1
|
Vela-Ojeda J, Cardenas PV, Garcia-Ruiz Esparza MA, Montiel Cervantes LA, Chavez JG, Caballero AH, Majluf-Cruz A, Vega-López A, Reyes-Maldonado E. FLT3-ITD and CD135 Over-Expression are Frequent Findings of Poor Survival in Adult Patients with Acute Leukemias. Arch Med Res 2020; 52:217-223. [PMID: 33109387 DOI: 10.1016/j.arcmed.2020.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Fms-like tyrosine kinase 3 (FLT3) expression and mutation have been considered a poor prognostic factor in acute myeloid leukemia (AML). FLT3-ITD mutation is present in 30% of adult patients with AML and 2-5% in childhood acute lymphoblastic leukemia (ALL). The impact of these mutations on the prognosis of ALL patients, has not yet been established. Moreover, a limited number of publications regarding the level of expression of the FLT3 receptor (CD135) in both leukemias exist. This study aimed to analyze the clinical outcomes associated to the presence of FLT3-ITD mutation and the expression of CD135. METHODS 82 adult patients with newly diagnosed acute leukemia (39 with AML and 43 with ALL) were included. Flow cytometry and RT-PCR were done to analyze the expression of CD135 and the presence of FLT3 ITD mutation, respectively. RESULTS FLT3-ITD was present in 14 (36%) of AML and 15 (35%) of ALL patients. Disease free survival (DFS) and overall survival (OS) were lower in ALL patients having a CD135 expression >3000 cells/μL. There was a trend for poor OS in AML patients expressing FLT3 ITD. OS was worse in AML patients with high expression of CD135. CONCLUSION A higher (35%) frequency of FLT3-ITD was found in adult ALL patients. The presence of FLT3-ITD was associated with a trend of poor OS in AML cases, and overexpression of CD135 was correlated with poor DFS in ALL cases and poor OS in both acute leukemias.
Collapse
Affiliation(s)
- Jorge Vela-Ojeda
- Departamento de Hematología, Unidad Médica de Alta Especialidad, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México; Unidad de Investigación de Medicina Traslacional en Enfermedades Hemato-Oncologicas, Unidad Médica de Alta Especialidad, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México; Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Ciudad de México, México.
| | - Pamela Vazquez Cardenas
- Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Ciudad de México, México
| | - Miriam A Garcia-Ruiz Esparza
- Departamento de Hematología, Unidad Médica de Alta Especialidad, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Laura Arcelia Montiel Cervantes
- Departamento de Hematología, Unidad Médica de Alta Especialidad, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México; Unidad de Investigación de Medicina Traslacional en Enfermedades Hemato-Oncologicas, Unidad Médica de Alta Especialidad, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México; Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Ciudad de México, México
| | - Jaime Garcia Chavez
- Departamento de Hematología, Unidad Médica de Alta Especialidad, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Alvaro Hernandez Caballero
- Departamento de Hematología, Unidad Médica de Alta Especialidad, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Abraham Majluf-Cruz
- Unidad de Investigación Medica en Trombosis, Hemostasia y Aterogenesis, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Armando Vega-López
- Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Ciudad de México, México
| | - Elba Reyes-Maldonado
- Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Ciudad de México, México
| |
Collapse
|
2
|
Jin A, Feng J, Wei G, Wu W, Yang L, Xu H, Zhang Y, Cui J, Chang AH, Hu Y, Huang H. CD19/CD22 chimeric antigen receptor T-cell therapy for refractory acute B-cell lymphoblastic leukemia with FLT3-ITD mutations. Bone Marrow Transplant 2020; 55:717-721. [DOI: 10.1038/s41409-020-0807-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 11/09/2022]
|
3
|
Perelló-Reus CM, Català A, Caviedes-Cárdenas L, Vega-García N, Camós M, Pérez-Torras S, Pastor-Anglada M. FMS-like tyrosine kinase 3 (FLT3) modulates key enzymes of nucleotide metabolism implicated in cytarabine responsiveness in pediatric acute leukemia. Pharmacol Res 2019; 151:104556. [PMID: 31778791 DOI: 10.1016/j.phrs.2019.104556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
