1
|
Gorman BR, Ji SG, Francis M, Sendamarai AK, Shi Y, Devineni P, Saxena U, Partan E, DeVito AK, Byun J, Han Y, Xiao X, Sin DD, Timens W, Moser J, Muralidhar S, Ramoni R, Hung RJ, McKay JD, Bossé Y, Sun R, Amos CI, Pyarajan S. Multi-ancestry GWAS meta-analyses of lung cancer reveal susceptibility loci and elucidate smoking-independent genetic risk. Nat Commun 2024; 15:8629. [PMID: 39366959 PMCID: PMC11452618 DOI: 10.1038/s41467-024-52129-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/27/2024] [Indexed: 10/06/2024] Open
Abstract
Lung cancer remains the leading cause of cancer mortality, despite declining smoking rates. Previous lung cancer GWAS have identified numerous loci, but separating the genetic risks of lung cancer and smoking behavioral susceptibility remains challenging. Here, we perform multi-ancestry GWAS meta-analyses of lung cancer using the Million Veteran Program cohort (approximately 95% male cases) and a previous study of European-ancestry individuals, jointly comprising 42,102 cases and 181,270 controls, followed by replication in an independent cohort of 19,404 cases and 17,378 controls. We then carry out conditional meta-analyses on cigarettes per day and identify two novel, replicated loci, including the 19p13.11 pleiotropic cancer locus in squamous cell lung carcinoma. Overall, we report twelve novel risk loci for overall lung cancer, lung adenocarcinoma, and squamous cell lung carcinoma, nine of which are externally replicated. Finally, we perform PheWAS on polygenic risk scores for lung cancer, with and without conditioning on smoking. The unconditioned lung cancer polygenic risk score is associated with smoking status in controls, illustrating a reduced predictive utility in non-smokers. Additionally, our polygenic risk score demonstrates smoking-independent pleiotropy of lung cancer risk across neoplasms and metabolic traits.
Collapse
Affiliation(s)
- Bryan R Gorman
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Sun-Gou Ji
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- BridgeBio Pharma, Palo Alto, CA, USA
| | - Michael Francis
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Anoop K Sendamarai
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Yunling Shi
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Poornima Devineni
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Uma Saxena
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Elizabeth Partan
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Andrea K DeVito
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Xiangjun Xiao
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Don D Sin
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Wim Timens
- University Medical Centre Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, Groningen, Netherlands
- Department of Pathology & Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Jennifer Moser
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, USA
| | - Sumitra Muralidhar
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, USA
| | - Rachel Ramoni
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, University of Toronto, Toronto, ON, Canada
| | - James D McKay
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Ryan Sun
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Tarlinton R, Greenwood AD. Koala retrovirus and neoplasia: correlation and underlying mechanisms. Curr Opin Virol 2024; 67:101427. [PMID: 39047314 DOI: 10.1016/j.coviro.2024.101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
The koala retrovirus, KoRV, is one of the few models for understanding the health consequences of retroviral colonization of the germline. Such colonization events transition exogenous infectious retroviruses to Mendelian traits or endogenous retroviruses (ERVs). KoRV is currently in a transitional state from exogenous retrovirus to ERV, which in koalas (Phascolarctos cinereus) has been associated with strongly elevated levels of neoplasia. In this review, we describe what is currently known about the associations and underlying mechanisms of KoRV-induced neoplasia.
Collapse
Affiliation(s)
- Rachael Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Dehner CA, Bell RC, Cao Y, He K, Chrisinger JS, Armstrong AE, Yohe M, Shern J, Hirbe AC. Loss of Chromosome 3q Is a Prognostic Marker in Fusion-Negative Rhabdomyosarcoma. JCO Precis Oncol 2023; 7:e2300037. [PMID: 37738543 PMCID: PMC10861018 DOI: 10.1200/po.23.00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/05/2023] [Accepted: 07/16/2023] [Indexed: 09/24/2023] Open
Abstract
PURPOSE Soft tissue sarcomas (STS) are rare mesenchymal neoplasms that frequently show complex chromosomal aberrations such as amplifications or deletions of DNA sequences or even whole chromosomes. We recently found that gain of chromosome (chr) 8 is associated with worse overall survival (OS) in STS as a group. We therefore aimed to investigate the overall copy number profile of rhabdomyosarcoma (RMS) to evaluate for prognostic signatures. METHODS Fluorescence in situ hybridization (FISH) testing was performed on a cohort of STS to assess for chr8 gain. Copy number variation (CNV) data from the National Cancer Institute were analyzed to assess for prognostically significant CNV aberrations in FOXO1 fusion-negative (FN)- versus fusion-positive (FP)-RMS. FISH testing was performed on a cohort of FN-RMS to assess for chr3q loss and correlate with outcomes. RESULTS Chr8 gain is a highly prevalent CNV in embryonal RMS and shows slightly improved prognosis. Meanwhile, loss of chr3q was associated with worse outcome in FN-RMS compared with FP-RMS. CONCLUSION The pathogenesis of STS including FN-RMS remains poorly understood, emphasizing the need for new therapeutic advances and adequate risk stratification. Our data demonstrate that loss of chr3q is associated with poor OS in FN-RMS, supporting it as an important tool for risk stratification.
Collapse
Affiliation(s)
- Carina A. Dehner
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO
- Department of Pathology/Dermatopathology, Indiana University, Indianapolis, IN
| | - Robert C. Bell
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Yang Cao
- Division of Oncology, Washington University School of Medicine, St Louis, MO
| | - Kevin He
- Division of Oncology, Washington University School of Medicine, St Louis, MO
| | - John S.A. Chrisinger
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO
| | - Amy E. Armstrong
- Division of Pediatric Hematology/Oncology, Washington University School of Medicine, St Louis, MO
| | - Marielle Yohe
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jack Shern
- Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Angela C. Hirbe
- Division of Oncology, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
4
|
Sarver AL, Mills LJ, Makielski KM, Temiz NA, Wang J, Spector LG, Subramanian S, Modiano JF. Distinct mechanisms of PTEN inactivation in dogs and humans highlight convergent molecular events that drive cell division in the pathogenesis of osteosarcoma. Cancer Genet 2023; 276-277:1-11. [PMID: 37267683 DOI: 10.1016/j.cancergen.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/02/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023]
Abstract
A hallmark of osteosarcoma in both human and canine tumors is somatic fragmentation and rearrangement of chromosome structure which leads to recurrent increases and decreases in DNA copy number. The PTEN gene has been implicated as an important tumor suppressor in osteosarcoma via forward genetic screens. Here, we analyzed copy number changes, promoter methylation and transcriptomes to better understand the role of PTEN in canine and human osteosarcoma. Reduction in PTEN copy number was observed in 23 of 95 (25%) of the canine tumors examined leading to corresponding decreases in PTEN transcript levels from RNA-Seq samples. Unexpectedly, canine tumors with an intact PTEN locus had higher levels of PTEN transcripts than human tumors. This variation in transcript abundance was used to evaluate the role of PTEN in osteosarcoma biology. Decreased PTEN copy number and transcript level was observed in - and likely an important driver of - increases in cell cycle transcripts in four independent canine transcriptional datasets. In human osteosarcoma, homozygous copy number loss was not observed, instead increased methylation of the PTEN promoter was associated with increased cell cycle transcripts. Somatic modification of PTEN, either by homozygous deletion in dogs or by promoter methylation in humans, is clinically relevant to osteosarcoma, because the cell cycle related transcripts are associated with patient outcomes. The PTEN gene is part of a syntenic rearrangement unique to the canine genome, making it susceptible to somatic loss of both copies of distal chromosome 26 which also includes the FAS death receptor. SIGNIFICANCE STATEMENT: PTEN function is abrogated by different mechanisms in canine and human osteosarcoma tumors leading to uncontrolled cell cycling. Somatic loss of this canine specific syntenic region may help explain why the canine genome appears to be uniquely susceptible to osteosarcoma. Syntenic arrangement, in the context of copy number change, may lead to synergistic interactions that in turn modify species specific cancer risk. Comparative models of tumorigenesis may utilize different driver mechanisms.
Collapse
Affiliation(s)
- Aaron L Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA.
| | - Lauren J Mills
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kelly M Makielski
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA; Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jinhua Wang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Logan G Spector
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA
| | - Subbaya Subramanian
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA; Department of Surgery, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Jaime F Modiano
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA; Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Center for Engineering and Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Ghobadi MZ, Afsaneh E, Emamzadeh R, Soroush M. Potential miRNA-gene interactions determining progression of various ATLL cancer subtypes after infection by HTLV-1 oncovirus. BMC Med Genomics 2023; 16:62. [PMID: 36978083 PMCID: PMC10045051 DOI: 10.1186/s12920-023-01492-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Adult T-cell Leukemia/Lymphoma (ATLL) is a rapidly progressing type of T-cell non-Hodgkin lymphoma that is developed after the infection by human T-cell leukemia virus type 1 (HTLV-1). It could be categorized into four major subtypes, acute, lymphoma, chronic, and smoldering. These different subtypes have some shared clinical manifestations, and there are no trustworthy biomarkers for diagnosis of them. METHODS We applied weighted-gene co-expression network analysis to find the potential gene and miRNA biomarkers for various ATLL subtypes. Afterward, we found reliable miRNA-gene interactions by identifying the experimentally validated-target genes of miRNAs. RESULTS The outcomes disclosed the interactions of miR-29b-2-5p and miR-342-3p with LSAMP in ATLL_acute, miR-575 with UBN2, miR-342-3p with ZNF280B, and miR-342-5p with FOXRED2 in ATLL_chronic, miR-940 and miR-423-3p with C6orf141, miR-940 and miR-1225-3p with CDCP1, and miR-324-3p with COL14A1 in ATLL_smoldering. These miRNA-gene interactions determine the molecular factors involved in the pathogenesis of each ATLL subtype and the unique ones could be considered biomarkers. CONCLUSION The above-mentioned miRNAs-genes interactions are suggested as diagnostic biomarkers for different ATLL subtypes.
Collapse
Affiliation(s)
- Mohadeseh Zarei Ghobadi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | | | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mona Soroush
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Chen H, Gesumaria L, Park YK, Oliver TG, Singer DS, Ge K, Schrump DS. BET Inhibitors Target the SCLC-N Subtype of Small-Cell Lung Cancer by Blocking NEUROD1 Transactivation. Mol Cancer Res 2023; 21:91-101. [PMID: 36378541 PMCID: PMC9898120 DOI: 10.1158/1541-7786.mcr-22-0594] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/27/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Small-cell lung cancer (SCLC) is a recalcitrant malignancy that urgently needs new therapies. Four master transcription factors (ASCL1, NEUROD1, POU2F3, and YAP1) have been identified in SCLC, and each defines the transcriptome landscape of one molecular subtype. However, these master transcription factors have not been found directly druggable. We hypothesized that blocking their transcriptional coactivator(s) could provide an alternative approach to target these master transcription factors. Here, we identify that BET proteins physically interact with NEUROD1 and function as transcriptional coactivators. Using CRISPR knockout and ChIP-seq, we demonstrate that NEUROD1 plays a critical role in defining the landscapes of BET proteins in the SCLC genome. Blocking BET proteins by inhibitors led to broad suppression of the NEUROD1-target genes, especially those associated with superenhancers, resulting in the inhibition of SCLC growth in vitro and in vivo. LSAMP, a membrane protein in the IgLON family, was identified as one of the NEUROD1-target genes mediating BET inhibitor sensitivity in SCLC. Altogether, our study reveals that BET proteins are essential in regulating NEUROD1 transactivation and are promising targets in SCLC-N subtype tumors. IMPLICATIONS Our findings suggest that targeting transcriptional coactivators could be a novel approach to blocking the master transcription factors in SCLC for therapeutic purposes.
Collapse
Affiliation(s)
- Haobin Chen
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa Gesumaria
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Young-Kwon Park
- Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Trudy G. Oliver
- Department of Pharmacology & Cancer Biology, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Dinah S. Singer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David S. Schrump
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Martinez-Monleon A, Gaarder J, Djos A, Kogner P, Fransson S. Identification of recurrent 3q13.31 chromosomal rearrangement indicates LSAMP as a tumor suppressor gene in neuroblastoma. Int J Oncol 2023; 62:27. [PMID: 36601748 PMCID: PMC9851131 DOI: 10.3892/ijo.2023.5475] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 11/04/2022] [Indexed: 01/04/2023] Open
Abstract
Neuroblastoma (NB) is a childhood malignancy of the sympathetic nervous system. NB is mainly driven by copy number alterations, such as MYCN amplification, large deletions of chromosome arm 11q and gain of chromosome arm 17q, which are all markers of high‑risk disease. Genes targeted by recurrent, smaller, focal alterations include CDKN2A/B, TERT, PTPRD and ATRX. Our previous study on relapsed NB detected recurrent structural alterations centered at limbic system‑associated membrane protein (LSAMP; HUGO Gene Nomenclature Committee: 6705; chromosomal location 3q13.31), which is a gene frequently reported to be deleted or downregulated in other types of cancer. Notably, in cancer, LSAMP has been shown to have tumor‑suppressing functions. The present study performed an expanded investigation using whole genome sequencing of tumors from 35 patients, mainly with high‑risk NB. Focal duplications or deletions targeting LSAMP were detected in six cases (17%), whereas single nucleotide polymorphism‑microarray analysis of 16 NB cell lines detected segmental alterations at 3q13.31 in seven out of the 16 NB cell lines (44%). Furthermore, low expression of LSAMP in NB tumors was significantly associated with poor overall and event‑free survival. In vitro, knockdown of LSAMP in NB cell lines increased cell proliferation, whereas overexpression decreased proliferation and viability. These findings supported a tumor suppressor role for LSAMP in NB. However, the higher incidence of LSAMP aberrations in cell lines and in relapsed NB tumors suggested that these alterations were a late event predominantly in advanced NB with a poor prognosis, indicating a role of LSAMP in tumor progression rather than in tumor initiation. In conclusion, the present study demonstrated recurrent genomic aberrations of chromosomal region 3q13.31 that targeted the LSAMP gene, which encodes a membrane protein involved in cell adhesion, central nervous system development and neurite outgrowth. The frequent aberrations affecting LSAMP, together with functional evidence, suggested an anti‑proliferative role of LSAMP in NB.
