1
|
Fontanges Q, Truffaux N, Azmani R, Bourdon A, Croce S. [Translocation-associated uterine mesenchymal tumors: The new without forgetting the old. An integrated diagnostic approach]. Ann Pathol 2024:S0242-6498(24)00200-1. [PMID: 39424447 DOI: 10.1016/j.annpat.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
This review focuses on uterine mesenchymal tumors that are defined on a molecular level by a single and unique genetic alteration, that is somehow necessary and sufficient to allow tumor growth and progression. Although diverse from a clinical, morphological and immunohistochemical point of view, the different entities we are going to talk about share both a simple genomic profile with a low number of chromosomal alterations observed by CGH Array (few deletions, gains or amplifications...) and a low mutational burden observed by sequencing technics. Some of these entities are already well known and described in the literature when found outside of the uterus and gynecological tract. It remains intriguing that uterine mesenchymal pathology has been lagging behind when compared to its extrauterine counterpart. How can we explain that when it comes to inflammatory myofibroblastic tumors, abundant numbers of articles have been published since the 70's, but it was only in the early 2000s that the first relevant descriptions of this tumor in the uterus emerged? Certainly, the increased accuracy, availability, and use of molecular biology technics and in particular RNA sequencing in the area of uterine pathology can partly explain the reduction of the gap between soft tissue and uterine pathology we currently observe. Other reasons explaining this gap may be the high prevalence of smooth muscle tumors in the uterus and the abounding diversity of their morphological aspects, which may have partly eclipsed the array of differential diagnoses. Last but not least, one can hypothesize that the relative "simplicity" of hysterectomy procedures, referring to their safety and accessibility, has cured most of the lesions and partly clouded our knowledge regarding the biological potential and natural history of these newly described entities. As a consequence of this situation, our reader will often encounter the wording "uncertain malignant potential", as for some of these rare entities, evidence to establish reliable prognostic variables is still insufficient. We hope this review to be a useful tool to guide pathologists through the diversity and complexity of uterine mesenchymal tumors. As a scientific and medical community, sharing this knowledge will help us to collectively raise our vigilance and awareness by expanding the array of our differential diagnoses. We hope this will lead to more cases being accurately diagnosed, and ultimately, to a deeper knowledge regarding the biological potential and clinical evolution of these tumors. From a therapeutical point of view, the consequences of an accurate diagnosis for the patient are already appreciable through the use of targeted therapy. Examples include: ALK inhibitors in inflammatory myofibroblastic tumor, tyrosine-kinase inhibitors in COL1A::PDGFB rearranged sarcomas or mTOR inhibitors in PEComa.
Collapse
Affiliation(s)
- Quitterie Fontanges
- Département de pathologie, cliniques universitaires de Saint-Luc, Bruxelles, Belgique.
| | | | - Rihab Azmani
- Unité bio-informatique, direction données et santé numérique, institut Bergonié, Bordeaux, France
| | - Aurélien Bourdon
- Unité bio-informatique, direction données et santé numérique, institut Bergonié, Bordeaux, France
| | - Sabrina Croce
- Département de biopathologie, institut Bergonié, Bordeaux, France; Unité Inserm 1312, Bordeaux, France
| |
Collapse
|
2
|
Zuo X, Jiang W, He YM, Kuang W, Li L. High-grade endometrial stromal sarcoma with BCOR rearrangements: clinicopathological analysis of five cases and literature reviews - an extension in understanding of morphological characteristics. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:245-251. [PMID: 39262439 PMCID: PMC11384328 DOI: 10.62347/gdko4005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/23/2024] [Indexed: 09/13/2024]
Abstract
Five cases of FISH verified BCOR rearranged high-grade endometrial stromal sarcoma were retrospectively analyzed. The patient age ranged from 33 to 65 years (median, 48.4 years). Most patients presented with irregular vaginal bleeding (3/5) and uterus mass (2/5). Only one patient developed an abdominal wall metastasis and other patients remained in good condition during the follow-up. Pathological findings revealed that the tumors exhibited morphological diversity in terms of cell shape, arrangement pattern and tumor stroma, compared to previous summarized histology of BCOR rearranged high-grade endometrial stromal sarcoma. Detailed description of such morphology changes expanded our understanding of the histology of BCOR rearranged high-grade endometrial stromal sarcoma. Due to the non-specificity of morphology in such malignancies, molecular testing is needed for confirmation in all patients.