Treatment of pediatric acute leukemia might involve combined therapies targeting the FMS-like tyrosine kinase 3 (FLT3) receptor (i.e. quizartinib - AC220) and nucleotide metabolism (cytarabine - AraC). This study addressed the possibility of FLT3 modulating nucleoside salvage processes and, eventually, cytarabine action. Bone marrow samples from 108 pediatric leukemia patients (B-cell precursor acute lymphoblastic leukemia, BCP-ALL: 83; T-ALL: 9; acute myeloid leukemia, AML: 16) were used to determine the mRNA expression levels of FLT3, the cytarabine activating kinase dCK, and the nucleotidases cN-II and SAMHD1. FLT3 mRNA levels positively correlated with dCK, cN-II and SAMHD1 in the studied cohort. FLT3 inhibition using AC220 promoted the expression of cN-II in MV4-11 cells. Indeed, inhibition of cN-II with anthraquinone-2,6-disulfonic acid (AdiS) further potentiated the synergistic action of AC220 and cytarabine, at low concentrations of this nucleoside analog. FLT3 inhibition also down-regulated phosphorylated forms of SAMHD1 in MV4-11 and SEM cells. Thus, inhibition of FLT3 may also target the biochemical machinery associated with nucleoside salvage, which may modulate the ability of nucleoside-derived drugs. In summary, this contribution highlights the need to expand current knowledge on the mechanistic events linking tyrosine-kinase receptors, likely to be druggable in cancer treatment, and nucleotide metabolism, particularly considering tumor cells undergo profound metabolic reprogramming.
Collapse
Affiliation(s)
- Catalina M Perelló-Reus
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain; Institut de Recerca Hospital Sant Joan de Déu de Barcelona (IRP-HSJD), Esplugues de Llobregat, Barcelona, Spain
| | - Albert Català
- Institut de Recerca Hospital Sant Joan de Déu de Barcelona (IRP-HSJD), Esplugues de Llobregat, Barcelona, Spain; Pediatric Hematology Department, Hospital Sant Joan de Déu de Barcelona, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER ER), Instituto de Salud Carlos III, Madrid, Spain
| | - Liska Caviedes-Cárdenas
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain; Institut de Recerca Hospital Sant Joan de Déu de Barcelona (IRP-HSJD), Esplugues de Llobregat, Barcelona, Spain
| | - Nerea Vega-García
- Institut de Recerca Hospital Sant Joan de Déu de Barcelona (IRP-HSJD), Esplugues de Llobregat, Barcelona, Spain; Hematology Laboratory, Hospital Sant Joan de Deu (IR SJD), Esplugues de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Mireia Camós
- Institut de Recerca Hospital Sant Joan de Déu de Barcelona (IRP-HSJD), Esplugues de Llobregat, Barcelona, Spain; Hematology Laboratory, Hospital Sant Joan de Deu (IR SJD), Esplugues de Llobregat, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER ER), Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Pérez-Torras
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain; Institut de Recerca Hospital Sant Joan de Déu de Barcelona (IRP-HSJD), Esplugues de Llobregat, Barcelona, Spain.
| | - Marçal Pastor-Anglada
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain; Institut de Recerca Hospital Sant Joan de Déu de Barcelona (IRP-HSJD), Esplugues de Llobregat, Barcelona, Spain.
| |
Collapse
|
4
|
Poubel CP, Mansur MB, Boroni M, Emerenciano M. FLT3 overexpression in acute leukaemias: New insights into the search for molecular mechanisms. Biochim Biophys Acta Rev Cancer 2019; 1872:80-88. [PMID: 31201827 DOI: 10.1016/j.bbcan.2019.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022]
Abstract
FLT3 overexpression is a recurrent event in various acute leukaemia subtypes. This transcriptional deregulation is important to define the prognostic risk for many patients. Of note, the molecular mechanisms leading to this gene upregulation are unknown for a substantial number of cases. In this Mini-Review, we highlight the role of FLT3 overexpression in acute leukaemia and discuss emerging mechanisms accounting for this upregulation. The benefits of using targeted therapy are also addressed in the overexpression context, posing other therapeutic possibilities based on state-of-the-art knowledge that could be considered for future research.