Collapse
Affiliation(s)
- Angela Martinez-Monleon
- Department of Laboratory Medicine, Sahlgrenska Academy at University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Jennie Gaarder
- Department of Laboratory Medicine, Sahlgrenska Academy at University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Sahlgrenska Academy at University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Sahlgrenska Academy at University of Gothenburg, SE-405 30 Gothenburg, Sweden,Correspondence to: Dr Susanne Fransson, Department of Laboratory Medicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 3B, SE-405 30 Gothenburg, Sweden, E-mail:
| |
Collapse
|
8
|
Zhou M, Ko M, Hoge AC, Luu K, Liu Y, Russell ML, Hannon WW, Zhang Z, Carrot-Zhang J, Beroukhim R, Van Allen EM, Choudhury AD, Nelson PS, Freedman ML, Taplin ME, Meyerson M, Viswanathan SR, Ha G. Patterns of structural variation define prostate cancer across disease states. JCI Insight 2022; 7:e161370. [PMID: 35943799 PMCID: PMC9536266 DOI: 10.1172/jci.insight.161370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
The complex genomic landscape of prostate cancer evolves across disease states under therapeutic pressure directed toward inhibiting androgen receptor (AR) signaling. While significantly altered genes in prostate cancer have been extensively defined, there have been fewer systematic analyses of how structural variation shapes the genomic landscape of this disease across disease states. We uniformly characterized structural alterations across 531 localized and 143 metastatic prostate cancers profiled by whole genome sequencing, 125 metastatic samples of which were also profiled via whole transcriptome sequencing. We observed distinct significantly recurrent breakpoints in localized and metastatic castration-resistant prostate cancers (mCRPC), with pervasive alterations in noncoding regions flanking the AR, MYC, FOXA1, and LSAMP genes enriched in mCRPC and TMPRSS2-ERG rearrangements enriched in localized prostate cancer. We defined 9 subclasses of mCRPC based on signatures of structural variation, each associated with distinct genetic features and clinical outcomes. Our results comprehensively define patterns of structural variation in prostate cancer and identify clinically actionable subgroups based on whole genome profiling.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Minjeong Ko
- Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Anna C.H. Hoge
- Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kelsey Luu
- Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Yuzhen Liu
- Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Magdalena L. Russell
- Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - William W. Hannon
- Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Zhenwei Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pathology, UMass Memorial Medical Center, Worcester, Massachusetts, USA
| | - Jian Carrot-Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Eliezer M. Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Atish D. Choudhury
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Peter S. Nelson
- Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Matthew L. Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Srinivas R. Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Gavin Ha
- Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Taylor AM, Sun JM, Yu A, Voicu H, Shen J, Barkauskas DA, Triche TJ, Gastier-Foster JM, Man TK, Lau CC. Integrated DNA Copy Number and Expression Profiling Identifies IGF1R as a Prognostic Biomarker in Pediatric Osteosarcoma. Int J Mol Sci 2022; 23:ijms23148036. [PMID: 35887382 PMCID: PMC9319262 DOI: 10.3390/ijms23148036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma is a primary malignant bone tumor arising from bone-forming mesenchymal cells in children and adolescents. Despite efforts to understand the biology of the disease and identify novel therapeutics, the survival of osteosarcoma patients remains dismal. We have concurrently profiled the copy number and gene expression of 226 osteosarcoma samples as part of the Strategic Partnering to Evaluate Cancer Signatures (SPECS) initiative. Our results demonstrate the heterogeneous landscape of osteosarcoma in younger populations by showing the presence of genome-wide copy number abnormalities occurring both recurrently among samples and in a high frequency. Insulin growth factor receptor 1 (IGF1R) is a receptor tyrosine kinase which binds IGF1 and IGF2 to activate downstream pathways involved in cell apoptosis and proliferation. We identify prevalent amplification of IGF1R corresponding with increased gene expression in patients with poor survival outcomes. Our results substantiate previously tenuously associated copy number abnormalities identified in smaller datasets (13q34+, 20p13+, 4q35-, 20q13.33-), and indicate the significance of high fibroblast growth factor receptor 2 (FGFR2) expression in distinguishing patients with poor prognosis. FGFR2 is involved in cellular proliferation processes such as division, growth and angiogenesis. In summary, our findings demonstrate the prognostic significance of several genes associated with osteosarcoma pathogenesis.
Collapse
Affiliation(s)
- Aaron M. Taylor
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Program of Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiayi M. Sun
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Program of Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander Yu
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
| | - Horatiu Voicu
- Dan L. Duncan Cancer Center-Bioinformatics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Jianhe Shen
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
| | - Donald A. Barkauskas
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Timothy J. Triche
- Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | | | - Tsz-Kwong Man
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Dan L. Duncan Cancer Center-Bioinformatics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Ching C. Lau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Program of Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center-Bioinformatics, Baylor College of Medicine, Houston, TX 77030, USA;
- Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX 77030, USA;
- Correspondence: ; Tel.: +1-207-288-6000
| |
Collapse
|
10
|
Feleke M, Feng W, Rothzerg E, Song D, Wei Q, Kõks S, Wood D, Liu Y, Xu J. Single-cell RNA-seq identification of four differentially expressed survival-related genes by a TARGET: Osteosarcoma database analysis. Exp Biol Med (Maywood) 2022; 247:921-930. [PMID: 35285281 PMCID: PMC9189571 DOI: 10.1177/15353702221080131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/23/2022] [Indexed: 09/05/2023] Open
Abstract
Osteosarcoma (OS) differentially expressed genes (DEGs) have been predicted using the data portal of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET). In this study, we sought to identify cell types that specially express key DEGs (MUC1, COL13A1, JAG2, and KAZALD1) in each of the nine identified cell populations derived from tissues of OS tumors with single-cell RNA-sequencing data. Gene expression levels were pairwise compared between cell clusters and a p value < 0.05 was considered differentially expressed. It was revealed that MUC1 is expressed at high levels in osteoblastic OS cells followed by carcinoma-associated fibroblasts (CAFs) and plasmocytes, respectively. COL13A1 is highly expressed in osteoblastic OS cells, CAFs, and endothelial cells (ECs), respectively. The KAZALD1 gene is expressed in CAFs and osteoblastic OS cells at high levels, but at very low levels in plasmocytes, osteoclasts, NK/T, myeloid cells 1, myeloid cells 2, ECs, and B cells. JAG2 is expressed at significantly high levels in ECs and osteoblastic OS cells, and at relatively lower levels in all other cell types. Interestingly, LSAMP, as an established gene in the development of OS shows high expression in osteoblastic OS cells and CAFs but low in other cells such as osteoclasts. Our findings here highlight the heterogeneity of OS cells and cell-type-dependent DEGs which have potential as therapeutic targets in OS.
Collapse
Affiliation(s)
- Mesalie Feleke
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Wenyu Feng
- Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Dezhi Song
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning 530021, China
| | - Qingjun Wei
- Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
| | - David Wood
- Medical School, The University of Western Australia, Perth, WA 6009, Australia
| | - Yun Liu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
11
|
Gong W, Li Y, Xian J, Yang L, Wang Y, Zhang X, Zhou Y, Wang X, Qiao G, Chen C, Datta S, Gao X, Lu J, Qiu F. Long non-coding RNA LSAMP-1 is down-regulated in non-small cell lung cancer and predicts a poor prognosis. Cancer Cell Int 2022; 22:181. [PMID: 35524253 PMCID: PMC9074231 DOI: 10.1186/s12935-022-02592-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/18/2022] [Indexed: 12/05/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are emerging as master regulators for gene expression and thus play a vital role in human tumorigenesis and progression. But the involvement of novel lncRNAs in non-small cell lung cancer (NSCLC) remains largely unelucidated. Methods A total of 170 NSCLC and their adjacent non-tumor tissues were enrolled to detect the expression of Lnc-LSAMP-1 by RT-qPCR. The effects of Lnc-LSAMP-1 on cell proliferation, migration, invasion and drug-sensitivity were determined by in vitro and in vivo experiments. The proteins that interact with Lnc-LSAMP-1were confirmed by RNA pull-down assay. RNA-sequencing were used to identify the potential targets of Lnc-LSAMP-1 in NSCLC. Results We found that Lnc-LSAMP-1 was significantly down-regulated in 170 cases of NSCLC tissues when compared to their adjacent non-cancerous tissues. Loss expression of Lnc-LSAMP-1 was notably correlated with unfavorable prognosis of NSCLC patients. The ectopic expression of Lnc-LSAMP-1 drastically inhibited lung cancer cell proliferation, viability, invasion and migration ability, arrested cell cycle and facilitated apoptosis. Chemotherapy sensitization experiments showed that over-expressed Lnc-LSAMP-1 enhanced the inhibition of cell proliferation induced by TKI. Mechanistically, Lnc-LSAMP-1-LSAMP formed a complex which could protect the degradation of LSAMP gene, and thus exerted crucial roles in NSCLC progression and TKI targeted treatment. Conclusions Consequently, our findings highlight the function and prognostic value of Lnc-LSAMP-1 in NSCLC and provide potential novel therapeutic targets and prognostic biomarkers for patients with NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02592-0.
Collapse
Affiliation(s)
- Wei Gong
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China.,Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, Guangdong, China
| | - Yinyan Li
- The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Jianfeng Xian
- The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Yuanyuan Wang
- The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Xin Zhang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, 1 Shizi Road, Suzhou, 215123, China
| | - Xinhua Wang
- School of Public Health, Heping Development Zone, Gansu University of Chinese Medicine. No.1, Chinese Medicine Road, Lanzhou, 730101, Gansu Province, China
| | - Guibin Qiao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Cuiyi Chen
- Third People's Hospital of Dongguan City, Dongguan, 523326, China
| | - Soham Datta
- The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Xincheng Gao
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, Guangdong, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China. .,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China.
| | - Fuman Qiu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China. .,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China.
| |
Collapse
|
12
|
Jagomäe T, Singh K, Philips MA, Jayaram M, Seppa K, Tekko T, Gilbert SF, Vasar E, Lilleväli K. Alternative Promoter Use Governs the Expression of IgLON Cell Adhesion Molecules in Histogenetic Fields of the Embryonic Mouse Brain. Int J Mol Sci 2021; 22:6955. [PMID: 34203377 PMCID: PMC8268470 DOI: 10.3390/ijms22136955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 01/17/2023] Open
Abstract
The members of the IgLON superfamily of cell adhesion molecules facilitate fundamental cellular communication during brain development, maintain functional brain circuitry, and are associated with several neuropsychiatric disorders such as depression, autism, schizophrenia, and intellectual disabilities. Usage of alternative promoter-specific 1a and 1b mRNA isoforms in Lsamp, Opcml, Ntm, and the single promoter of Negr1 in the mouse and human brain has been previously described. To determine the precise spatiotemporal expression dynamics of Lsamp, Opcml, Ntm isoforms, and Negr1, in the developing brain, we generated isoform-specific RNA probes and carried out in situ hybridization in the developing (embryonic, E10.5, E11.5, 13.5, 17; postnatal, P0) and adult mouse brains. We show that promoter-specific expression of IgLONs is established early during pallial development (at E10.5), where it remains throughout its differentiation through adulthood. In the diencephalon, midbrain, and hindbrain, strong expression patterns are initiated a few days later and begin fading after birth, being only faintly expressed during adulthood. Thus, the expression of specific IgLONs in the developing brain may provide the means for regionally specific functionality as well as for specific regional vulnerabilities. The current study will therefore improve the understanding of how IgLON genes are implicated in the development of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (T.J.); (M.-A.P.); (M.J.); (K.S.); (E.V.); (K.L.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (T.J.); (M.-A.P.); (M.J.); (K.S.); (E.V.); (K.L.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (T.J.); (M.-A.P.); (M.J.); (K.S.); (E.V.); (K.L.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Mohan Jayaram
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (T.J.); (M.-A.P.); (M.J.); (K.S.); (E.V.); (K.L.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Kadri Seppa
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (T.J.); (M.-A.P.); (M.J.); (K.S.); (E.V.); (K.L.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Triin Tekko
- The Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal;
| | - Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA;
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (T.J.); (M.-A.P.); (M.J.); (K.S.); (E.V.); (K.L.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (T.J.); (M.-A.P.); (M.J.); (K.S.); (E.V.); (K.L.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| |
Collapse
|
13
|
Chang CY, Wu KL, Chang YY, Liu YW, Huang YC, Jian SF, Lin YS, Tsai PH, Hung JY, Tsai YM, Hsu YL. The Downregulation of LSAMP Expression Promotes Lung Cancer Progression and Is Associated with Poor Survival Prognosis. J Pers Med 2021; 11:jpm11060578. [PMID: 34202934 PMCID: PMC8234324 DOI: 10.3390/jpm11060578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer has been a leading cause of cancer-related death for decades and therapeutic strategies for non-driver mutation lung cancer are still lacking. A novel approach for this type of lung cancer is an emergent requirement. Here we find that loss of LSAMP (Limbic System Associated Membrane Protein), compared to other IgLON family of proteins NTM (Neurotrimin) and OPCML (OPioid-binding Cell adhesion MoLecule), exhibits the strongest prognostic and therapeutic significance in predicting lung adenocarcinoma (LUAD) progression. Lower expression of LSAMP and NTM, but not OPCML, were found in tumor parts compared with normal parts in six LUAD patients, and this was validated by public datasets, Oncomine® and TCGA. The lower expression of LSAMP, but not NTM, was correlated to shorter overall survival. Two epigenetic regulations, including hypermethylation and miR-143-3p upregulation but not copy number variation, were associated with downregulation of LSAMP in LUAD patients. Pathway network analysis showed that NEGR1 (Neuronal Growth Regulator 1) was involved in the regulatory loop of LSAMP. The biologic functions by LSMAP knockdown in lung cancer cells revealed LSMAP was linked to cancer cell migration via epithelial-mesenchymal transition (EMT) but not proliferation nor stemness of LUAD. Our result showed for the first time that LSAMP acts as a potential tumor suppressor in regulating lung cancer. A further deep investigation into the role of LSAMP in lung cancer tumorigenesis would provide therapeutic hope for such affected patients.
