. We hypothesize that the expression of miRNAs mapping to 11q are altered in OSCC because of loss or amplification of chromosomal material, and that this contributes to the development and progression of OSCC. We found that miR-125b and miR-100 are down-regulated in OSCC tumor and cell lines, and that transfecting cells with exogenous miR-125b and miR-100 significantly reduced cell proliferation and modified the expression of target and nontarget genes, including some that are overexpressed in radioresistant OSCC cells. In conclusion, the down-regulation of miR-125b and miR-100 in OSCC appears to play an important role in the development and/or progression of disease and may contribute to the loss of sensitivity to ionizing radiation.
Collapse
Affiliation(s)
- Brian J Henson
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
33
|
Tsui IFL, Poh CF, Garnis C, Rosin MP, Zhang L, Lam WL. Multiple pathways in the FGF signaling network are frequently deregulated by gene amplification in oral dysplasias. Int J Cancer 2009; 125:2219-28. [PMID: 19623652 DOI: 10.1002/ijc.24611] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genetic alteration in oral premalignant lesions (OPLs), the precursors of oral squamous cell carcinomas (OSCCs), may represent key changes in disease initiation and development. We ask if DNA amplification occurs at this early stage of cancer development and which oncogenic pathways are disrupted in OPLs. Here, we evaluated 50 high-grade dysplasias and low-grade dysplasias that later progressed to cancer for gene dosage aberrations using tiling-path DNA microarrays. Early occurrences of DNA amplification and homozygous deletion were frequently detected, with 40% (20/50) of these early lesions exhibiting such features. Expression for 88 genes in 7 recurrent amplicons were evaluated in 5 independent head and neck cancer datasets, with 40 candidates found to be overexpressed relative to normal tissues. These genes were significantly enriched in the canonical ERK/MAPK, FGF, p53, PTEN and PI3K/AKT signaling pathways (p = 8.95 x 10(-3) to 3.18 x 10(-2)). These identified pathways share interactions in one signaling network, and amplification-mediated deregulation of this network was found in 30.0% of these preinvasive lesions. No such alterations were found in 14 low-grade dysplasias that did not progress, whereas 43.5% (10/23) of OSCCs were found to have altered genes within the pathways with DNA amplification. Multitarget FISH showed that amplification of EGFR and CCND1 can coexist in single cells of an oral dysplasia, suggesting the dependence on multiple oncogenes for OPL progression. Taken together, these findings identify a critical biological network that is frequently disrupted in high-risk OPLs, with different specific genes disrupted in different individuals.
Collapse
Affiliation(s)
- Ivy F L Tsui
- Department of Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
| | | | | | | | | | | |
Collapse
|
34
|
Lung HL, Lo CC, Wong CCL, Cheung AKL, Cheong KF, Wong N, Kwong FM, Chan KC, Law EWL, Tsao SW, Chua D, Sham JS, Cheng Y, Stanbridge EJ, Robertson GP, Lung ML. Identification of tumor suppressive activity by irradiation microcell-mediated chromosome transfer and involvement of alpha B-crystallin in nasopharyngeal carcinoma. Int J Cancer 2008; 122:1288-96. [PMID: 18027848 DOI: 10.1002/ijc.23259] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In previous studies, we successfully refined nasopharyngeal carcinoma (NPC) critical regions (CRs) mapping to chromosome 11q13 and 11q22-23. The chromosome 11 fragment containing the 1.8 Mb NPC CR at 11q13 (CR1), the CR at 11q22.3 mapped near D11S2000 (CR2), part of the CR at 11q23.1-11q23.2 overlapping with D11S1300 and D11S1391 (CR3), and the CR at cell adhesion molecule 1 (CADM1) locus (CR4), was chosen as the chromosome 11 donor cell line for the present study. Gamma irradiation was applied to cleave this truncated chromosome into smaller fragments and a new panel of donor cells containing further deleted fragments was produced. Subclones XMCH3.2 and XMCH3.4 were chosen for subsequent transfer to HONE1 cells; each contains a single copy of deleted chromosome 11 fragment with or without CR2 and the THY1 locus, previously shown to be involved in NPC. Both resultant chromosome 11 fragments in XMCH3.2 and XMCH3.4 caused tumor suppression. The association of alpha B-crystallin (CRYAB), a gene identified as being differentially expressed by gene profiling of NPC and an immortalized nasopharyngeal epithelial cell line, and which is located near CR3, was found to be associated with tumor suppression in all the tumor-suppressive hybrids. In addition, the expression level of this gene was down-regulated in the 7 NPC cell lines and in 5 out of 14 normal/tumor tissue pairs in the present study. Both promoter hypermethylation and allelic loss may be involved in the inactivation of this gene, suggesting its possible role in NPC development.