Collapse
Affiliation(s)
- Caroline Pires Poubel
- Division of Clinical Research, Research Centre, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ 20231050, Brazil; Bioinformatics and Computational Biology Lab, Research Centre, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ 20231050, Brazil
| | - Marcela B Mansur
- Division of Clinical Research, Research Centre, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ 20231050, Brazil
| | - Mariana Boroni
- Bioinformatics and Computational Biology Lab, Research Centre, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ 20231050, Brazil
| | - Mariana Emerenciano
- Division of Clinical Research, Research Centre, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ 20231050, Brazil.
| |
Collapse
|
5
|
de Smith AJ, Lavoie G, Walsh KM, Aujla S, Evans E, Hansen HM, Smirnov I, Kang AY, Zenker M, Ceremsak JJ, Stieglitz E, Muskens IS, Roberts W, McKean-Cowdin R, Metayer C, Roux PP, Wiemels JL. Predisposing germline mutations in high hyperdiploid acute lymphoblastic leukemia in children. Genes Chromosomes Cancer 2019; 58:723-730. [PMID: 31102422 DOI: 10.1002/gcc.22765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022] Open
Abstract
High hyperdiploidy (HD) is the most common cytogenetic subtype of childhood acute lymphoblastic leukemia (ALL), and a higher incidence of HD has been reported in ALL patients with congenital cancer syndromes. We assessed the frequency of predisposing germline mutations in 57 HD-ALL patients from the California Childhood Leukemia Study via targeted sequencing of cancer-relevant genes. Three out of 57 patients (5.3%) harbored confirmed germline mutations that were likely causal, in NBN, ETV6, and FLT3, with an additional six patients (10.5%) harboring putative predisposing mutations that were rare in unselected individuals (<0.01% allele frequency in the Exome Aggregation Consortium, ExAC) and predicted functional (scaled CADD score ≥ 20) in known or potential ALL predisposition genes (SH2B3, CREBBP, PMS2, MLL, ABL1, and MYH9). Three additional patients carried rare and predicted damaging germline mutations in GAB2, a known activator of the ERK/MAPK and PI3K/AKT pathways and binding partner of PTPN11-encoded SHP2. The frequency of rare and predicted functional germline GAB2 mutations was significantly higher in our patients (2.6%) than in ExAC (0.28%, P = 4.4 × 10-3 ), an observation that was replicated in ALL patients from the TARGET project (P = .034). We cloned patient GAB2 mutations and expressed mutant proteins in HEK293 cells and found that frameshift mutation P621fs led to reduced SHP2 binding and ERK1/2 phosphorylation but significantly increased AKT phosphorylation, suggesting possible RAS-independent leukemogenic effects. Our results support a significant contribution of rare, high penetrance germline mutations to HD-ALL etiology, and pinpoint GAB2 as a putative novel ALL predisposition gene.