Collapse
Affiliation(s)
- Xuan Zuo
- Department of Pathology, West China Second University Hospital, Sichuan University Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan, China
| | - Wei Jiang
- Department of Pathology, West China Second University Hospital, Sichuan University Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan, China
| | - Yan-Mei He
- Department of Pathology, West China Second University Hospital, Sichuan University Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan, China
| | - Wei Kuang
- Department of Pathology, West China Second University Hospital, Sichuan University Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan, China
| | - Lei Li
- Department of Pathology, West China Second University Hospital, Sichuan University Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan, China
| |
Collapse
|
3
|
Alodaini AA. Uterine Mesenchymal Tumors: Updates on Pathology, Molecular Landscape, and Therapeutics. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1085. [PMID: 39064514 PMCID: PMC11278911 DOI: 10.3390/medicina60071085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Background: Mesenchymal uterine tumors are a diverse group of neoplasms with varying biological potential. Many of these neoplasms can have overlapping morphologic similarities, which, in some instances, render their diagnosis and categorization thorough histomorphologic examination inconclusive. In the last decade, an exponential amount of molecular data aiming to more accurately characterize and, consequently, treat these tumors have accumulated. Objective: The goal of this narrative review is to provide a pathologic review, a genetic update, and to know the new therapeutic avenues of primary uterine mesenchymal neoplasms.
Collapse
Affiliation(s)
- Amal A Alodaini
- Pathology Department, King Fahd University Hospital, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
4
|
Hirose T, Ikegami M, Kojima S, Yoshida A, Endo M, Shimada E, Kanahori M, Oyama R, Matsumoto Y, Nakashima Y, Kawai A, Mano H, Kohsaka S. Extensive analysis of 59 sarcoma-related fusion genes identified pazopanib as a potential inhibitor to COL1A1-PDGFB fusion gene. Cancer Sci 2023; 114:4089-4100. [PMID: 37592448 PMCID: PMC10551592 DOI: 10.1111/cas.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023] Open
Abstract
Sarcomas are malignant mesenchymal tumors that are extremely rare and divergent. Fusion genes are involved in approximately 30% of sarcomas as driver oncogenes; however, their detailed functions are not fully understood. In this study, we determined the functional significance of 59 sarcoma-related fusion genes. The transforming potential and drug sensitivities of these fusion genes were evaluated using a focus formation assay (FFA) and the mixed-all-nominated-in-one (MANO) method, respectively. The transcriptome was also examined using RNA sequencing of 3T3 cells transduced with each fusion gene. Approximately half (28/59, 47%) of the fusion genes exhibited transformation in the FFA assay, which was classified into five types based on the resulting phenotype. The sensitivity to 12 drugs including multityrosine kinase inhibitors was assessed using the MANO method and pazopanib was found to be more effective against cells expressing the COL1A1-PDGFB fusion gene compared with the others. The downstream MAPK/AKT pathway was suppressed at the protein level following pazopanib treatment. The fusion genes were classified into four subgroups by cluster analysis of the gene expression data and gene set enrichment analysis. In summary, the oncogenicity and drug sensitivity of 59 fusion genes were simultaneously evaluated using a high-throughput strategy. Pazopanib was selected as a candidate drug for sarcomas harboring the COL1A1-PDGFB fusion gene. This assessment could be useful as a screening platform and provides a database to evaluate customized therapy for fusion gene-associated sarcomas.