Collapse
Affiliation(s)
- Chao-Yuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-Y.C.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (Y.-S.L.); (P.-H.T.); (J.-Y.H.); (Y.-L.H.)
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kuan-Li Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-Y.C.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (Y.-S.L.); (P.-H.T.); (J.-Y.H.); (Y.-L.H.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yung-Yun Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of General Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Wei Liu
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Yung-Chi Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-Y.C.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (Y.-S.L.); (P.-H.T.); (J.-Y.H.); (Y.-L.H.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shu-Fang Jian
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-Y.C.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (Y.-S.L.); (P.-H.T.); (J.-Y.H.); (Y.-L.H.)
| | - Yi-Shiuan Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-Y.C.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (Y.-S.L.); (P.-H.T.); (J.-Y.H.); (Y.-L.H.)
| | - Pei-Hsun Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-Y.C.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (Y.-S.L.); (P.-H.T.); (J.-Y.H.); (Y.-L.H.)
| | - Jen-Yu Hung
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-Y.C.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (Y.-S.L.); (P.-H.T.); (J.-Y.H.); (Y.-L.H.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ying-Ming Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-Y.C.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (Y.-S.L.); (P.-H.T.); (J.-Y.H.); (Y.-L.H.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence:
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-Y.C.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (Y.-S.L.); (P.-H.T.); (J.-Y.H.); (Y.-L.H.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
14
|
Raeisi Dehkordi S, Luebeck J, Bafna V. FaNDOM: Fast nested distance-based seeding of optical maps. PATTERNS (NEW YORK, N.Y.) 2021; 2:100248. [PMID: 34027500 PMCID: PMC8134938 DOI: 10.1016/j.patter.2021.100248] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/08/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022]
Abstract
Optical mapping (OM) provides single-molecule readouts of fluorescently labeled sequence motifs on long fragments of DNA, resolved to nucleotide-level coordinates. With the advent of microfluidic technologies for analysis of DNA molecules, it is possible to inexpensively generate long OM data ( > 150 kbp) at high coverage. In addition to scaffolding for de novo assembly, OM data can be aligned to a reference genome for identification of genomic structural variants. We introduce FaNDOM (Fast Nested Distance Seeding of Optical Maps)-an optical map alignment tool that greatly reduces the search space of the alignment process. On four benchmark human datasets, FaNDOM was significantly (4-14×) faster than competing tools while maintaining comparable sensitivity and specificity. We used FaNDOM to map variants in three cancer cell lines and identified many biologically interesting structural variants, including deletions, duplications, gene fusions and gene-disrupting rearrangements. FaNDOM is publicly available at https://github.com/jluebeck/FaNDOM.
Collapse
Affiliation(s)
- Siavash Raeisi Dehkordi
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jens Luebeck
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Bioinformatics & Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Vineet Bafna
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Osteosarcoma, chondrosarcoma and Ewing sarcoma: Clinical aspects, biomarker discovery and liquid biopsy. Crit Rev Oncol Hematol 2021; 162:103340. [PMID: 33894338 DOI: 10.1016/j.critrevonc.2021.103340] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
Bone sarcomas, although rare, are associated with significant morbidity and mortality. The most frequent primary bone cancers include osteosarcoma, chondrosarcoma and Ewing sarcoma. The treatment approaches are heterogeneous and mainly chosen based on precise tumour staging. Unfortunately, clinical outcome has not changed significantly in over 30 years and tumour grade is still the best prognosticator of metastatic disease and survival. An option to improve this scenario is to identify molecular biomarkers in the early stage of the disease, or even before the disease onset. Blood-based liquid biopsies are a promising, non-invasive way to achieve this goal and there are an increasing number of studies which investigate their potential application in bone cancer diagnosis, prognosis and personalised therapy. This review summarises the interplay between clinical and molecular aspects of the three main bone sarcomas, alongside biomarker discovery and promising applications of liquid biopsy in each tumour context.
Collapse
|
16
|
McEwen GK, Alquezar-Planas DE, Dayaram A, Gillett A, Tarlinton R, Mongan N, Chappell KJ, Henning J, Tan M, Timms P, Young PR, Roca AL, Greenwood AD. Retroviral integrations contribute to elevated host cancer rates during germline invasion. Nat Commun 2021; 12:1316. [PMID: 33637755 PMCID: PMC7910482 DOI: 10.1038/s41467-021-21612-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Repeated retroviral infections of vertebrate germlines have made endogenous retroviruses ubiquitous features of mammalian genomes. However, millions of years of evolution obscure many of the immediate repercussions of retroviral endogenisation on host health. Here we examine retroviral endogenisation during its earliest stages in the koala (Phascolarctos cinereus), a species undergoing germline invasion by koala retrovirus (KoRV) and affected by high cancer prevalence. We characterise KoRV integration sites (IS) in tumour and healthy tissues from 10 koalas, detecting 1002 unique IS, with hotspots of integration occurring in the vicinity of known cancer genes. We find that tumours accumulate novel IS, with proximate genes over-represented for cancer associations. We detect dysregulation of genes containing IS and identify a highly-expressed transduced oncogene. Our data provide insights into the tremendous mutational load suffered by the host during active retroviral germline invasion, a process repeatedly experienced and overcome during the evolution of vertebrate lineages.
Collapse
Affiliation(s)
- Gayle K McEwen
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - David E Alquezar-Planas
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia
| | - Anisha Dayaram
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Institute for Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Amber Gillett
- Australia Zoo Wildlife Hospital, Beerwah, QLD, Australia
| | - Rachael Tarlinton
- Faculty of Medicine and Health Sciences, University of Nottingham, Leicestershire, UK
| | - Nigel Mongan
- Faculty of Medicine and Health Sciences, University of Nottingham, Leicestershire, UK
| | - Keith J Chappell
- School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Joerg Henning
- School of Veterinary Science, University of Queensland, Brisbane, QLD, Australia
| | - Milton Tan
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Peter Timms
- Genecology Research Center, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Paul R Young
- School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.
- Department of Veterinary Medicine, Freie Universität, Berlin, Germany.
| |
Collapse
|
17
|
Ramone T, Mulè C, Ciampi R, Bottici V, Cappagli V, Prete A, Matrone A, Piaggi P, Torregrossa L, Basolo F, Elisei R, Romei C. RET Copy Number Alteration in Medullary Thyroid Cancer Is a Rare Event Correlated with RET Somatic Mutations and High Allelic Frequency. Genes (Basel) 2020; 12:35. [PMID: 33383911 PMCID: PMC7824333 DOI: 10.3390/genes12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 01/10/2023] Open
Abstract
Copy number variations (CNV) of the RET gene have been described in 30% of Medullary Thyroid Cancer (MTC), but no information is available about their role in this tumor. This study was designed to clarify RET gene CNV prevalence and their potential role in MTC development. RET gene CNV were analyzed in 158 sporadic MTC cases using the ION Reporter Software (i.e., in silico analysis) while the multiplex ligation-dependent probe amplification assay (i.e., in vitro analysis) technique was performed in 78 MTC cases. We identified three categories of RET ploidy: 137 in 158 (86.7%) cases were diploid and 21 in 158 (13.3%) were aneuploid. Among the aneuploid cases, five out of 21 (23.8%) showed an allelic deletion while 16 out of 21 (76.2%) had an allelic amplification. The prevalence of amplified or deleted RET gene cases (aneuploid) was higher in RET positive tumors. Aneuploid cases also showed a higher allelic frequency of the RET driver mutation. The prevalence of patients with metastatic disease was higher in the group of aneuploid cases while the higher prevalence of disease-free patients was observed in diploid tumors. A statistically significant difference was found when comparing the ploidy status and mortality. RET gene CNVs are rare events in sporadic MTC and are associated with RET somatic mutation, suggesting that they could not be a driver mechanism of tumoral transformation per se. Finally, we found a positive correlation between RET gene CNV and a worse clinical outcome.
Collapse
Affiliation(s)
- Teresa Ramone
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (T.R.); (C.M.); (R.C.); (V.B.); (V.C.); (A.P.); (A.M.); (P.P.); (C.R.)
| | - Chiara Mulè
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (T.R.); (C.M.); (R.C.); (V.B.); (V.C.); (A.P.); (A.M.); (P.P.); (C.R.)
| | - Raffaele Ciampi
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (T.R.); (C.M.); (R.C.); (V.B.); (V.C.); (A.P.); (A.M.); (P.P.); (C.R.)
| | - Valeria Bottici
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (T.R.); (C.M.); (R.C.); (V.B.); (V.C.); (A.P.); (A.M.); (P.P.); (C.R.)
| | - Virginia Cappagli
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (T.R.); (C.M.); (R.C.); (V.B.); (V.C.); (A.P.); (A.M.); (P.P.); (C.R.)
| | - Alessandro Prete
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (T.R.); (C.M.); (R.C.); (V.B.); (V.C.); (A.P.); (A.M.); (P.P.); (C.R.)
| | - Antonio Matrone
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (T.R.); (C.M.); (R.C.); (V.B.); (V.C.); (A.P.); (A.M.); (P.P.); (C.R.)
| | - Paolo Piaggi
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (T.R.); (C.M.); (R.C.); (V.B.); (V.C.); (A.P.); (A.M.); (P.P.); (C.R.)
| | - Liborio Torregrossa
- Department of Surgical, Medical, Molecular Pathology, University of Pisa, 56124 Pisa, Italy; (L.T.); (F.B.)
| | - Fulvio Basolo
- Department of Surgical, Medical, Molecular Pathology, University of Pisa, 56124 Pisa, Italy; (L.T.); (F.B.)
| | - Rossella Elisei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (T.R.); (C.M.); (R.C.); (V.B.); (V.C.); (A.P.); (A.M.); (P.P.); (C.R.)
| | - Cristina Romei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (T.R.); (C.M.); (R.C.); (V.B.); (V.C.); (A.P.); (A.M.); (P.P.); (C.R.)
| |
Collapse
|
18
|
Tan JHJ, Kong SL, Tai JA, Poh HM, Yao F, Sia YY, Lim EKH, Takano AM, Tan DSW, Javed A, Hillmer AM. Experimental and bioinformatics considerations in cancer application of single cell genomics. Comput Struct Biotechnol J 2020; 19:343-354. [PMID: 33489004 PMCID: PMC7788095 DOI: 10.1016/j.csbj.2020.12.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/12/2023] Open
Abstract
Single cell genomics offers an unprecedented resolution to interrogate genetic heterogeneity in a patient's tumour at the intercellular level. However, the DNA yield per cell is insufficient for today's sequencing library preparation protocols. This necessitates DNA amplification which is a key source of experimental noise. We provide an evaluation of two protocols using micro-fluidics based amplification for whole exome sequencing, which is an experimental scenario commonly used in single cell genomics. The results highlight their respective biases and relative strengths in identification of single nucleotide variations. Towards this end, we introduce a workflow SoVaTSiC, which allows for quality evaluation and somatic variant identification of single cell data. As proof of concept, the framework was applied to study a lung adenocarcinoma tumour. The analysis provides insights into tumour phylogeny by identifying key mutational events in lung adenocarcinoma evolution. The consequence of this inference is supported by the histology of the tumour and demonstrates usefulness of the approach.
Collapse
Affiliation(s)
- Joanna Hui Juan Tan
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
- Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
| | - Say Li Kong
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Joyce A. Tai
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Huay Mei Poh
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Fei Yao
- Genome Innovation Lab, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Yee Yen Sia
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Edwin Kok Hao Lim
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Angela Maria Takano
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Daniel Shao-Weng Tan
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Asif Javed
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
- School of Biomedical Sciences, University of Hong Kong, Hong Kong Special Administrative Region
| | - Axel M. Hillmer
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
19
|
Ariss MM, Terry AR, Islam ABMMK, Hay N, Frolov MV. Amalgam regulates the receptor tyrosine kinase pathway through Sprouty in glial cell development in the Drosophila larval brain. J Cell Sci 2020; 133:jcs250837. [PMID: 32878945 PMCID: PMC7541346 DOI: 10.1242/jcs.250837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/24/2020] [Indexed: 01/04/2023] Open
Abstract
The receptor tyrosine kinase (RTK) pathway plays an essential role in development and disease by controlling cell proliferation and differentiation. Here, we profile the Drosophila larval brain by single-cell RNA-sequencing and identify Amalgam (Ama), which encodes a cell adhesion protein of the immunoglobulin IgLON family, as regulating the RTK pathway activity during glial cell development. Depletion of Ama reduces cell proliferation, affects glial cell type composition and disrupts the blood-brain barrier (BBB), which leads to hemocyte infiltration and neuronal death. We show that Ama depletion lowers RTK activity by upregulating Sprouty (Sty), a negative regulator of the RTK pathway. Knockdown of Ama blocks oncogenic RTK signaling activation in the Drosophila glioma model and halts malignant transformation. Finally, knockdown of a human ortholog of Ama, LSAMP, results in upregulation of SPROUTY2 in glioblastoma cell lines, suggesting that the relationship between Ama and Sty is conserved.