Collapse
Affiliation(s)
- Adam J de Smith
- Center for Genetic Epidemiology, Department of Preventive Medicine, USC Keck School of Medicine, Los Angeles, California.,Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, Canada
| | - Kyle M Walsh
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California.,Department of Neurosurgery, Duke University, Durham, North Carolina.,Children's Health and Discovery Institute, Duke University, Durham, North Carolina
| | - Sumeet Aujla
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Erica Evans
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Helen M Hansen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Ivan Smirnov
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Alice Y Kang
- School of Public Health, University of California, Berkeley, Berkeley, California
| | - Martin Zenker
- University Hospital Magdeburg, Institute of Human Genetics, Magdeburg, Germany
| | - John J Ceremsak
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Elliot Stieglitz
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Ivo S Muskens
- Center for Genetic Epidemiology, Department of Preventive Medicine, USC Keck School of Medicine, Los Angeles, California
| | - William Roberts
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of California San Diego, San Diego, California.,Rady Children's Hospital San Diego, San Diego, California
| | - Roberta McKean-Cowdin
- Department of Preventive Medicine, USC Keck School of Medicine, Los Angeles, California
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, Berkeley, California
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, Canada.,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Preventive Medicine, USC Keck School of Medicine, Los Angeles, California.,Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| |
Collapse
|
6
|
FLT3 N676K drives acute myeloid leukemia in a xenograft model of KMT2A-MLLT3 leukemogenesis. Leukemia 2019; 33:2310-2314. [PMID: 30953031 PMCID: PMC6756218 DOI: 10.1038/s41375-019-0465-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/01/2019] [Accepted: 03/22/2019] [Indexed: 01/01/2023]
|
7
|
Bautista F, Van der Lugt J, Kearns PR, Mussai FJ, Zwaan CM, Moreno L. The development of targeted new agents to improve the outcome for children with leukemia. Expert Opin Drug Discov 2016; 11:1111-1122. [PMID: 27670965 DOI: 10.1080/17460441.2016.1237939] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Survival rates in pediatric leukemia have greatly improved in the last decades but still a substantial number of patients will relapse and die. New agents are necessary to overcome the limitations of conventional chemotherapy and hematopoietic stem cell transplantation and to reduce their undesirable long-term toxicities. The identification of driving molecular alterations of leukemogenesis in subsets of patients will allow the incorporation of new-targeted therapies. Areas covered: In this article the authors present a detailed review of the most recent advances in targeted therapies for pediatric leukemias. A comprehensive description of the biological background, adult data and early clinical trials in pediatrics is provided. Expert opinion: Clinical trials are the way to evaluate new agents in pediatric cancer. The development of new drugs in pediatric leukemia must be preceded by a solid biological rationale. Agents in development exploit all possible vulnerabilities of leukemic cells. Drugs targeting cell surface antigens, intracellular signaling pathways and cell cycle inhibitors or epigenetic regulators are most prominent. Major advances have occurred thanks to new developments in engineering leading to optimized molecules such as anti-CD19 bi-specific T-cell engagers (e.g. blinatumomab) and antibody-drug conjugates. The integration of new-targeted therapies in pediatric chemotherapy-based regimens will lead to improved outcomes.
Collapse
Affiliation(s)
- Francisco Bautista
- a Department of Pediatric Oncology, Hematology and Stem Cell Transplantation , Hospital Niño Jesús , Madrid , Spain
| | - Jasper Van der Lugt
- b Department of Pediatric Oncology/Hematology , Erasmus-MC Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Pamela R Kearns
- c Cancer Research UK Clinical Trials Unit, School of Cancer Sciences , University of Birmingham , Birmingham , UK
| | - Francis J Mussai
- c Cancer Research UK Clinical Trials Unit, School of Cancer Sciences , University of Birmingham , Birmingham , UK
| | - C Michel Zwaan
- b Department of Pediatric Oncology/Hematology , Erasmus-MC Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Lucas Moreno
- a Department of Pediatric Oncology, Hematology and Stem Cell Transplantation , Hospital Niño Jesús , Madrid , Spain
| |
Collapse
|
8
|
Català A, Pastor-Anglada M, Caviedes-Cárdenas L, Malatesta R, Rives S, Vega-García N, Camós M, Fernández-Calotti P. FLT3 is implicated in cytarabine transport by human equilibrative nucleoside transporter 1 in pediatric acute leukemia. Oncotarget 2016; 7:49786-49799. [PMID: 27391351 PMCID: PMC5226548 DOI: 10.18632/oncotarget.10448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 06/26/2016] [Indexed: 12/30/2022] Open
Abstract
FLT3 abnormalities are negative prognostic markers in acute leukemia. Infant leukemias are a subgroup with frequent MLL (KMT2A) rearrangements, FLT3 overexpression and high sensitivity to cytarabine, but dismal prognosis. Cytarabine is transported into cells by Human Equilibrative Nucleoside Transporter-1 (hENT1, SLC29A1), but the mechanisms that regulate hENT1 in acute leukemia have been scarcely studied.We explored the expression and functional link between FLT3 and main cytarabine transporters in 50 pediatric patients diagnosed with acute lymphoblastic leukemia and MLL rearrangement (ALL-MLL+) and other subtypes of leukemia, and in leukemia cell lines.A significant positive correlation was found between FLT3 and hENT1 expression in patients. Cytarabine uptake into cells was mediated mainly by hENT1, hENT2 and hCNT1. hENT1-mediated uptake of cytarabine was transiently abolished by the FLT3 inhibitor PKC412, and this effect was associated with decreased hENT1 mRNA and protein levels. Noticeably, the cytotoxicity of cytarabine was lower when cells were first exposed to FLT3 inhibitors (PKC412 or AC220), probably due to decreased hENT1 activity, but we observed a higher cytotoxic effect if FLT3 inhibitors were administered after cytarabine.FLT3 regulates hENT1 activity and thereby affects cytarabine cytotoxicity. The sequence of administration of cytarabine and FLT3 inhibitors is important to maintain their efficacy.