Collapse
Affiliation(s)
- Takeshi Hirose
- Division of Cellular SignalingNational Cancer Center Research InstituteTokyoJapan
- Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masachika Ikegami
- Division of Cellular SignalingNational Cancer Center Research InstituteTokyoJapan
| | - Shinya Kojima
- Division of Cellular SignalingNational Cancer Center Research InstituteTokyoJapan
| | - Akihiko Yoshida
- Department of Diagnostic PathologyNational Cancer Center HospitalTokyoJapan
| | - Makoto Endo
- Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Eijiro Shimada
- Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masaya Kanahori
- Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Ryunosuke Oyama
- Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Akira Kawai
- Department of Musculoskeletal OncologyNational Cancer Center HospitalTokyoJapan
| | - Hiroyuki Mano
- Division of Cellular SignalingNational Cancer Center Research InstituteTokyoJapan
| | - Shinji Kohsaka
- Division of Cellular SignalingNational Cancer Center Research InstituteTokyoJapan
| |
Collapse
|
5
|
Dermawan JK, Dashti N, Chiang S, Turashvili G, Dickson BC, Ellenson LH, Kirchner M, Stenzinger A, Mechtersheimer G, Agaimy A, Antonescu CR. Expanding the molecular spectrum of gene fusions in endometrial stromal sarcoma: Novel subunits of the chromatin remodeling complexes PRC2 and NuA4/TIP60 as alternative fusion partners. Genes Chromosomes Cancer 2023; 62:152-160. [PMID: 36445224 PMCID: PMC9825654 DOI: 10.1002/gcc.23109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022] Open
Abstract
Endometrial stromal sarcomas (ESS) are morphologically and molecularly heterogeneous. We report novel gene fusions (EPC1::EED, EPC1::EZH2, ING3::PHF1) identified by targeted RNA sequencing in five cases. The ING3::PHF1-fusion positive ESS presented in a 58-year-old female as extrauterine mesocolonic, ovarian masses, and displayed large, monomorphic ovoid-to-epithelioid cells arranged in solid sheets. The patient remained alive with disease 13 months after surgery. The three ESS with EPC1::EED occurred in the uterine corpus in patients with a median age of 58 years (range 27-62 years). One tumor showed a uniform epithelioid nested morphology, while the other two were composed of monomorphic spindle cells in fascicles with elevated mitotic figures, focal tumor cell necrosis, and lymphovascular invasion. At a median follow-up of 20 months, two patients developed local recurrence, including one with concomitant distant metastasis, while one patient remained free of disease. All three patients were alive at the last follow-up. The EPC1::EZH2-fusion positive ESS presented in a 52-year-old female in the uterus, and displayed uniform spindled cells arranged in short fascicles, with focally elevated mitotic activity but without necrosis. The patient remained free of disease 3 months after surgery. All cases were diffusely positive for CD10; four diffusely express estrogen and progesterone receptors. Our study expands the molecular spectrum of EPC1 and PHF1-related gene fusions in ESS to include additional novel subunits of the PRC2 and/or NuA4/TIP60 complexes. These cases displayed a monomorphic epithelioid or spindled phenotype, spanning low-grade and high-grade cytomorphology, all expressing CD10 and commonly ER and PR, and are prone to local and/or distant spread.
Collapse
Affiliation(s)
- Josephine K. Dermawan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nooshin Dashti
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sarah Chiang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gulisa Turashvili
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA, USA
| | - Brendan C. Dickson
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, Canada
| | - Lora H. Ellenson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martina Kirchner
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | - Abbas Agaimy
- Institute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Cristina R. Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
6
|
Zhi W, Zheng X, Jin Y. ZC3H7B-BCOR High-Grade Endometrial Stromal Sarcoma with a Mucoid Grossly Feature: A Case Report and Literature Review. Int J Womens Health 2022; 14:1701-1708. [PMID: 36540849 PMCID: PMC9760045 DOI: 10.2147/ijwh.s390042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/06/2022] [Indexed: 02/06/2024] Open
Abstract
We report on a 50-year-old postmenopausal woman who presented with abnormal uterine bleeding and pelvic pain due to a uterine solid mass grew from the uterine fundus to the cervix and with so far undescribed obviously gelatinous grossly change, which was suspected of myxoid leiomyosarcoma in intraoperative diagnosis. Morphologically, the tumor cells displayed haphazard fascicles of uniform mild-to-moderate heteromorphic spindle cell component with significant and abundant myxoid stroma, forming signet ring cells and microcysts. Immunohistochemically, the tumour cells were diffusely positivefor CD10 and cyclin D1 and negative for Desmin and SMA, but the expression of BCOR staining was not present. The FISH study showed a positive BCOR gene break probe, and the RNA sequencing revealed an identified reciprocal fusion gene ZC3H7B-BCOR. The case was finally diagnosed as ZC3H7B-BCOR high-grade endometrial stromal sarcoma. Tumor recurrence occurred rapidly on the pelvic peritoneal and vaginal 2 months after resection. In conclusion, these findings further support ZC3H7B-BCOR HGESS has a poor prognosis and molecular testing of uterine mesenchymal tumors with myxoid matrix and unusual grossly presentation is recommended to avoid misdiagnosis.