Collapse
Affiliation(s)
- Majd M Ariss
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alexander R Terry
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Abul B M M K Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
20
|
Antony J, Zanini E, Birtley JR, Gabra H, Recchi C. Emerging roles for the GPI-anchored tumor suppressor OPCML in cancers. Cancer Gene Ther 2020; 28:18-26. [PMID: 32595215 DOI: 10.1038/s41417-020-0187-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022]
Abstract
OPCML is a highly conserved glycosyl phosphatidylinositol (GPI)-anchored protein belonging to the IgLON family of cell adhesion molecules. OPCML functions as a tumor suppressor and is silenced in over 80% of ovarian cancers by loss of heterozygosity and by epigenetic mechanisms. OPCML inactivation is also observed in many other cancers suggesting a conservation of tumor suppressor function. Although epigenetic silencing and subsequent loss of OPCML expression correlate with poor progression-free and overall patient survival, its mechanism of action is only starting to be fully elucidated. Recent discoveries have demonstrated that OPCML exerts its tumor suppressor effect by inhibiting several cancer hallmark phenotypes in vitro and abrogating tumorigenesis in vivo, by downregulating/inactivating a specific spectrum of Receptor Tyrosine Kinases (RTKs), including EphA2, FGFR1, FGFR3, HER2, HER4, and AXL. This modulation of RTKs can also sensitize ovarian and breast cancers to lapatinib, erlotinib, and anti-AXL therapies. Furthermore, OPCML has also been shown to function in synergy with the tumor suppressor phosphatase PTPRG to inactivate pro-metastatic RTKs such as AXL. Recently, the identification of inactivating point mutations and the elucidation of the crystal structure of OPCML have provided valuable insights into its structure-function relationships, giving rise to its potential as an anti-cancer therapeutic.
Collapse
Affiliation(s)
- Jane Antony
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, W12 0NN, UK.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, 94305, USA
| | - Elisa Zanini
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, W12 0NN, UK
| | | | - Hani Gabra
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, W12 0NN, UK
| | - Chiara Recchi
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
21
|
Impaired Replication Timing Promotes Tissue-Specific Expression of Common Fragile Sites. Genes (Basel) 2020; 11:genes11030326. [PMID: 32204553 PMCID: PMC7140878 DOI: 10.3390/genes11030326] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022] Open
Abstract
Common fragile sites (CFSs) are particularly vulnerable regions of the genome that become visible as breaks, gaps, or constrictions on metaphase chromosomes when cells are under replicative stress. Impairment in DNA replication, late replication timing, enrichment of A/T nucleotides that tend to form secondary structures, the paucity of active or inducible replication origins, the generation of R-loops, and the collision between replication and transcription machineries on particularly long genes are some of the reported characteristics of CFSs that may contribute to their tissue-specific fragility. Here, we validated the induction of two CFSs previously found in the human fetal lung fibroblast line, Medical Research Council cell strain 5 (MRC-5), in another cell line derived from the same fetal tissue, Institute for Medical Research-90 cells (IMR-90). After induction of CFSs through aphidicolin, we confirmed the expression of the CFS 1p31.1 on chromosome 1 and CFS 3q13.3 on chromosome 3 in both fetal lines. Interestingly, these sites were found to not be fragile in lymphocytes, suggesting a role for epigenetic or transcriptional programs for this tissue specificity. Both these sites contained late-replicating genes NEGR1 (neuronal growth regulator 1) at 1p31.1 and LSAMP (limbic system-associated membrane protein) at 3q13.3, which are much longer, 0.880 and 1.4 Mb, respectively, than the average gene length. Given the established connection between long genes and CFS, we compiled information from the literature on all previously identified CFSs expressed in fibroblasts and lymphocytes in response to aphidicolin, including the size of the genes contained in each fragile region. Our comprehensive analysis confirmed that the genes found within CFSs are longer than the average human gene; interestingly, the two longest genes in the human genome are found within CFSs: Contactin Associated Protein 2 gene (CNTNAP2) in a lymphocytes’ CFS, and Duchenne muscular dystrophy gene (DMD) in a CFS expressed in both lymphocytes and fibroblasts. This indicates that the presence of very long genes is a unifying feature of all CFSs. We also obtained replication profiles of the 1p31.1 and 3q13.3 sites under both perturbed and unperturbed conditions using a combination of fluorescent in situ hybridization (FISH) and immunofluorescence against bromodeoxyuridine (BrdU) on interphase nuclei. Our analysis of the replication dynamics of these CFSs showed that, compared to lymphocytes where these regions are non-fragile, fibroblasts display incomplete replication of the fragile alleles, even in the absence of exogenous replication stress. Our data point to the existence of intrinsic features, in addition to the presence of long genes, which affect DNA replication of the CFSs in fibroblasts, thus promoting chromosomal instability in a tissue-specific manner.
Collapse
|
22
|
Hua X, Liu Z, Zhou M, Tian Y, Zhao PP, Pan WH, Li CX, Huang XX, Liao ZX, Xian Q, Chen B, Hu Y, Leng L, Fang XW, Yu LN. LSAMP-AS1 binds to microRNA-183-5p to suppress the progression of prostate cancer by up-regulating the tumor suppressor DCN. EBioMedicine 2019; 50:178-190. [PMID: 31727599 PMCID: PMC6921238 DOI: 10.1016/j.ebiom.2019.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
Background : Prostate cancer (PCa) is a leading cause of cancer-related death in males. Aberrant expression of long noncoding RNAs (lncRNAs) is frequently reported in human malignancies. This study was performed to explore the role of LSAMP-AS1 in epithelial-mesenchymal transition (EMT), proliferation, migration and invasion of PCa cells. Methods : Initially, the differentially expressed lncRNAs in PCa were screened out by microarray analysis. The clinicopathological and prognostic significance of LSAMP-AS1 was evaluated. LSAMP-AS1 was over-expressed or silenced to investigate the roles in EMT, proliferation, migration and invasion of PCa cells. Moreover, the relationships between LSAMP-AS1 and miR-183–5p, as well as miR-183–5p and decorin (DCN) were characterized. The tumorigenicity of PCa cells was verified in nude mice. Results : LSAMP-AS1 was poorly expressed in PCa tissues and cells. Low expression of LSAMP-AS1 was indicative of poor overall survival and disease-free survival, and related to Gleason score, TNM stage, and risk stratification. Over-expressed LSAMP-AS1 inhibited EMT, proliferation, migration and invasion of PCa cells, as well as tumor growth in nude mice. Meanwhile, over-expression of LSAMP-AS1 resulted in up-regulation of E-cadherin and down-regulation of Vimentin, N-cadherin, Ki67, PCNA, MMP-2, MMP-9, Ezrin and Fascin. Notably, LSAMP-AS1 competitively bound to miR-183–5p which directly targets DCN. It was confirmed that the inhibitory effect of LSAMP-AS1 on PCa cells was achieved by binding to miR-183–5p, thus promoting the expression of DCN. Conclusion : LSAMP-AS1 up-regulates the DCN gene by competitively binding to miR-183–5p, thus inhibiting EMT, proliferation, migration and invasion of PCa cells.
Collapse
Affiliation(s)
- Xing Hua
- Departments of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, P.R. China
| | - Zhen Liu
- Department of Pathology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Min Zhou
- Department of Otolaryngology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Yan Tian
- Department of pathology, School of Basic Medical Sciences, Southern Medical University, Guanghou 510515, P.R.China; Department of pathology, Nanfang Hospital, Guanghou 510515, P.R. China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, P.R. China
| | - Pei-Pei Zhao
- Department of pathology, School of Basic Medical Sciences, Southern Medical University, Guanghou 510515, P.R.China; Department of pathology, Nanfang Hospital, Guanghou 510515, P.R. China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, P.R. China
| | - Wen-Hai Pan
- Departments of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, P.R. China
| | - Chao-Xia Li
- Departments of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, P.R. China
| | - Xiao-Xiao Huang
- Departments of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, P.R. China
| | - Ze-Xiao Liao
- Departments of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, P.R. China
| | - Qi Xian
- Departments of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, P.R. China
| | - Bo Chen
- Departments of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, P.R. China
| | - Yue Hu
- Departments of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, P.R. China
| | - Lei Leng
- Departments of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, P.R. China
| | - Xiao-Wei Fang
- Departments of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, P.R. China
| | - Li-Na Yu
- Department of pathology, School of Basic Medical Sciences, Southern Medical University, Guanghou 510515, P.R.China; Department of pathology, Nanfang Hospital, Guanghou 510515, P.R. China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, P.R. China.
| |
Collapse
|
23
|
A plasma protein derived TGFβ signature is a prognostic indicator in triple negative breast cancer. NPJ Precis Oncol 2019; 3:10. [PMID: 30963111 PMCID: PMC6445093 DOI: 10.1038/s41698-019-0082-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/04/2019] [Indexed: 12/24/2022] Open
Abstract
We investigated the potential of in-depth quantitative plasma proteome analysis to uncover proteins predictive of progression and metastasis in triple negative breast cancer (TNBC). Analysis of samples from 24 pre-menopausal and 24 post-menopausal women with newly diagnosed TNBC who subsequently developed metastasis or remained metastasis free were utilized in the proteomic discovery set, which resulted in 43 proteins associated with tumor progression. These proteins were found to form a hierarchical network with TGFβ. The signature was further confirmed and refined by integrating plasma protein data from a murine TNBC model that encompassed mice with rapid- versus slow-growing tumors. Three genes consisting of CLIC1, MAPRE1, and SERPINA3 in the refined TGFβ signature significantly stratified overall survival (log-rank p = 0.0141) in a larger validation cohort irrespective of menopausal status, tumor stage, grade, and size.
Collapse
|
24
|
Lam SW, van IJzendoorn DG, Cleton-Jansen AM, Szuhai K, Bovée JV. Molecular Pathology of Bone Tumors. J Mol Diagn 2019; 21:171-182. [DOI: 10.1016/j.jmoldx.2018.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/04/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022] Open
|
25
|
Sergi C, Shen F, Liu SM. Insulin/IGF-1R, SIRT1, and FOXOs Pathways-An Intriguing Interaction Platform for Bone and Osteosarcoma. Front Endocrinol (Lausanne) 2019; 10:93. [PMID: 30881341 PMCID: PMC6405434 DOI: 10.3389/fendo.2019.00093] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/01/2019] [Indexed: 12/25/2022] Open
Abstract
Aging is a substantial risk factor for the development of osteoarthritis (OA) and, probably, an essential substrate for the development of neoplastic disease of the bone, such as osteosarcoma, which is the most common malignant mesenchymal primary bone tumor. Genetic studies have established that the insulin/insulin-like growth factor 1 (IGF-1)/phosphatidylinositol-3 kinase (PI3K)/AKT (Protein Kinase B) signal transduction pathway is involved across species, including nematodes, fruit flies, and mammals. SIRT1, a phylogenetically-conserved family of deacetylases, seems to play pleiotropic effects in epithelial malignancies of the liver and interact with the IGF-1/PI3K/AKT signal transduction pathway. Some of the most critical processes in degenerative conditions may indeed include the insulin/IGF1R and SIRT1 signaling pathways as well as some specific transcription factors. The Forkhead box O (FOXO) transcription factors (FOXOs) control diverse cellular functions, such as metabolism, longevity, and cell death. FOXOs play a critical role in the IGF-1/PI3K/AKT signal transduction pathway. FOXOs can indeed be modulated to reduce age-related diseases. FOXOs have advantageous inhibitory effects on fibroblast and myofibroblast activation, which are accompanied by a subsequent excessive production of extracellular matrix. FOXOs can block or decrease the fibrosis levels in numerous organs. Previously, we observed a correlation between nuclear FOXO3 and high caspase-8 expression, which induces cellular apoptosis in response to harmful external stimuli. In this perspective, we emphasize the current advances and interactions involving the insulin/IGF1R, SIRT1, and FOXOs pathways in the bone and osteosarcoma for a better understanding of the mechanisms potentially underpinning tissue degeneration and tumorigenesis.
Collapse
Affiliation(s)
- Consolato Sergi
- Department of Orthopedics, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, Stollery Children's Hospital, Edmonton, AB, Canada
- *Correspondence: Consolato Sergi orcid.org/0000-0002-2779-7879
| | - Fan Shen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Hattinger CM, Patrizio MP, Tavanti E, Luppi S, Magagnoli F, Picci P, Serra M. Genetic testing for high-grade osteosarcoma: a guide for future tailored treatments? Expert Rev Mol Diagn 2018; 18:947-961. [PMID: 30324828 DOI: 10.1080/14737159.2018.1535903] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Genetic characterization of osteosarcoma has evolved during the last decade, thanks to the integrated application of conventional and new candidate-driven and genome-wide technologies. Areas covered: This review provides an overview of the state of art in genetic testing applied to osteosarcoma, with particular regard to novel candidate genetic biomarkers that can be analyzed in tumor tissue and blood samples, which might be used to predict toxicity and prognosis, detect disease relapse, and improve patients' selection criteria for tailoring treatment. Expert commentary: Genetic testing based on modern technologies is expected to indicate new osteosarcoma-related prognostic markers and driver genes, which may highlight novel therapeutic targets and patients stratification biomarkers. The definition of tailored or targeted treatment approaches may improve outcome of patients with localized tumors and, even more, of those with metastatic disease, for whom progress in cure probability is highly warranted.
Collapse
Affiliation(s)
| | - Maria Pia Patrizio
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Elisa Tavanti
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Silvia Luppi
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Federica Magagnoli
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Piero Picci
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Massimo Serra
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| |
Collapse
|
27
|
Kashevarova AA, Belyaeva EO, Nikonov AM, Plotnikova OV, Skryabin NA, Nikitina TV, Vasilyev SA, Yakovleva YS, Babushkina NP, Tolmacheva EN, Lopatkina ME, Savchenko RR, Nazarenko LP, Lebedev IN. Compound phenotype in a girl with r(22), concomitant microdeletion 22q13.32-q13.33 and mosaic monosomy 22. Mol Cytogenet 2018; 11:26. [PMID: 29736186 PMCID: PMC5923029 DOI: 10.1186/s13039-018-0375-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
Background Ring chromosome instability may influence a patient's phenotype and challenge its interpretation. Results Here, we report a 4-year-old girl with a compound phenotype. Cytogenetic analysis revealed her karyotype to be 46,XX,r(22). aCGH identified a 180 kb 22q13.32 duplication, a de novo 2.024 Mb subtelomeric 22q13.32-q13.33 deletion, which is associated with Phelan-McDermid syndrome, and a maternal single gene 382-kb TUSC7 deletion of uncertain clinical significance located in the region of the 3q13.31 deletion syndrome. All chromosomal aberrations were confirmed by real-time PCR in lymphocytes and detected in skin fibroblasts. The deletions were also found in the buccal epithelium. According to FISH analysis, 8% and 24% of the patient's lymphocytes and skin fibroblasts, respectively, had monosomy 22. Conclusions We believe that a combination of 22q13.32-q13.33 deletion and monosomy 22 in a portion of cells can better define the clinical phenotype of the patient. Importantly, the in vivo presence of monosomic cells indicates ring chromosome instability, which may favor karyotype correction that is significant for the development of chromosomal therapy protocols.