Collapse
Affiliation(s)
- Albert Català
- Pediatric Hematology and Oncology Department, Hospital Sant Joan de Déu, University of Barcelona, Esplugues de Llobregat, Barcelona, Spain
- National Biomedical Research Institute on Rare Diseases (CIBER ER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu (IRP-HSJD), Esplugues de Llobregat, Barcelona, Spain
| | - Marçal Pastor-Anglada
- Department of Biochemistry and Molecular Biology, University of Barcelona, Institute of Biomedicine (IBUB), Barcelona, Spain
- Oncology Program, National Biomedical Research Institute of Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu (IRP-HSJD), Esplugues de Llobregat, Barcelona, Spain
| | - Liska Caviedes-Cárdenas
- Department of Biochemistry and Molecular Biology, University of Barcelona, Institute of Biomedicine (IBUB), Barcelona, Spain
| | - Roberta Malatesta
- Hematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Esplugues de Llobregat, Barcelona, Spain
| | - Susana Rives
- Pediatric Hematology and Oncology Department, Hospital Sant Joan de Déu, University of Barcelona, Esplugues de Llobregat, Barcelona, Spain
- National Biomedical Research Institute on Rare Diseases (CIBER ER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu (IRP-HSJD), Esplugues de Llobregat, Barcelona, Spain
| | - Nerea Vega-García
- Hematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Esplugues de Llobregat, Barcelona, Spain
| | - Mireia Camós
- National Biomedical Research Institute on Rare Diseases (CIBER ER), Instituto de Salud Carlos III, Madrid, Spain
- Hematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Esplugues de Llobregat, Barcelona, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu (IRP-HSJD), Esplugues de Llobregat, Barcelona, Spain
| | - Paula Fernández-Calotti
- Department of Biochemistry and Molecular Biology, University of Barcelona, Institute of Biomedicine (IBUB), Barcelona, Spain
- Oncology Program, National Biomedical Research Institute of Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu (IRP-HSJD), Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
9
|
Immunophenotyping with CD135 and CD117 predicts the FLT3, IL-7R and TLX3 gene mutations in childhood T-cell acute leukemia. Blood Cells Mol Dis 2016; 57:74-80. [DOI: 10.1016/j.bcmd.2015.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/02/2015] [Indexed: 12/11/2022]
|
10
|
Zhang L, Samad A, Pombo-de-Oliveira MS, Scelo G, Smith MT, Feusner J, Wiemels JL, Metayer C. Global characteristics of childhood acute promyelocytic leukemia. Blood Rev 2015; 29:101-25. [PMID: 25445717 PMCID: PMC4379131 DOI: 10.1016/j.blre.2014.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/21/2014] [Accepted: 09/23/2014] [Indexed: 12/29/2022]
Abstract
Acute promyelocytic leukemia (APL) comprises approximately 5-10% of childhood acute myeloid leukemia (AML) cases in the US. While variation in this percentage among other populations was noted previously, global patterns of childhood APL have not been thoroughly characterized. In this comprehensive review of childhood APL, we examined its geographic pattern and the potential contribution of environmental factors to observed variation. In 142 studies (spanning >60 countries) identified, variation was apparent-de novo APL represented from 2% (Switzerland) to >50% (Nicaragua) of childhood AML in different geographic regions. Because a limited number of previous studies addressed specific environmental exposures that potentially underlie childhood APL development, we gathered 28 childhood cases of therapy-related APL, which exemplified associations between prior exposures to chemotherapeutic drugs/radiation and APL diagnosis. Future population-based studies examining childhood APL patterns and the potential association with specific environmental exposures and other risk factors are needed.