Collapse
Affiliation(s)
- Wenxue Zhi
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 10006, People’s Republic of China
| | - Xingzheng Zheng
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 10006, People’s Republic of China
| | - Yulan Jin
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 10006, People’s Republic of China
| |
Collapse
|
7
|
PANAGOPOULOS IOANNIS, HEIM SVERRE. Neoplasia-associated Chromosome Translocations Resulting in Gene Truncation. Cancer Genomics Proteomics 2022; 19:647-672. [PMID: 36316036 PMCID: PMC9620447 DOI: 10.21873/cgp.20349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022] Open
Abstract
Chromosomal translocations in cancer as well as benign neoplasias typically lead to the formation of fusion genes. Such genes may encode chimeric proteins when two protein-coding regions fuse in-frame, or they may result in deregulation of genes via promoter swapping or translocation of the gene into the vicinity of a highly active regulatory element. A less studied consequence of chromosomal translocations is the fusion of two breakpoint genes resulting in an out-of-frame chimera. The breaks then occur in one or both protein-coding regions forming a stop codon in the chimeric transcript shortly after the fusion point. Though the latter genetic events and mechanisms at first awoke little research interest, careful investigations have established them as neither rare nor inconsequential. In the present work, we review and discuss the truncation of genes in neoplastic cells resulting from chromosomal rearrangements, especially from seemingly balanced translocations.
Collapse
Affiliation(s)
- IOANNIS PANAGOPOULOS
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - SVERRE HEIM
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
de Almeida BC, dos Anjos LG, Dobroff AS, Baracat EC, Yang Q, Al-Hendy A, Carvalho KC. Epigenetic Features in Uterine Leiomyosarcoma and Endometrial Stromal Sarcomas: An Overview of the Literature. Biomedicines 2022; 10:2567. [PMID: 36289829 PMCID: PMC9599831 DOI: 10.3390/biomedicines10102567] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
There is a consensus that epigenetic alterations play a key role in cancer initiation and its biology. Studies evaluating the modification in the DNA methylation and chromatin remodeling patterns, as well as gene regulation profile by non-coding RNAs (ncRNAs) have led to the development of novel therapeutic approaches to treat several tumor types. Indeed, despite clinical and translational challenges, combinatorial therapies employing agents targeting epigenetic modifications with conventional approaches have shown encouraging results. However, for rare neoplasia such as uterine leiomyosarcomas (LMS) and endometrial stromal sarcomas (ESS), treatment options are still limited. LMS has high chromosomal instability and molecular derangements, while ESS can present a specific gene fusion signature. Although they are the most frequent types of "pure" uterine sarcomas, these tumors are difficult to diagnose, have high rates of recurrence, and frequently develop resistance to current treatment options. The challenges involving the management of these tumors arise from the fact that the molecular mechanisms governing their progression have not been entirely elucidated. Hence, to fill this gap and highlight the importance of ongoing and future studies, we have cross-referenced the literature on uterine LMS and ESS and compiled the most relevant epigenetic studies, published between 2009 and 2022.
Collapse
Affiliation(s)
- Bruna Cristine de Almeida
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Laura Gonzalez dos Anjos
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Andrey Senos Dobroff
- UNM Comprehensive Cancer Center (UNMCCC), University of New Mexico, Albuquerque, NM 87131, USA
- Division of Molecular Medicine, Department of Internal Medicine, (UNM) School of Medicine, UNM Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Edmund Chada Baracat
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Katia Candido Carvalho
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| |
Collapse
|
9
|
Abstract
Undifferentiated small round cell sarcomas (SRCSs) of bone and soft tissue comprise a heterogeneous group of highly aggressive tumours associated with a poor prognosis, especially in metastatic disease. SRCS entities mainly occur in the third decade of life and can exhibit striking disparities regarding preferentially affected sex and tumour localization. SRCSs comprise new entities defined by specific genetic abnormalities, namely EWSR1-non-ETS fusions, CIC-rearrangements or BCOR genetic alterations, as well as EWSR1-ETS fusions in the prototypic SRCS Ewing sarcoma. These gene fusions mainly encode aberrant oncogenic transcription factors that massively rewire the transcriptome and epigenome of the as yet unknown cell or cells of origin. Additional mutations or copy number variants are rare at diagnosis and, depending on the tumour entity, may involve TP53, CDKN2A and others. Histologically, these lesions consist of small round cells expressing variable levels of CD99 and specific marker proteins, including cyclin B3, ETV4, WT1, NKX3-1 and aggrecan, depending on the entity. Besides locoregional treatment that should follow standard protocols for sarcoma management, (neo)adjuvant treatment is as yet ill-defined but generally follows that of Ewing sarcoma and is associated with adverse effects that might compromise quality of life. Emerging studies on the molecular mechanisms of SRCSs and the development of genetically engineered animal models hold promise for improvements in early detection, disease monitoring, treatment-related toxicity, overall survival and quality of life.