Collapse
Affiliation(s)
| | - Elena O Belyaeva
- 1Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia
| | | | | | | | | | | | - Yulia S Yakovleva
- 1Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia.,3Siberian State Medical University, Tomsk, Russia
| | | | | | | | | | - Lyudmila P Nazarenko
- 1Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia.,3Siberian State Medical University, Tomsk, Russia
| | - Igor N Lebedev
- 1Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia.,3Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
28
|
Tang Q, Lu J, Zou C, Shao Y, Chen Y, Narala S, Fang H, Xu H, Wang J, Shen J, Khokha R. CDH4 is a novel determinant of osteosarcoma tumorigenesis and metastasis. Oncogene 2018; 37:3617-3630. [PMID: 29610525 DOI: 10.1038/s41388-018-0231-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/26/2017] [Accepted: 12/29/2017] [Indexed: 01/02/2023]
Abstract
The era of cancer genomics now provides an opportunity to discover novel determinants of osteosarcoma (OS), the most common primary bone cancer in children and adolescents known for its poor prognosis due to lung metastasis. Here, we identify CDH4 amplification in 43.6% of human osteosarcoma using array CGH and demonstrate its critical role in osteosarcoma development and progression. Gain or loss-of-function of CDH4, which encodes R-cadherin, causally impacts multiple features of human OS cells including cell migration and invasion, osteogenic differentiation, and stemness. CDH4 overexpression activates c-Jun via the JNK pathway, while CDH4 knockdown suppresses both tumor xenograft growth and lung colonization. In OS patient specimens, high CDH4 expression associates with lung metastases and poor prognosis. Collectively, our bioinformatics, functional, molecular, and clinical analyses uncover an oncogenic function of CDH4 in osteosarcoma and its relationship with patient outcome.
Collapse
Affiliation(s)
- Qinglian Tang
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, M5G 0A3, Canada.,Department of Orthopedic Oncology, First Affiliated Hospital, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Jinchang Lu
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, M5G 0A3, Canada.,Department of Orthopedic Oncology, First Affiliated Hospital, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Changye Zou
- Department of Orthopedic Oncology, First Affiliated Hospital, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Yang Shao
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, M5G 0A3, Canada
| | - Yan Chen
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, M5G 0A3, Canada
| | - Swami Narala
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, M5G 0A3, Canada
| | - Hui Fang
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, M5G 0A3, Canada
| | - Huaiyuan Xu
- Department of Orthopedic Oncology, First Affiliated Hospital, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Jin Wang
- Department of Orthopedic Oncology, First Affiliated Hospital, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Jingnan Shen
- Department of Orthopedic Oncology, First Affiliated Hospital, Sun Yat-Sen University, 510080, Guangzhou, China.
| | - Rama Khokha
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, M5G 0A3, Canada.
| |
Collapse
|
29
|
Raimondi L, De Luca A, Costa V, Amodio N, Carina V, Bellavia D, Tassone P, Pagani S, Fini M, Alessandro R, Giavaresi G. Circulating biomarkers in osteosarcoma: new translational tools for diagnosis and treatment. Oncotarget 2017; 8:100831-100851. [PMID: 29246026 PMCID: PMC5725068 DOI: 10.18632/oncotarget.19852] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022] Open
Abstract
Osteosarcoma (OS) is a rare primary malignant bone tumour arising from primitive bone-forming mesenchymal cells, with high incidence in children and young adults, accounting for approximately 60% of all malignant bone tumours. Currently, long-term disease-free survival can be achieved by surgical treatment plus chemotherapy in approximately 60% of patients with localized extremity disease, and in 20-30% of patients with metastatic lung or bone disease. Diagnosis of primary lesions and recurrences is achieved by using radiological investigations and standard tissue biopsy, the latter being costly, painful and hardly repeatable for patients. Therefore, despite some recent advances, novel biomarkers for OS diagnosis, prediction of response to therapy, disease progression and chemoresistance, are urgently needed. Biological fluids such as blood represent a rich source of non-invasive cancer biomarkers, which allow to understand what is really happening inside the tumour, either at diagnosis or during disease progression. In this regard, liquid biopsy potentially represents an alternative and non-invasive method to detect tumour onset, progression and response to therapy. In this review, we will summarize the state of the art in this novel area, illustrating recent studies on OS. Although the data reported in literature seem preliminary, liquid biopsy represents a promising tool with the potential to be rapidly translated in the clinical practice.
Collapse
Affiliation(s)
- Lavinia Raimondi
- Rizzoli Orthopedic Institute, Bologna, Italy
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Angela De Luca
- Rizzoli Orthopedic Institute, Bologna, Italy
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Viviana Costa
- Rizzoli Orthopedic Institute, Bologna, Italy
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Valeria Carina
- Rizzoli Orthopedic Institute, Bologna, Italy
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Daniele Bellavia
- Rizzoli Orthopedic Institute, Bologna, Italy
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Stefania Pagani
- Rizzoli Orthopedic Institute, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - Milena Fini
- Rizzoli Orthopedic Institute, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - Riccardo Alessandro
- Biology and Genetics Unit, Department of Biopathology and Medical Biotechnology, University of Palermo, Palermo, Italy
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| | - Gianluca Giavaresi
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
- Rizzoli Orthopedic Institute, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| |
Collapse
|
30
|
Identification of differentially expressed genes regulated by molecular signature in breast cancer-associated fibroblasts by bioinformatics analysis. Arch Gynecol Obstet 2017; 297:161-183. [PMID: 29063236 DOI: 10.1007/s00404-017-4562-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Breast cancer is a severe risk to public health and has adequately convoluted pathogenesis. Therefore, the description of key molecular markers and pathways is of much importance for clarifying the molecular mechanism of breast cancer-associated fibroblasts initiation and progression. Breast cancer-associated fibroblasts gene expression dataset was downloaded from Gene Expression Omnibus database. METHODS A total of nine samples, including three normal fibroblasts, three granulin-stimulated fibroblasts and three cancer-associated fibroblasts samples, were used to identify differentially expressed genes (DEGs) between normal fibroblasts, granulin-stimulated fibroblasts and cancer-associated fibroblasts samples. The gene ontology (GO) and pathway enrichment analysis was performed, and protein-protein interaction (PPI) network of the DEGs was constructed by NetworkAnalyst software. RESULTS Totally, 190 DEGs were identified, including 66 up-regulated and 124 down-regulated genes. GO analysis results showed that up-regulated DEGs were significantly enriched in biological processes (BP), including cell-cell signalling and negative regulation of cell proliferation; molecular function (MF), including insulin-like growth factor II binding and insulin-like growth factor I binding; cellular component (CC), including insulin-like growth factor binding protein complex and integral component of plasma membrane; the down-regulated DEGs were significantly enriched in BP, including cell adhesion and extracellular matrix organization; MF, including N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase activity and calcium ion binding; CC, including extracellular space and extracellular matrix. WIKIPATHWAYS analysis showed the up-regulated DEGs were enriched in myometrial relaxation and contraction pathways. WIKIPATHWAYS, REACTOME, PID_NCI and KEGG pathway analysis showed the down-regulated DEGs were enriched endochondral ossification, TGF beta signalling pathway, integrin cell surface interactions, beta1 integrin cell surface interactions, malaria and glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulphate. The top 5 up-regulated hub genes, CDKN2A, MME, PBX1, IGFBP3, and TFAP2C and top 5 down-regulated hub genes VCAM1, KRT18, TGM2, ACTA2, and STAMBP were identified from the PPI network, and subnetworks revealed these genes were involved in significant pathways, including myometrial relaxation and contraction pathways, integrin cell surface interactions, beta1 integrin cell surface interaction. Besides, the target hsa-mirs for DEGs were identified. hsa-mir-759, hsa-mir-4446-5p, hsa-mir-219a-1-3p and hsa-mir-26a-5p were important miRNAs in this study. CONCLUSIONS We pinpoint important key genes and pathways closely related with breast cancer-associated fibroblasts initiation and progression by a series of bioinformatics analysis on DEGs. These screened genes and pathways provided for a more detailed molecular mechanism underlying breast cancer-associated fibroblasts occurrence and progression, holding promise for acting as molecular markers and probable therapeutic targets.
Collapse
|
31
|
Wu SP, Cooper BT, Bu F, Bowman CJ, Killian JK, Serrano J, Wang S, Jackson TM, Gorovets D, Shukla N, Meyers PA, Pisapia DJ, Gorlick R, Ladanyi M, Thomas K, Snuderl M, Karajannis MA. DNA Methylation-Based Classifier for Accurate Molecular Diagnosis of Bone Sarcomas. JCO Precis Oncol 2017; 2017. [PMID: 29354796 DOI: 10.1200/po.17.00031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose Pediatric sarcomas provide a unique diagnostic challenge. There is considerable morphologic overlap between entities, increasing the importance of molecular studies in the diagnosis, treatment, and identification of therapeutic targets. We developed and validated a genome-wide DNA methylation based classifier to differentiate between osteosarcoma, Ewing's sarcoma, and synovial sarcoma. Materials and Methods DNA methylation status of 482,421 CpG sites in 10 Ewing's sarcoma, 11 synovial sarcoma, and 15 osteosarcoma samples were determined using the Illumina Infinium HumanMethylation450 array. We developed a random forest classifier trained from the 400 most differentially methylated CpG sites within the training set of 36 sarcoma samples. This classifier was validated on data drawn from The Cancer Genome Atlas (TCGA) synovial sarcoma, TARGET Osteosarcoma, and a recently published series of Ewing's sarcoma. Results Methylation profiling revealed three distinct patterns, each enriched with a single sarcoma subtype. Within the validation cohorts, all samples from TCGA were accurately classified as synovial sarcoma (10/10, sensitivity and specificity 100%), all but one sample from TARGET-OS were classified as osteosarcoma (85/86, sensitivity 98%, specificity 100%) and 14/15 Ewing's sarcoma samples classified correctly (sensitivity 93%, specificity 100%). The single misclassified osteosarcoma sample demonstrated high EWSR1 and ETV1 expression on RNA-seq although no fusion was found on manual curation of the transcript sequence. Two additional clinical samples, that were difficult to classify by morphology and molecular methods, were classified as osteosarcoma when previously suspected to be a synovial sarcoma and Ewing's sarcoma on initial diagnosis, respectively. Conclusion Osteosarcoma, synovial sarcoma, and Ewing's sarcoma have distinct epigenetic profiles. Our validated methylation-based classifier can be used to provide diagnostic assistance when histological and standard techniques are inconclusive.
Collapse
Affiliation(s)
- S Peter Wu
- Department of Radiation Oncology, NYU Langone Medical Center, New York, NY
| | - Benjamin T Cooper
- Department of Radiation Oncology, NYU Langone Medical Center, New York, NY
| | - Fang Bu
- Department of Pathology, NYU Langone Medical Center, New York, NY
| | | | - J Keith Killian
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jonathan Serrano
- Department of Pathology, NYU Langone Medical Center, New York, NY
| | - Shiyang Wang
- Department of Pediatrics, NYU Langone Medical Center, New York, NY
| | - Twana M Jackson
- Department of Pediatrics, NYU Langone Medical Center, New York, NY
| | - Daniel Gorovets
- Department of Radiation Oncology, NYU Langone Medical Center, New York, NY
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Paul A Meyers
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Richard Gorlick
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kristen Thomas
- Department of Pathology, NYU Langone Medical Center, New York, NY
| | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Center, New York, NY
| | | |
Collapse
|
32
|
Kjeldsen E. Characterization of an acquired jumping translocation involving 3q13.31-qter in a patient with de novo acute monocytic leukemia. Exp Mol Pathol 2017. [PMID: 28625614 DOI: 10.1016/j.yexmp.2017.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We studied an adult with de novo acute monocytic leukemia and a dismal outcome where her leukemic cells harbored an acquired rare jumping translocation (JT). We used oligo-based array CGH (oaCGH) analysis, fluorescence in situ hybridization (FISH), and 24-color karyotyping to enhance the characterization of the JT. G-banding detected a JT involving the 3q13.3-qter chromosomal segment and the recipient chromosomal regions 17p, 8q, and 15q. Each clone with JT was associated with trisomy 8. oaCGH analysis revealed an additional submicroscopic deletion in 3q13.31 as well as small subtelomeric duplications on several chromosomes. Locus-specific FISH with BAC-based probes from the 3q13.31-q13.32 region showed great heterogeneity. Telomere FISH revealed significantly reduced telomeric content in the aberrant cells with JT compared with cytogenetically normal cells at diagnosis and in normal cells at complete remission. A literature search revealed two previous de novo AML-M5 cases of JT involving the 3q13.3-qter chromosomal segment and concomitant trisomy 8. In addition, a case with an unbalanced der(Y)t(Y;3)(q12;q13.31) and additional trisomy 8 was previously reported in a patient with de novo AML-M5. All of these cases had a dismal outcome. In the present case, and in the der(Y)t(Y;3) case, a concurrent submicroscopic deletion at 3q13.31 was observed affecting the TUSC7 gene. Duplication of 3q13.31-qter might be a non-random chromosomal abnormality with concomitant submicroscopic deletion at 3q13.31 occurring in rare cases of acute monocytic leukemia, being associated with adverse prognosis. The impact of shortened telomeres in forming the JT is reviewed.