Collapse
Affiliation(s)
- L Zhang
- School of Public Health, University of California, Berkeley, USA.
| | - A Samad
- School of Public Health, University of California, Berkeley, USA.
| | - M S Pombo-de-Oliveira
- Pediatric Hematology-Oncology Program, Research Center-National Institute of Cancer, Rio de Janeiro, Brazil.
| | - G Scelo
- International Agency for Research on Cancer (IARC), Lyon, France.
| | - M T Smith
- School of Public Health, University of California, Berkeley, USA.
| | - J Feusner
- Department of Hematology, Children's Hospital and Research Center Oakland, Oakland, USA.
| | - J L Wiemels
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA.
| | - C Metayer
- School of Public Health, University of California, Berkeley, USA.
| |
Collapse
|
11
|
Olsson L, Albitar F, Castor A, Behrendtz M, Biloglav A, Paulsson K, Johansson B. Cooperative genetic changes in pediatric B-cell precursor acute lymphoblastic leukemia with deletions or mutations of IKZF1. Genes Chromosomes Cancer 2015; 54:315-25. [PMID: 25727050 DOI: 10.1002/gcc.22245] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 01/09/2015] [Indexed: 01/21/2023] Open
Abstract
In contrast to IKZF1 deletions (ΔIKZF1), IKZF1 sequence mutations (mutIKZF1) have been reported to be rare in B-cell precursor acute lymphoblastic leukemia and their clinical implications are unknown. We performed targeted deep sequencing of all exons of IKZF1 in 140 pediatric cases, eight (5.7%) of which harbored a mutIKZF1. The probabilities of relapse (pRel) and event-free survival (pEFS) did not differ between cases with or without mutIKZF1, whereas pEFS was decreased and pRel increased in ΔIKZF1-positive case. Coexisting microdeletions, mutations (FLT3, JAK2, SH2B3, and SPRED1), and rearrangements (ABL1, CRLF2, JAK2, and PDGFRB) in 35 ΔIKZF1 and/or mutIKZF1-positive cases were ascertained using fluorescence in situ hybridization, single nucleotide polymorphism array, Sanger, and targeted deep sequencing analyses. The overall frequencies of copy number alterations did not differ between cases with our without ΔIKZF1/mutIKZF1. Deletions of HIST1, SH2B3, and the pseudoautosomal region (PAR1), associated with deregulation of CRLF2, were more common in ΔIKZF1-positive cases, whereas PAR1 deletions and JAK2 mutations were overrepresented in the combined ΔIKZF1/mutIKZF1 group. There was no significant impact on pRel of the deletions in ΔIKZF1-positive cases or of JAK2 mutations in cases with ΔIKZF1/mutIKZF1. In contrast, the pRel was higher (P = 0.005) in ΔIKZF1/mutIKZF1-positive cases with PAR1 deletions.
Collapse
Affiliation(s)
- Linda Olsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
12
|
Knight T, Irving JAE. Ras/Raf/MEK/ERK Pathway Activation in Childhood Acute Lymphoblastic Leukemia and Its Therapeutic Targeting. Front Oncol 2014; 4:160. [PMID: 25009801 PMCID: PMC4067595 DOI: 10.3389/fonc.2014.00160] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/06/2014] [Indexed: 01/11/2023] Open
Abstract
Deregulation of the Ras/Raf/MEK/extracellular signal-regulated kinase pathway is a common event in childhood acute lymphoblastic leukemia and is caused by point mutation, gene deletion, and chromosomal translocation of a vast array of gene types, highlighting its importance in leukemia biology. Pathway activation can be therapeutically exploited and may guide new therapies needed for relapsed acute lymphoblastic leukemia and other high risk subgroups.