Collapse
|
10
|
Savary C, Picard C, Corradini N, Castets M. Complex Elucidation of Cells-of-Origin in Pediatric Soft Tissue Sarcoma: From Concepts to Real Life, Hide-and-Seek through Epigenetic and Transcriptional Reprogramming. Int J Mol Sci 2022; 23:6310. [PMID: 35682989 PMCID: PMC9181261 DOI: 10.3390/ijms23116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 02/01/2023] Open
Abstract
Soft tissue sarcoma (STS) comprise a large group of mesenchymal malignant tumors with heterogeneous cellular morphology, proliferative index, genetic lesions and, more importantly, clinical features. Full elucidation of this wide diversity remains a central question to improve their therapeutic management and the identity of cell(s)-of-origin from which these tumors arise is part of this enigma. Cellular reprogramming allows transitions of a mature cell between phenotypes, or identities, and represents one key driver of tumoral heterogeneity. Here, we discuss how cellular reprogramming mediated by driver genes in STS can profoundly reshape the molecular and morphological features of a transformed cell and lead to erroneous interpretation of its cell-of-origin. This review questions the fact that the epigenetic context in which a genetic alteration arises has to be taken into account as a key determinant of STS tumor initiation and progression. Retracing the cancer-initiating cell and its clonal evolution, notably via epigenetic approach, appears as a key lever for understanding the origin of these tumors and improving their clinical management.
Collapse
Affiliation(s)
- Clara Savary
- Childhood Cancer & Cell Death (C3), LabEx DEVweCAN, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Cécile Picard
- Department of Pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, 69002 Lyon, France;
| | - Nadège Corradini
- Department of Pediatric Oncology, Institut d’Hematologie et d’Oncologie Pédiatrique, Centre Léon Bérard, 69008 Lyon, France;
- Department of Translational Research in Pediatric Oncology, Centre Léon Bérard, 69008 Lyon, France
| | - Marie Castets
- Childhood Cancer & Cell Death (C3), LabEx DEVweCAN, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
- Department of Translational Research in Pediatric Oncology, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
11
|
Dashti NK, Dermawan J, Schoolmeester JK, Halling KC, Antonescu CR. A novel
WWTR1
::
AFF2
fusion in an intra‐abdominal soft tissue sarcoma with associated endometriosis. Genes Chromosomes Cancer 2022; 61:497-502. [PMID: 35429182 PMCID: PMC9233893 DOI: 10.1002/gcc.23045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 11/08/2022] Open
Abstract
Application of molecular testing in clinical practice has led to significant advances in the classification of soft tissue sarcomas. Despite remarkable progress, there are still challenging cases that remain unclassified. In this study, we present an unusual spindle cell sarcoma arising in the abdominal cavity of a 37-year-old female. An extensive panel of immunostains was nonspecific for a line of differentiation and the tumor was subjected to targeted RNA sequencing for further classification. The findings showed a novel WWTR1::AFF2 fusion, which was further confirmed by break-apart FISH analysis for WWTR1 gene rearrangement. The tumor was attached to the wall of sigmoid colon and showed a highly cellular proliferation of plump spindle to epithelioid cells arranged in intersecting fascicles. Areas of extensive endometriosis were identified adjacent to the tumor. The immunoprofile was significant for reactivity with desmin, calponin, WT-1, ER, and PR, while negative for CD10, SMA, caldesmon, pan-keratin, ALK, CD117, and S100. The patient is alive and well after 11 months of follow-up. The exact histogenesis of this sarcoma remains unclear, however, the presence of adjacent endometriosis and coexpression of WT1/ER/PR raises the possibility of an unusual endometrioid stromal sarcoma, occurring outside the GYN tract. Additional cases are needed to establish the recurrent potential of this fusion event and to better define its pathogenesis and clinical behavior.