Collapse
MESH Headings
- Aged
- Chromosome Deletion
- Chromosome Duplication
- Chromosomes, Human, Pair 3/genetics
- Chromosomes, Human, Pair 8/genetics
- Cloning, Molecular
- Comparative Genomic Hybridization
- DNA Copy Number Variations
- Female
- Humans
- In Situ Hybridization, Fluorescence
- Karyotyping
- Leukemia, Monocytic, Acute/diagnosis
- Leukemia, Monocytic, Acute/genetics
- Prognosis
- Translocation, Genetic
- Trisomy/genetics
Collapse
Affiliation(s)
- Eigil Kjeldsen
- Cancercytogenetic Section, Hemodiagnostic Laboratory, Department of Hematology, Center for Cancer and Inflammation, Aarhus University Hospital, Tage Hansens Gade 2, Ent. 4A, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
33
|
Xie J, Lin D, Lee DHT, Akunowicz J, Hansen M, Miller C, Sanada M, Kato M, Akagi T, Kawamata N, Ogawa S, Koeffler HP. Copy number analysis identifies tumor suppressive lncRNAs in human osteosarcoma. Int J Oncol 2017; 50:863-872. [DOI: 10.3892/ijo.2017.3864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/23/2017] [Indexed: 11/05/2022] Open
|
34
|
Lorenz S, Barøy T, Sun J, Nome T, Vodák D, Bryne JC, Håkelien AM, Fernandez-Cuesta L, Möhlendick B, Rieder H, Szuhai K, Zaikova O, Ahlquist TC, Thomassen GOS, Skotheim RI, Lothe RA, Tarpey PS, Campbell P, Flanagan A, Myklebost O, Meza-Zepeda LA. Unscrambling the genomic chaos of osteosarcoma reveals extensive transcript fusion, recurrent rearrangements and frequent novel TP53 aberrations. Oncotarget 2017; 7:5273-88. [PMID: 26672768 PMCID: PMC4868685 DOI: 10.18632/oncotarget.6567] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/15/2015] [Indexed: 12/27/2022] Open
Abstract
In contrast to many other sarcoma subtypes, the chaotic karyotypes of osteosarcoma have precluded the identification of pathognomonic translocations. We here report hundreds of genomic rearrangements in osteosarcoma cell lines, showing clear characteristics of microhomology-mediated break-induced replication (MMBIR) and end-joining repair (MMEJ) mechanisms. However, at RNA level, the majority of the fused transcripts did not correspond to genomic rearrangements, suggesting the involvement of trans-splicing, which was further supported by typical trans-splicing characteristics. By combining genomic and transcriptomic analysis, certain recurrent rearrangements were identified and further validated in patient biopsies, including a PMP22-ELOVL5 gene fusion, genomic structural variations affecting RB1, MTAP/CDKN2A and MDM2, and, most frequently, rearrangements involving TP53. Most cell lines (7/11) and a large fraction of tumor samples (10/25) showed TP53 rearrangements, in addition to somatic point mutations (6 patient samples, 1 cell line) and MDM2 amplifications (2 patient samples, 2 cell lines). The resulting inactivation of p53 was demonstrated by a deficiency of the radiation-induced DNA damage response. Thus, TP53 rearrangements are the major mechanism of p53 inactivation in osteosarcoma. Together with active MMBIR and MMEJ, this inactivation probably contributes to the exceptional chromosomal instability in these tumors. Although rampant rearrangements appear to be a phenotype of osteosarcomas, we demonstrate that among the huge number of probable passenger rearrangements, specific recurrent, possibly oncogenic, events are present. For the first time the genomic chaos of osteosarcoma is characterized so thoroughly and delivered new insights in mechanisms involved in osteosarcoma development and may contribute to new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Susanne Lorenz
- Department of Tumor Biology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Norwegian Cancer Genomics Consortium, Norway
| | - Tale Barøy
- Department of Tumor Biology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jinchang Sun
- Genomics Core Facility, Department of Core Facilities, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Norwegian Cancer Genomics Consortium, Norway
| | - Torfinn Nome
- Department of Molecular Oncology, Institute for Cancer research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Daniel Vodák
- Department of Tumor Biology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Jan-Christian Bryne
- Department of Tumor Biology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Genomics Core Facility, Department of Core Facilities, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Anne-Mari Håkelien
- Department of Tumor Biology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Lynnette Fernandez-Cuesta
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, University of Cologne, Cologne, Germany.,Genetic Cancer Susceptibility Group, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Birte Möhlendick
- Institute for Human Genetics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Harald Rieder
- Institute for Human Genetics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Karoly Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Olga Zaikova
- Clinic for Cancer, Surgery and Transplantation, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Terje C Ahlquist
- Department of Molecular Oncology, Institute for Cancer research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gard O S Thomassen
- Department of Molecular Oncology, Institute for Cancer research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - Adrienne Flanagan
- Royal National Orthopaedic Hospital, Middlesex, UK.,UCL Cancer Institute, University College London, London, UK
| | - Ola Myklebost
- Department of Tumor Biology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Norwegian Cancer Genomics Consortium, Norway
| | - Leonardo A Meza-Zepeda
- Department of Tumor Biology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Genomics Core Facility, Department of Core Facilities, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Norwegian Cancer Genomics Consortium, Norway
| |
Collapse
|
35
|
Zhang L, Yuan Y, Lu KH, Zhang L. Identification of recurrent focal copy number variations and their putative targeted driver genes in ovarian cancer. BMC Bioinformatics 2016; 17:222. [PMID: 27230211 PMCID: PMC4881176 DOI: 10.1186/s12859-016-1085-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/14/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Genomic regions with recurrent DNA copy number variations (CNVs) are generally believed to encode oncogenes and tumor suppressor genes (TSGs) that drive cancer growth. However, it remains a challenge to delineate the key cancer driver genes from the regions encoding a large number of genes. RESULTS In this study, we developed a new approach to CNV analysis based on spectral decomposition of CNV profiles into focal CNVs and broad CNVs. We performed an analysis of CNV data of 587 serous ovarian cancer samples on multiple platforms. We identified a number of novel focal regions, such as focal gain of ESR1, focal loss of LSAMP, prognostic site at 3q26.2 and losses of sub-telomere regions in multiple chromosomes. Furthermore, we performed network modularity analysis to examine the relationships among genes encoded in the focal CNV regions. Our results also showed that the recurrent focal gains were significantly associated with the known oncogenes and recurrent losses associated with TSGs and the CNVs had a greater effect on the mRNA expression of the driver genes than that of the non-driver genes. CONCLUSIONS Our results demonstrate that spectral decomposition of CNV profiles offers a new way of understanding the role of CNVs in cancer.
Collapse
Affiliation(s)
- Liangcai Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1410, Houston, TX, 77401, USA
- Department of Statistics, Rice University, Houston, TX, USA
- Department of Biophysics, College of Bioinformatics Sciences and Technology, Harbin Medical University, Harbin, China
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1410, Houston, TX, 77401, USA
- Department of Statistics, Rice University, Houston, TX, USA
| | - Karen H Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1410, Houston, TX, 77401, USA.
| |
Collapse
|
36
|
Petrovics G, Li H, Stümpel T, Tan SH, Young D, Katta S, Li Q, Ying K, Klocke B, Ravindranath L, Kohaar I, Chen Y, Ribli D, Grote K, Zou H, Cheng J, Dalgard CL, Zhang S, Csabai I, Kagan J, Takeda D, Loda M, Srivastava S, Scherf M, Seifert M, Gaiser T, McLeod DG, Szallasi Z, Ebner R, Werner T, Sesterhenn IA, Freedman M, Dobi A, Srivastava S. A novel genomic alteration of LSAMP associates with aggressive prostate cancer in African American men. EBioMedicine 2015; 2:1957-64. [PMID: 26844274 PMCID: PMC4703707 DOI: 10.1016/j.ebiom.2015.10.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/22/2015] [Accepted: 10/29/2015] [Indexed: 02/03/2023] Open
Abstract
Evaluation of cancer genomes in global context is of great interest in light of changing ethnic distribution of the world population. We focused our study on men of African ancestry because of their disproportionately higher rate of prostate cancer (CaP) incidence and mortality. We present a systematic whole genome analyses, revealing alterations that differentiate African American (AA) and Caucasian American (CA) CaP genomes. We discovered a recurrent deletion on chromosome 3q13.31 centering on the LSAMP locus that was prevalent in tumors from AA men (cumulative analyses of 435 patients: whole genome sequence, 14; FISH evaluations, 101; and SNP array, 320 patients). Notably, carriers of this deletion experienced more rapid disease progression. In contrast, PTEN and ERG common driver alterations in CaP were significantly lower in AA prostate tumors compared to prostate tumors from CA. Moreover, the frequency of inter-chromosomal rearrangements was significantly higher in AA than CA tumors. These findings reveal differentially distributed somatic mutations in CaP across ancestral groups, which have implications for precision medicine strategies.
Collapse
Affiliation(s)
- Gyorgy Petrovics
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Hua Li
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | | | - Shyh-Han Tan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Denise Young
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Shilpa Katta
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Qiyuan Li
- Medical College, Xiamen University, Xiamen 361102, China; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kai Ying
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | | | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Indu Kohaar
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Yongmei Chen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Dezső Ribli
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest H-1117, Hungary; Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, DK -2800, Denmark
| | | | - Hua Zou
- CytoTest Inc., Rockville, MD 20850, USA
| | | | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Shimin Zhang
- Genitourinary Pathology, Joint Pathology Center, Silver Spring, MD 20910, USA
| | - István Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest H-1117, Hungary; Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, DK -2800, Denmark
| | - Jacob Kagan
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA
| | - David Takeda
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - Massimo Loda
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | - Timo Gaiser
- Pathologisches Institut, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim D-68167, Germany
| | - David G McLeod
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20814, USA; Urology Service, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Zoltan Szallasi
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, DK -2800, Denmark; Children's Hospital Informatics Program at the Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 20115, USA; MTA-SE NAP, Brain Metastasis Research Group, Hungarian Academy of Sciences, 2nd Department of Pathology, Semmelweis University, Budapest H-1091, Hungary
| | | | - Thomas Werner
- Genomatix Software GmbH, MünchenE D-80335, Germany; Internal Medicine, Nephrology Division and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Matthew Freedman
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| |
Collapse
|
37
|
Baldauf C, Jeschke A, Kanbach V, Catala-Lehnen P, Baumhoer D, Gerull H, Buhs S, Amling M, Nollau P, Harroch S, Schinke T. The Protein Tyrosine Phosphatase Rptpζ Suppresses Osteosarcoma Development in Trp53-Heterozygous Mice. PLoS One 2015; 10:e0137745. [PMID: 26360410 PMCID: PMC4567063 DOI: 10.1371/journal.pone.0137745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/20/2015] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma (OS), a highly aggressive primary bone tumor, belongs to the most common solid tumors in growing children. Since specific molecular targets for OS treatment remain to be identified, surgical resection combined with multimodal (neo-)adjuvant chemotherapy is still the only way to help respective individuals. We have previously identified the protein tyrosine phosphatase Rptpζ as a marker of terminally differentiated osteoblasts, which negatively regulates their proliferation in vitro. Here we have addressed the question if Rptpζ can function as a tumor suppressor protein inhibiting OS development in vivo. We therefore analyzed the skeletal phenotype of mice lacking Ptprz1, the gene encoding Rptpζ on a tumor-prone genetic background, i.e. Trp53-heterozygosity. By screening a large number of 52 week old Trp53-heterozygous mice by contact radiography we found that Ptprz1-deficiency significantly enhanced OS development with 19% of the mice being affected. The tumors in Ptprz1-deficient Trp53-heterozygous mice were present in different locations (spine, long bones, ribs), and their OS nature was confirmed by undecalcified histology. Likewise, cell lines derived from the tumors were able to undergo osteogenic differentiation ex vivo. A comparison between Ptprz1-heterozygous and Ptprz1-deficient cultures further revealed that the latter ones displayed increased proliferation, a higher abundance of tyrosine-phosphorylated proteins and resistance towards the influence of the growth factor Midkine. Our findings underscore the relevance of Rptpζ as an attenuator of proliferation in differentiated osteoblasts and raise the possibility that activating Rptpζ-dependent signaling could specifically target osteoblastic tumor cells.
Collapse
Affiliation(s)
- Christina Baldauf
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Anke Jeschke
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Vincent Kanbach
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Philip Catala-Lehnen
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Daniel Baumhoer
- Bone Tumor Reference Center at the Institute of Pathology, University Hospital Basel, Basel 4031, Switzerland
| | - Helwe Gerull
- Research Institute Children’s Cancer Center and Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Hamburg 20246, Germany
| | - Sophia Buhs
- Research Institute Children’s Cancer Center and Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Hamburg 20246, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Peter Nollau
- Research Institute Children’s Cancer Center and Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Hamburg 20246, Germany
| | - Sheila Harroch
- Department of Neuroscience, Institute Pasteur, Paris 75624, France
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
- * E-mail:
| |
Collapse
|
38
|
FOXO1 inhibits osteosarcoma oncogenesis via Wnt/β-catenin pathway suppression. Oncogenesis 2015; 4:e166. [PMID: 26344693 PMCID: PMC4767937 DOI: 10.1038/oncsis.2015.25] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/30/2015] [Accepted: 07/25/2015] [Indexed: 12/11/2022] Open
Abstract
Recent advances have highlighted profound roles of FOXO transcription factors, especially FOXO1, in bone development and remodeling. The regulation of bone development by FOXOs seems to be stage-specific or context dependent. FOXOs promote maintenance and differentiation of early progenitors of the osteoblast lineage and repress proliferation of committed osteoblast precursors; FOXO1 is vital for osteocyte survival. Considering the versatile roles played by FOXOs in bone development and tumorigenesis, it is plausible that FOXO1, the main FOXO in bone with a non-redundant role, might have influence on osteosarcoma (OS) oncogenesis. Indeed, recent results have implicated that FOXO1 has a tumor-suppressing role in OS. In the present study, we found that FOXO1 expression was generally low or absent in OS, with a minority of cases having moderate expression. Whole-genome sequencing (WGS) revealed that the FOXO1 locus was frequently involved in copy number variation and loss of heterozygosity in OS, indicating that chromosomal aberrations might be partially responsible for the heterogeneity in FOXO1 expression. FOXO1 activation in OS cell lines inhibited cancer cell survival, which can be attributed to modulation of target genes, including BIM and repressed Wnt/β-catenin signaling. FOXO1 inhibition promoted cell proliferation, enhanced colony formation and attenuated osteogenic differentiation of OS cell lines. To conclude, our results proved FOXO1 as a tumor suppressor in OS at least partially by suppression of the Wnt/β-catenin pathway.