Collapse
Affiliation(s)
- Thomas Knight
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Julie Anne Elizabeth Irving
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
13
|
FLT3 Internal Tandem Duplication and D835 Mutations in Patients with Acute Lymphoblastic Leukemia and its Clinical Significance. Mediterr J Hematol Infect Dis 2014; 6:e2014038. [PMID: 24959335 PMCID: PMC4063605 DOI: 10.4084/mjhid.2014.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/09/2014] [Indexed: 12/26/2022] Open
Abstract
The fms-like tyrosine kinase 3 (FLT3) gene is a member of the class III receptor tyrosine kinase family. Mutations of FLT3 were first described in 1997 and account for the most frequent molecular mutations in acute myeloid leukemia. Currently, there is no published data on FLT3 mutations in Saudi acute lymphoblastic leukemia (ALL) patients. In this retrospective study, we have examined a cohort of 77 ALL patients to determine the prevalence of FLT3 mutations and the possible prognostic relevance of these mutations in ALL patients. Correlations to other biologic factors such as karyotype, molecular mutations, and leukocyte count were also considered. FLT3 internal tandem duplication (ITD) mutations and point mutation in tyrosine kinase domain (D835) were analyzed in ALL patients, at diagnosis, by polymerase chain reaction (PCR). Two cases (2.6%, 2/77) were positive for FLT3 mutations; one was found to have FLT3/ITD and the other FLT3/D835. Our findings suggest that FLT3 mutations are not common in Saudi ALL and do not affect clinical outcome.
Collapse
|
14
|
Katsibardi K, Braoudaki M, Karamolegou K, Tzortzatou-Stathopoulou F. Clinical outcome of the coexistence of ETV6/RUNX1 and high hyperdiploidy in pediatric acute lymphoblastic leukemia. Leuk Lymphoma 2013; 55:1946-8. [PMID: 24188477 DOI: 10.3109/10428194.2013.861071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Katerina Katsibardi
- First Department of Pediatrics, University of Athens, Choremio Research Laboratory, "Aghia Sophia" Children's Hospital , Athens , Greece
| | | | | | | |
Collapse
|
15
|
Leow S, Kham SKY, Ariffin H, Quah TC, Yeoh AEJ. FLT3 mutation and expression did not adversely affect clinical outcome of childhood acute leukaemia: a study of 531 Southeast Asian children by the Ma-Spore study group. Hematol Oncol 2011; 29:211-9. [PMID: 21387358 DOI: 10.1002/hon.987] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/31/2011] [Accepted: 02/02/2011] [Indexed: 11/09/2022]
Abstract
FMS-like tyrosine kinase 3 (FLT3) is critical for normal haematopoiesis and have been reported to be expressed in the majority of acute myeloid and lymphoid malignancies. We correlated the impact of FLT3 mutations and its expression with age, WHO 2008 classification and treatment outcome in 531 childhood acute leukaemias. Of 150 acute myeloid leukaemia (AMLs), 18 (12%) harboured FLT3-ITD while nine (6%) had FLT3-TKD. FLT3-ITD and -TKD were rare in acute megakaryoblastic leukaemia (AMKL; FLT3-ITD 0/26, FLT3-TKD 1/26) and children below 3 years (n = 2/48). Acute promyelocytic leukaemia (APL) with t(15;17);PML-RARα (n = 7/18; 39%) harboured the highest frequency of FLT3 mutations, followed by myelomonocytic (n = 4/18; 22%) and AML with t(8;21);RUNX1-RUNX1T1 (n = 2/21; 9%). FLT3 expression levels were also lowest in AMKL, both in Down's and non-Down's (p = 0.002) followed by patients <3 years (p = 0.001). The rarity of FLT3 mutations and expression levels in AMKL were independent of age. Conversely, only 2% of childhood acute lymphoblastic leukaemia (ALL) harboured FLT3 mutations (ITD = 1/381; TKD = 6/381). FLT3 was highly expressed in hyperdiploid ALL (p < 0.001). Of the 121 AMLs with clinical history, there were no significant differences in 4-year event-free survival (EFS) (46% vs. 38%; p = 0.46) and overall-survival (OS) (55% vs. 43%; p = 0.30) between FLT3-wildtype and ITD+ patients. Similarly, FLT3 expression levels did not influence survival in AML in both the good risk and non-good risk subgroups. FLT3 does not appear to be involved in the pathogenesis of AMKL, both in Down's and non-Down's. Therapeutic targets using FLT3 inhibitors may not be useful in AMKL and in young children with AML.