Collapse
Affiliation(s)
- Hong Lok Lung
- Department of Biology and Center for Cancer Research, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (SAR), People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Martin CL, Reshmi SC, Ried T, Gottberg W, Wilson JW, Reddy JK, Khanna P, Johnson JT, Myers EN, Gollin SM. Chromosomal imbalances in oral squamous cell carcinoma: examination of 31 cell lines and review of the literature. Oral Oncol 2007; 44:369-82. [PMID: 17681875 PMCID: PMC2362065 DOI: 10.1016/j.oraloncology.2007.05.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 05/01/2007] [Accepted: 05/02/2007] [Indexed: 01/18/2023]
Abstract
Classical and molecular cytogenetic analysis, including fluorescence in situ hybridization (FISH) and chromosomal comparative genomic hybridization (CGH), were used to examine genetic changes involved in the development and/or progression of oral squamous cell carcinoma (OSCC). Of 31 OSCC cell lines studied, more than one-third expressed clonal structural abnormalities involving chromosomes 3, 7, 8, 9, and 11. Eleven OSCC cell lines were evaluated using CGH to identify novel genome-wide gains, losses, or amplifications. By CGH, more than half of the cell lines showed loss of 3p, gain of 3q, 8q, and 20q. Further, molecular cytogenetic analyses by FISH of primary tumors showed that the karyotypes of cell lines derived from those tumors correlated with specific gains and losses in the tumors from which they were derived. The most frequent nonrandom aberration identified by both karyotype and CGH analyses was amplification of chromosomal band 11q13 in the form of a homogeneously staining region. Our data suggest that loss of 9p and 11q13 amplification may be of prognostic benefit in the management of OSCC, which is consistent with the literature. The results of this study validate the relationship between these OSCC cell lines and the tumors from which they were derived. The results also emphasize the usefulness of these cell lines as in vitro experimental models and provide important genetic information on these OSCC cell lines that were recently reported in this journal.
Collapse
Affiliation(s)
- Christa Lese Martin
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Shalini C. Reshmi
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas Ried
- National Cancer Institute, NIH, Bethesda, Maryland
| | | | - John W. Wilson
- Department of Biostatistics and the NSABP Biostatistical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Jaya K. Reddy
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Poornima Khanna
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Jonas T. Johnson
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Eugene N. Myers
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Susanne M. Gollin
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
- *Corresponding Author Susanne M. Gollin, Ph.D. Department of Human Genetics University of Pittsburgh Graduate School of Public Health 130 DeSoto Street Pittsburgh, PA 15261 Telephone: (412) 624-5390 Fax: (412) 624-3020
| |
Collapse
|
36
|
Reshmi SC, Roychoudhury S, Yu Z, Feingold E, Potter D, Saunders WS, Gollin SM. Inverted duplication pattern in anaphase bridges confirms the breakage-fusion-bridge (BFB) cycle model for 11q13 amplification. Cytogenet Genome Res 2007; 116:46-52. [PMID: 17268177 DOI: 10.1159/000097425] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 07/03/2006] [Indexed: 11/19/2022] Open
Abstract
The homogeneously staining region (hsr) involving chromosome band 11q13 includes amplified genes from this chromosome segment and carries a relatively poor prognosis in oral squamous cell carcinomas (OSCC), with shorter time to recurrence and reduced overall survival. We previously identified an inverted duplication pattern of genes within the 11q13 hsr in OSCC cells, supporting a breakage-fusion-bridge (BFB) cycle model for gene amplification. To validate our hypothesis that 11q13 gene amplification in OSCC occurs via BFB cycles, we carried out fluorescence in situ hybridization (FISH) using probes for band 11q13 on 29 OSCC cell lines. We demonstrate that all OSCC cell lines with 11q13 amplification express a significantly higher frequency of anaphase bridges containing 11q13 sequences compared to cell lines without amplification, providing further experimental evidence that 11q13 gene amplification in OSCC cells occurs via BFB cycles. Elucidation of mechanisms responsible for initiating and promoting gene amplification provides opportunities to identify new biomarkers to aid in the diagnosis and prognosis of oral cancer, and may be useful for developing novel therapeutic strategies for patients with OSCC.
Collapse
Affiliation(s)
- S C Reshmi
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Sawińska M, Schmitt JG, Sagulenko E, Westermann F, Schwab M, Savelyeva L. Novel aphidicolin-inducible common fragile siteFRA9G maps to 9p22.2, within theC9orf39 gene. Genes Chromosomes Cancer 2007; 46:991-9. [PMID: 17668870 DOI: 10.1002/gcc.20484] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Common fragile sites represent a component of normal chromosome structure that form gaps and breaks on metaphase chromosomes after partial inhibition of DNA synthesis. In humans, cytogenetic locations of 89 common fragile sites are listed in the Genome Database; however, the exact number of fragile sites remains unknown. The application of high resolution mapping approaches continues to reveal new common fragile sites in the human genome. Here, we identified a novel aphidicolin-inducible common fragile site FRA9G, which maps to chromosomal band 9p22.2. We have characterized the structure of the fragile DNA sequence that extends over a genomic region of approximately 300 kb within the C9orf39 (chromosome 9 open reading frame 39) gene. Analysis of incidence in healthy individuals showed that FRA9G is commonly expressed in the population. Heterozygous BRCA2 mutation carriers exhibit an almost sevenfold increase of FRA9G expression compared to an unrelated control population group. Identification of a novel aphidicolin-inducible common fragile site at 9p22 may have implications for understanding the mechanism of genetic instability in tumorigenesis and other genetic disorders.
Collapse
Affiliation(s)
- Małgorzata Sawińska
- Division of Tumor Genetics, German Cancer Research Center, Im Neuenheimer Feld, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|