Collapse
|
39
|
Coccaro N, Zagaria A, Tota G, Anelli L, Orsini P, Casieri P, Cellamare A, Minervini A, Impera L, Minervini CF, Brunetti C, Mestice A, Carluccio P, Cumbo C, Specchia G, Albano F. Overexpression of the LSAMP and TUSC7 genes in acute myeloid leukemia following microdeletion/duplication of chromosome 3. Cancer Genet 2015; 208:517-22. [PMID: 26345353 DOI: 10.1016/j.cancergen.2015.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/09/2015] [Accepted: 07/27/2015] [Indexed: 01/17/2023]
Abstract
The 3q13.31 microdeletion syndrome is characterized by developmental delay, postnatal growth above the mean, characteristic facial features, and abnormal male genitalia. Moreover, a frequent deletion in the 3q13.31 chromosome region has been identified in patients who are affected by osteosarcomas. Among the genes located within the deleted region, the involvement of the limbic system-associated membrane protein gene (LSAMP), together with a non-coding RNA tumor suppressor candidate 7 gene (TUSC7), has been suggested. We describe the case of an adult acute myeloid leukemia (AML) patient with a novel chromosomal rearrangement characterized by a 3q13.31 microdeletion and an extra copy of the 3q13.31-q29 chromosomal region translocated to the long arm of the Y chromosome. This karyotypic aberration seems to cause LSAMP and TUSC7 gene expression dysregulation. In conclusion, we report the first case of LSAMP and TUSC7 gene overexpression, possibly due to a position effect in an AML patient bearing a 3q13.31 cryptic deletion.
Collapse
MESH Headings
- Aged
- Cell Adhesion Molecules, Neuronal/genetics
- Chromosomes, Human, Pair 3/genetics
- Chromosomes, Human, Y/genetics
- GPI-Linked Proteins/genetics
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Male
- RNA, Long Noncoding/genetics
- Sequence Deletion
- Translocation, Genetic
Collapse
Affiliation(s)
- Nicoletta Coccaro
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Giuseppina Tota
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Paola Orsini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Paola Casieri
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Angelo Cellamare
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Angela Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Luciana Impera
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | | | - Claudia Brunetti
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Anna Mestice
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Paola Carluccio
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Cosimo Cumbo
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy.
| |
Collapse
|
40
|
Poos K, Smida J, Maugg D, Eckstein G, Baumhoer D, Nathrath M, Korsching E. Genomic heterogeneity of osteosarcoma - shift from single candidates to functional modules. PLoS One 2015; 10:e0123082. [PMID: 25848766 PMCID: PMC4388529 DOI: 10.1371/journal.pone.0123082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/27/2015] [Indexed: 12/29/2022] Open
Abstract
Osteosarcoma (OS), a bone tumor, exhibit a complex karyotype. On the genomic level a highly variable degree of alterations in nearly all chromosomal regions and between individual tumors is observable. This hampers the identification of common drivers in OS biology. To identify the common molecular mechanisms involved in the maintenance of OS, we follow the hypothesis that all the copy number-associated differences between the patients are intercepted on the level of the functional modules. The implementation is based on a network approach utilizing copy number associated genes in OS, paired expression data and protein interaction data. The resulting functional modules of tightly connected genes were interpreted regarding their biological functions in OS and their potential prognostic significance. We identified an osteosarcoma network assembling well-known and lesser-known candidates. The derived network shows a significant connectivity and modularity suggesting that the genes affected by the heterogeneous genetic alterations share the same biological context. The network modules participate in several critical aspects of cancer biology like DNA damage response, cell growth, and cell motility which is in line with the hypothesis of specifically deregulated but functional modules in cancer. Further, we could deduce genes with possible prognostic significance in OS for further investigation (e.g. EZR, CDKN2A, MAP3K5). Several of those module genes were located on chromosome 6q. The given systems biological approach provides evidence that heterogeneity on the genomic and expression level is ordered by the biological system on the level of the functional modules. Different genomic aberrations are pointing to the same cellular network vicinity to form vital, but already neoplastically altered, functional modules maintaining OS. This observation, exemplarily now shown for OS, has been under discussion already for a longer time, but often in a hypothetical manner, and can here be exemplified for OS.
Collapse
Affiliation(s)
- Kathrin Poos
- Institute of Bioinformatics, University Hospital Münster, Münster, Germany
| | - Jan Smida
- Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Doris Maugg
- Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Gertrud Eckstein
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Daniel Baumhoer
- Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Bone Tumor Reference Center at the Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Michaela Nathrath
- Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Eberhard Korsching
- Institute of Bioinformatics, University Hospital Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
41
|
Both J, Krijgsman O, Bras J, Schaap GR, Baas F, Ylstra B, Hulsebos TJM. Focal chromosomal copy number aberrations identify CMTM8 and GPR177 as new candidate driver genes in osteosarcoma. PLoS One 2014; 9:e115835. [PMID: 25551557 PMCID: PMC4281204 DOI: 10.1371/journal.pone.0115835] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/01/2014] [Indexed: 12/04/2022] Open
Abstract
Osteosarcoma is an aggressive bone tumor that preferentially develops in adolescents. The tumor is characterized by an abundance of genomic aberrations, which hampers the identification of the driver genes involved in osteosarcoma tumorigenesis. Our study aims to identify these genes by the investigation of focal copy number aberrations (CNAs, <3 Mb). For this purpose, we subjected 26 primary tumors of osteosarcoma patients to high-resolution single nucleotide polymorphism array analyses and identified 139 somatic focal CNAs. Of these, 72 had at least one gene located within or overlapping the focal CNA, with a total of 94 genes. For 84 of these genes, the expression status in 31 osteosarcoma samples was determined by expression microarray analysis. This enabled us to identify the genes of which the over- or underexpression was in more than 35% of cases in accordance to their copy number status (gain or loss). These candidate genes were subsequently validated in an independent set and furthermore corroborated as driver genes by verifying their role in other tumor types. We identified CMTM8 as a new candidate tumor suppressor gene and GPR177 as a new candidate oncogene in osteosarcoma. In osteosarcoma, CMTM8 has been shown to suppress EGFR signaling. In other tumor types, CMTM8 is known to suppress the activity of the oncogenic protein c-Met and GPR177 is known as an overexpressed upstream regulator of the Wnt-pathway. Further studies are needed to determine whether these proteins also exert the latter functions in osteosarcoma tumorigenesis.
Collapse
Affiliation(s)
- Joeri Both
- Department of Genome Analysis, Academic Medical Center, Amsterdam, The Netherlands
| | - Oscar Krijgsman
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Johannes Bras
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Gerard R. Schaap
- Department of Orthopedic Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - Frank Baas
- Department of Genome Analysis, Academic Medical Center, Amsterdam, The Netherlands
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Theo J. M. Hulsebos
- Department of Genome Analysis, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
42
|
Reimann E, Kõks S, Ho XD, Maasalu K, Märtson A. Whole exome sequencing of a single osteosarcoma case--integrative analysis with whole transcriptome RNA-seq data. Hum Genomics 2014; 8:20. [PMID: 25496518 PMCID: PMC4272536 DOI: 10.1186/s40246-014-0020-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/10/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a prevalent primary malignant bone tumour with unknown etiology. These highly metastasizing tumours are among the most frequent causes of cancer-related deaths. Thus, there is an urgent need for different markers, and with our study, we were aiming towards finding novel biomarkers for OS. METHODS For that, we analysed the whole exome of the tumorous and non-tumour bone tissue from the same patient with OS applying next-generation sequencing. For data analysis, we used several softwares and combined the exome data with RNA-seq data from our previous study. RESULTS In the tumour exome, we found wide genomic rearrangements, which should qualify as chromotripsis-we detected almost 3,000 somatic single nucleotide variants (SNVs) and small indels and more than 2,000 copy number variants (CNVs) in different chromosomes. Furthermore, the somatic changes seem to be associated to bone tumours, whereas germline mutations to cancer in general. We confirmed the previous findings that the most significant pathway involved in OS pathogenesis is probably the WNT/β-catenin signalling pathway. Also, the IGF1/IGF2 and IGF1R homodimer signalling and TP53 (including downstream tumour suppressor gene EI24) pathways may have a role. Additionally, the mucin family genes, especially MUC4 and cell cycle controlling gene CDC27 may be considered as potential biomarkers for OS. CONCLUSIONS The genes, in which the mutations were detected, may be considered as targets for finding biomarkers for OS. As the study is based on a single case and only DNA and RNA analysis, further confirmative studies are required.
Collapse
Affiliation(s)
- Ene Reimann
- Department of Pathophysiology, University of Tartu, 19 Ravila Street, Tartu, 50411, Estonia. .,Department of Reproductive Biology, Estonian University of Life Sciences, 64 Kreutzwaldi Street, Tartu, Estonia.
| | - Sulev Kõks
- Department of Pathophysiology, University of Tartu, 19 Ravila Street, Tartu, 50411, Estonia. .,Department of Reproductive Biology, Estonian University of Life Sciences, 64 Kreutzwaldi Street, Tartu, Estonia.
| | - Xuan Dung Ho
- Department of Traumatology and Orthopaedics, University of Tartu, 8 Puusepa Street, Tartu, Estonia. .,Department of Oncology, Hue University of Medicine and Pharmacy, 6 Ngo Quyen Street, Hue, Vietnam.
| | - Katre Maasalu
- Department of Traumatology and Orthopaedics, University of Tartu, 8 Puusepa Street, Tartu, Estonia. .,Traumatology and Orthopaedics Clinic, Tartu University Hospital, 8 Puusepa Street, Tartu, Estonia.
| | - Aare Märtson
- Department of Traumatology and Orthopaedics, University of Tartu, 8 Puusepa Street, Tartu, Estonia. .,Traumatology and Orthopaedics Clinic, Tartu University Hospital, 8 Puusepa Street, Tartu, Estonia.
| |
Collapse
|
43
|
Abstract
Osteosarcoma is the most common malignant bone tumor in children and characterized by aggressive biologic behavior of metastatic propensity to the lung. Change of treatment paradigm brings survival benefit; however, 5-year survival rate is still low in patients having metastastatic foci at diagnosis for a few decades. Metastasis-associated protein (MTA) family is a group of ubiquitously expressed coregulators, which influences on tumor invasiveness or metastasis. MTA1 has been investigated in various cancers including osteosarcoma, and its overexpression is associated with high-risk features of cancers. In this review, we described various molecular studies of osteosarcoma, especially associated with MTA1.
Collapse
Affiliation(s)
- Sung Sun Kim
- Department of Pathology, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju, 501-757, Korea,
| | | |
Collapse
|
44
|
Abstract
For the past 30 years, improvements in the survival of patients with osteosarcoma have been mostly incremental. Despite evidence of genomic instability and a high frequency of chromothripsis and kataegis, osteosarcomas carry few recurrent targetable mutations, and trials of targeted agents have been generally disappointing. Bone has a highly specialized immune environment and many immune signalling pathways are important in bone homeostasis. The success of the innate immune stimulant mifamurtide in the adjuvant treatment of non-metastatic osteosarcoma suggests that newer immune-based treatments, such as immune checkpoint inhibitors, may substantially improve disease outcome.
Collapse
Affiliation(s)
- Maya Kansara
- 1] Research Division, Peter MacCallum Cancer Centre, Melbourne, 3002, Victoria, Australia. [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, 3010, Victoria, Australia
| | - Michele W Teng
- 1] Immunology in Cancer and Infection Laboratory and Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, 4006, Queensland, Australia. [2] School of Medicine, University of Queensland, Herston, 4006, Queensland, Australia
| | - Mark J Smyth
- 1] Immunology in Cancer and Infection Laboratory and Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, 4006, Queensland, Australia. [2] School of Medicine, University of Queensland, Herston, 4006, Queensland, Australia
| | - David M Thomas
- 1] Research Division, Peter MacCallum Cancer Centre, Melbourne, 3002, Victoria, Australia. [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, 3010, Victoria, Australia. [3] The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, 2010, New South Wales, Australia
| |
Collapse
|
45
|
Yang Z, Chen Y, Fu Y, Yang Y, Zhang Y, Chen Y, Li D. Meta-analysis of differentially expressed genes in osteosarcoma based on gene expression data. BMC MEDICAL GENETICS 2014; 15:80. [PMID: 25023069 PMCID: PMC4109777 DOI: 10.1186/1471-2350-15-80] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/30/2014] [Indexed: 02/04/2023]
Abstract
Background To uncover the genes involved in the development of osteosarcoma (OS), we performed a meta-analysis of OS microarray data to identify differentially expressed genes (DEGs) and biological functions associated with gene expression changes between OS and normal control (NC) tissues. Methods We used publicly available GEO datasets of OS to perform a meta-analysis. We performed Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Protein-Protein interaction (PPI) networks analysis. Results Eight GEO datasets, including 240 samples of OS and 35 samples of controls, were available for the meta-analysis. We identified 979 DEGs across the studies between OS and NC tissues (472 up-regulated and 507 down-regulated). We found GO terms for molecular functions significantly enriched in protein binding (GO: 0005515, P = 3.83E-60) and calcium ion binding (GO: 0005509, P = 3.79E-13), while for biological processes, the enriched GO terms were cell adhesion (GO:0007155, P = 2.26E-19) and negative regulation of apoptotic process (GO: 0043066, P = 3.24E-15), and for cellular component, the enriched GO terms were cytoplasm (GO: 0005737, P = 9.18E-63) and extracellular region (GO: 0005576, P = 2.28E-47). The most significant pathway in our KEGG analysis was Focal adhesion (P = 5.70E-15). Furthermore, ECM-receptor interaction (P = 1.27E-13) and Cell cycle (P = 4.53E-11) are found to be highly enriched. PPI network analysis indicated that the significant hub proteins containing PTBP2 (Degree = 33), RGS4 (Degree = 15) and FXYD6 (Degree = 13). Conclusions Our meta-analysis detected DEGs and biological functions associated with gene expression changes between OS and NC tissues, guiding further identification and treatment for OS.