Collapse
Affiliation(s)
- Shuangjie Leow
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore
| | | | | | | | | |
Collapse
|
16
|
Chang P, Kang M, Xiao A, Chang J, Feusner J, Buffler P, Wiemels J. FLT3 mutation incidence and timing of origin in a population case series of pediatric leukemia. BMC Cancer 2010; 10:513. [PMID: 20875128 PMCID: PMC2955609 DOI: 10.1186/1471-2407-10-513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/27/2010] [Indexed: 12/11/2022] Open
Abstract
Background Mutations in FLT3 result in activated tyrosine kinase activity, cell growth stimulation, and a poor prognosis among various subtypes of leukemia. The causes and timing of the mutations are not currently known. We evaluated the prevalence and timing of origin of FLT3 mutations in a population series of childhood leukemia patients from Northern California. Methods We screened and sequenced FLT3 mutations (point mutations and internal tandem duplications, ITDs) among 517 childhood leukemia patients, and assessed whether these mutations occurred before or after birth using sensitive "backtracking" methods. Results We determined a mutation prevalence of 9 of 73 acute myeloid leukemias (AMLs, 12%) and 9 of 441 acute lymphocytic leukemias (ALLs, 2%). Among AMLs, FLT3 mutations were more common in older patients, and among ALLs, FLT3 mutations were more common in patients with high hyperdiploidy (3.7%) than those without this cytogenetic feature (1.4%). Five FLT3 ITDs, one deletion mutation, and 3 point mutations were assessed for their presence in neonatal Guthrie spots using sensitive real-time PCR techniques, and no patients were found to harbor FLT3 mutations at birth. Conclusions FLT3 mutations were not common in our population-based patient series in California, and patients who harbor FLT3 mutations most likely acquire them after they are born.
Collapse
Affiliation(s)
- Patrick Chang
- Department of Epidemiology and Biostatistics, UCSF, Helen Diller Cancer Research Building, San Francisco, CA 94158, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Meijerink JPP, den Boer ML, Pieters R. New genetic abnormalities and treatment response in acute lymphoblastic leukemia. Semin Hematol 2009; 46:16-23. [PMID: 19100364 DOI: 10.1053/j.seminhematol.2008.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Numerous genetic abnormalities have been identified in acute lymphoblastic leukemia (ALL). Here we review the recurrent abnormalities with emphasis on those recently discovered, and discuss their association with chemotherapy resistance or sensitivity and with clinical response to therapy. Also, the role of genetic abnormalities in leukemogenesis and their potential as therapeutic targets will be discussed.
Collapse
Affiliation(s)
- Jules P P Meijerink
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | |
Collapse
|
18
|
Braoudaki M, Karpusas M, Katsibardi K, Papathanassiou C, Karamolegou K, Tzortzatou-Stathopoulou F. Frequency of FLT3 mutations in childhood acute lymphoblastic leukemia. Med Oncol 2008; 26:460-2. [PMID: 19085113 DOI: 10.1007/s12032-008-9146-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 12/01/2008] [Indexed: 11/29/2022]
Abstract
FLT3 mutations are occasionally observed in acute lymphoblastic leukemia (ALL). These most frequently manifest as internal tandem duplications (ITD) and activation loop (AL) mutations. This study investigated the incidence of FLT3 mutations in 86 pediatric patients diagnosed with ALL and the co-presence of common RAS mutations. A 2.3% (2/86) FLT3/AL mutation rate in terms of total ALL cases and a 22% (2/9) incidence in hyperdiploid cases was observed. This is in accordance to previous studies indicating a higher incidence in the patient subgroup associated with hyperdiploidy.
Collapse
Affiliation(s)
- M Braoudaki
- Hematology/Oncology Unit, First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital, Thivon & Levadias, Goudi-Athens, 11527 Athens, Greece.
| | | | | | | | | | | |
Collapse
|