Collapse
Affiliation(s)
- Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, PR China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Du X, Yang J, Yang D, Tian W, Zhu Z. The genetic basis for inactivation of Wnt pathway in human osteosarcoma. BMC Cancer 2014; 14:450. [PMID: 24942472 PMCID: PMC4074405 DOI: 10.1186/1471-2407-14-450] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 06/05/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteosarcoma is a highly genetically unstable tumor with poor prognosis. We performed microarray-based comparative genomic hybridization (aCGH), transcriptome sequencing (RNA-seq), and pathway analysis to gain a systemic view of the pathway alterations of osteosarcoma. METHODS aCGH experiments were carried out on 10 fresh osteosarcoma samples. The output data (Gene Expression Omnibus Series accession number GSE19180) were pooled with published aCGH raw data (GSE9654) to determine recurrent copy number changes. These were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to identify altered pathways in osteosarcoma. Transcriptome sequencing of six osteosarcomas was performed to detect the expression profile of Wnt signaling pathway genes. Protein expression of WNT1, β-catenin, c-myc, and cyclin D1 in the Wnt pathway was detected by immunohistochemistry (IHC) in an independent group of 46 osteosarcoma samples. RESULTS KEGG pathway analysis identified frequent deletions of Wnt and other Wnt signaling pathway genes. At the mRNA level, transcriptome sequencing found reduced levels of mRNA expression of Wnt signaling pathway transcripts. While WNT1 protein expression was detected by IHC in 69.6% (32/46) of the osteosarcomas, no β-catenin protein was detected in the nucleus. β-catenin protein expression was, however, detected in the membrane and cytoplasm of 69.6% (32/46) of the osteosarcomas. c-myc protein expression was detected in only 47.8% (22/46) and cyclin D1 protein expression in 52.2% (24/46) of osteosarcoma samples. Kaplan-Meier survival analysis showed that WNT1-negative patients had a trend towards longer disease free survival than WNT1-positive patients. Interestingly, in WNT1-negative patients, those who were also cyclin D1-negative had significantly longer disease free survival than cyclin D1-positive patients. However, there was no significant association between any of the investigated proteins and overall survival of human osteosarcoma patients. CONCLUSIONS Frequent deletions of Wnt and other Wnt signaling pathway genes suggest that the Wnt signaling pathway is genetically inactivated in human osteosarcoma.
Collapse
Affiliation(s)
| | - Jilong Yang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 30060, China.
| | | | | | | |
Collapse
|
47
|
Barøy T, Kresse SH, Skårn M, Stabell M, Castro R, Lauvrak S, Llombart-Bosch A, Myklebost O, Meza-Zepeda LA. Reexpression of LSAMP inhibits tumor growth in a preclinical osteosarcoma model. Mol Cancer 2014; 13:93. [PMID: 24885297 PMCID: PMC4029956 DOI: 10.1186/1476-4598-13-93] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/11/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Osteosarcomas are the most common primary malignant tumors of bone, showing complex chromosomal rearrangements with multiple gains and losses. A frequent deletion within the chromosomal region 3q13.31 has been identified by us and others, and is mainly reported to be present in osteosarcomas. The purpose of the study was to further characterize the frequency and the extent of the deletion in an extended panel of osteosarcoma samples, and the expression level of the affected genes within the region. We have identified LSAMP as the target gene for the deletion, and have studied the functional implications of LSAMP-reexpression. METHODS LSAMP copy number, expression level and protein level were investigated by quantitative PCR and western blotting in an osteosarcoma panel. The expression of LSAMP was restored in an osteosarcoma cell line, and differences in proliferation rate, tumor formation, gene expression, migration rate, differentiation capabilities, cell cycle distribution and apoptosis were investigated by metabolic dyes, tumor formation in vivo, gene expression profiling, time-lapse photography, differentiation techniques and flow cytometry, respectively. RESULTS We found reduced copy number of LSAMP in 45/76 osteosarcoma samples, reduced expression level in 25/42 samples and protein expression in 9/42 samples. By restoring the expression of LSAMP in a cell line with a homozygous deletion of the gene, the proliferation rate in vitro was significantly reduced and tumor growth in vivo was significantly delayed. In response to reexpression of LSAMP, mRNA expression profiling revealed consistent upregulation of the genes hairy and enhancer of split 1 (HES1), cancer/testis antigen 2 (CTAG2) and kruppel-like factor 10 (KLF10). CONCLUSIONS The high frequency and the specificity of the deletion indicate that it is important for the development of osteosarcomas. The deletion targets the tumor suppressor LSAMP, and based on the functional evidence, the tumor suppressor function of LSAMP is most likely exerted by reducing the proliferation rate of the tumor cells, possibly by indirectly upregulating one or more of the genes HES1, CTAG2 or KLF10. To our knowledge, this study describes novel functions of LSAMP, a first step to understanding the functional role of this specific deletion in osteosarcomas.
Collapse
MESH Headings
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/mortality
- Bone Neoplasms/pathology
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Line, Tumor
- Cell Proliferation/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 3
- Early Growth Response Transcription Factors/genetics
- Early Growth Response Transcription Factors/metabolism
- Female
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Gene Deletion
- Gene Dosage
- Gene Expression Regulation, Neoplastic
- Genetic Complementation Test
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Homozygote
- Humans
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Male
- Mutation Rate
- Osteosarcoma/genetics
- Osteosarcoma/metabolism
- Osteosarcoma/mortality
- Osteosarcoma/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Survival Analysis
- Transcription Factor HES-1
Collapse
Affiliation(s)
- Tale Barøy
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Stine H Kresse
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Magne Skårn
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Marianne Stabell
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Russell Castro
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Silje Lauvrak
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | | | - Ola Myklebost
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Leonardo A Meza-Zepeda
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
- Genomics Core Facility, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
48
|
Arlt MF, Rajendran S, Birkeland SR, Wilson TE, Glover TW. Copy number variants are produced in response to low-dose ionizing radiation in cultured cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:103-113. [PMID: 24327335 PMCID: PMC4086151 DOI: 10.1002/em.21840] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/26/2013] [Indexed: 05/29/2023]
Abstract
Despite their importance to human genetic variation and disease, little is known about the molecular mechanisms and environmental risk factors that impact copy number variant (CNV) formation. While it is clear that replication stress can lead to de novo CNVs, for example, following treatment of cultured mammalian cells with aphidicolin (APH) and hydroxyurea (HU), the effect of different types of mutagens on CNV induction is unknown. Here we report that ionizing radiation (IR) in the range of 1.5-3.0 Gy effectively induces de novo CNV mutations in cultured normal human fibroblasts. These IR-induced CNVs are found throughout the genome, with the same hotspot regions seen after APH- and HU-induced replication stress. IR produces duplications at a higher frequency relative to deletions than do APH and HU. At most hotspots, these duplications are physically shifted from the regions typically deleted after APH or HU, suggesting different pathways involved in their formation. CNV breakpoint junctions from irradiated samples are characterized by microhomology, blunt ends, and insertions like those seen in spontaneous and APH/HU-induced CNVs and most nonrecurrent CNVs in vivo. The similarity to APH/HU-induced CNVs suggests that low-dose IR induces CNVs through a replication-dependent mechanism, as opposed to replication-independent repair of DSBs. Consistent with this mechanism, a lower yield of CNVs was observed when cells were held for 48 hr before replating after irradiation. These results predict that any environmental DNA damaging agent that impairs replication is capable of creating CNVs.
Collapse
Affiliation(s)
- Martin F. Arlt
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | | | | | - Thomas E. Wilson
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Thomas W. Glover
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
49
|
Yen CC, Hsiao CD, Chen WM, Wen YS, Lin YC, Chang TW, Yao FY, Hung SC, Wang JY, Chiu JH, Wang HW, Lin CH, Chen TH, Chen PCH, Liu CL, Tzeng CH, Fletcher JA. Cytotoxic effects of 15d-PGJ2 against osteosarcoma through ROS-mediated AKT and cell cycle inhibition. Oncotarget 2014; 5:716-25. [PMID: 24566468 PMCID: PMC3996657 DOI: 10.18632/oncotarget.1704] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 01/19/2014] [Indexed: 12/27/2022] Open
Abstract
Polo-like kinase 1 (PLK1), a critical cell cycle regulator, has been identified as a potential target in osteosarcoma (OS). 15-deoxy-Δ12, 14-prostaglandin J2 (15d-PGJ2), a prostaglandin derivative, has shown its anti-tumor activity by inducing apoptosis through reactive oxygen species (ROS)-mediated inactivation of v-akt, a murine thymoma viral oncogene homolog, (AKT) in cancer cells. In the study analyzing its effects on arthritis, 15d-PGJ2 mediated shear-induced chondrocyte apoptosis via protein kinase A (PKA)-dependent regulation of PLK1. In this study, the cytotoxic effect and mechanism underlying 15d-PGJ2 effects against OS were explored using OS cell lines. 15d-PGJ2 induced significant G2/M arrest, and exerted time- and dose-dependent cytotoxic effects against all OS cell lines. Western blot analysis showed that both AKT and PKA-PLK1 were down-regulated in OS cell lines after treatment with 15d-PGJ2. In addition, transfection of constitutively active AKT or PLK1 partially rescued cells from 15d-PGJ2-induced apoptosis, suggesting crucial roles for both pathways in the anti-cancer effects of 15d-PGJ2. Moreover, ROS generation was found treatment with 15d-PGJ2, and its cytotoxic effect could be reversed with N-acetyl-l-cysteine. Furthermore, inhibition of JNK partially rescued 15d-PGJ2 cytotoxicity. Thus, ROS-mediated JNK activation may contribute to apoptosis through down-regulation of the p-Akt and PKA-PLK1 pathways. 15d-PGJ2 is a potential therapeutic agent for OS, exerting cytotoxicity mediated through both AKT and PKA-PLK1 inhibition, and these results form the basis for further analysis of its role in animal studies and clinical applications.
Collapse
Affiliation(s)
- Chueh-Chuan Yen
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- National Yang-Ming University School of Medicine, Taipei, Taiwan
- Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Der Hsiao
- Epidermal Stem Cell Lab, Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Wei-Ming Chen
- National Yang-Ming University School of Medicine, Taipei, Taiwan
- Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yao-Shan Wen
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Chan Lin
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ting-Wei Chang
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fang-Yi Yao
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Chieh Hung
- Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Stem Cell Laboratory, Department of Medical Research and Education, Taipei Veterans General Hospital, and Institute of Pharmacology, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Jir-You Wang
- Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Stem Cell Laboratory, Department of Medical Research and Education, Taipei Veterans General Hospital, and Institute of Pharmacology, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jen-Hwey Chiu
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, and Department of Surgery, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Hsei-Wei Wang
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Institute of Microbiology and Immunology, and Cancer Research Center & Genome Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Chi-Hung Lin
- Institute of Microbiology and Immunology, and Cancer Research Center & Genome Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Tain-Hsiung Chen
- National Yang-Ming University School of Medicine, Taipei, Taiwan
- Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Paul Chih-Hsueh Chen
- National Yang-Ming University School of Medicine, Taipei, Taiwan
- Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien-Lin Liu
- National Yang-Ming University School of Medicine, Taipei, Taiwan
- Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Hwai Tzeng
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- National Yang-Ming University School of Medicine, Taipei, Taiwan
| | | |
Collapse
|
50
|
Nobusawa S, Hirato J, Kurihara H, Ogawa A, Okura N, Nagaishi M, Ikota H, Yokoo H, Nakazato Y. Intratumoral heterogeneity of genomic imbalance in a case of epithelioid glioblastoma with BRAF V600E mutation. Brain Pathol 2014; 24:239-46. [PMID: 24354918 DOI: 10.1111/bpa.12114] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/10/2013] [Indexed: 02/01/2023] Open
Abstract
Epithelioid glioblastoma is among the rarest variants of glioblastoma and is not formally recognized in the World Health Organization classification; it is composed of monotonous, discohesive sheets of small, round cells with eccentric nuclei and eosinophilic cytoplasm devoid of cytoplasmic stellate processes, showing the retention of nuclear staining of INI-1 protein. Here, we report a case involving a 22-year-old man with a right occipital lobe tumor, which comprised mainly epithelioid tumor cells with a small area of diffusely infiltrating less atypical astrocytoma cells showing a lower cell density. Array comparative genomic hybridization separately performed for each histologically distinct component demonstrated eight shared copy number alterations (CNAs) and three CNAs observed only in epithelioid cells; one of the latter was a homozygous deletion of a tumor suppressor gene, LSAMP, at 3q13.31. BRAF V600E mutation was observed both in epithelioid tumor cells and in diffusely infiltrating less atypical astrocytoma cells. Our findings suggest that the regional loss of LSAMP led to the aggressive nature of epithelioid cells in the present case of epithelioid glioblastoma.
Collapse
Affiliation(s)
- Sumihito Nobusawa
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|