Collapse
Affiliation(s)
- Nooshin K. Dashti
- Department of Pathology and Laboratory Medicine Cedar‐Sinai Los Angeles California United States
| | - Josephine Dermawan
- Department of Pathology Memorial Sloan Kettering Cancer Center New York New York United States
| | | | - Kevin C. Halling
- Department of Pathology and Laboratory Medicine Mayo Clinic Rochester Minnesota United States
| | - Cristina R. Antonescu
- Department of Pathology Memorial Sloan Kettering Cancer Center New York New York United States
| |
Collapse
|
12
|
Sun L, Zhao W, Zhao Z, Zhu Y. JAZF1, YWHAE and BCOR gene translocation in primary extrauterine low-grade and high-grade endometrial stromal sarcomas. Histopathology 2022; 80:809-819. [PMID: 34843125 DOI: 10.1111/his.14608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 11/26/2022]
Abstract
AIMS JAZF1 translocation is the most common genetic change in low-grade (LG) endometrial stromal sarcoma (ESS), and YWHAE and BCOR translocations are common in high-grade (HG) ESS. Primary extrauterine ESS is rare, and there are limited data on molecular alterations in these tumours. METHODS AND RESULTS Cases of primary extrauterine ESS, comprising eight LG-ESS cases and five HG-ESS cases were collected. Haematoxylin and eosin and immunohistochemical staining were used to observe the histomorphology and analyse related protein expression. JAZF1, YWHAE and BCOR rearrangements were explored with fluorescence in-situ hybridisation (FISH). In LG-ESS, the tumour cells resembled normal proliferative-phase endometrial stromal cells; CD10, oestrogen receptor and progesterone receptor were expressed in all eight cases. In HG-ESS, the tumour cells had uniform HG round and/or spindle morphology, sometimes with an LG component; CD10 was fully expressed in one case and focally expressed in four cases; BCOR was expressed in all five cases, and cyclin D1 in four of five cases. FISH analysis showed JAZF1 translocation in one of eight LG-ESS cases (12.5%). YWHAE translocation occurred in four of five HG-ESS cases, with a positivity rate of 80%. BCOR translocation was absent in all five cases. CONCLUSIONS In extrauterine LG-ESS, the rate of JAZF1 rearrangement was significantly lower than in uterine LG-ESS. This result limited the value of JAZF1 translocation for diagnosis. YWHAE rearrangement is a common genetic change in extrauterine HG-ESS. Further studies are required to confirm these findings, especially in LG-ESS.
Collapse
Affiliation(s)
- Lili Sun
- Department of Pathology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Wei Zhao
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zehua Zhao
- Department of Pathology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yanmei Zhu
- Department of Pathology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
13
|
Dermawan JK, Zou Y, Antonescu CR. Neuregulin 1 (NRG1) fusion-positive high-grade spindle cell sarcoma: A distinct group of soft tissue tumors with metastatic potential. Genes Chromosomes Cancer 2022; 61:123-130. [PMID: 34747541 PMCID: PMC8804874 DOI: 10.1002/gcc.23008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/06/2022] Open
Abstract
Neuregulin 1 (NRG1) is an epidermal growth factor (EGF)-like ligand that activates receptor tyrosine kinases of the ErbB family of receptors. NRG1 gene fusions, which are rare (<1%) but recurrent events in solid tumors, are an emerging oncogenic driver that is potentially actionable using ErbB-targeted tyrosine kinase inhibitors. Largely characterized only in carcinomas, we describe three cases of NRG1-rearranged sarcomas. The patients were all female, aged 32-47 years old. Two cases were deep-seated tumors in the lower extremities (right thigh and calf); one case presented as a uterine mass. The tumors measured 9-11.5 cm in the greatest dimensions. Histologically, all three tumors were high-grade spindle cell sarcomas composed of monomorphic spindle cells arranged in interlacing fascicles. The tumor cells were set in the loose collagenous stroma with branching, curvilinear thin-walled vasculature in the background. Cytologically, the neoplastic cells displayed ovoid to fusiform nuclei with finely stippled chromatin, inconspicuous nucleoli, scant to moderate clear to eosinophilic cytoplasm, occasional cytoplasmic vacuoles, and elongated cytoplasmic processes. Mitotic activity was elevated (> 20/10 high power fields) and tumor necrosis was present. None of the tumors expressed lineage-specific immunophenotypical markers. Targeted RNA-sequencing uncovered gene fusions involving NRG1 and the 5' untranslated regions of PPHLN1, HMBOX1, or MTUS1. In all cases, the C-terminal EGF-like domain of NRG1 was preserved in the predicted chimeric protein product. All three patients developed metastatic disease within 2 years from initial presentation and were alive with disease at last follow-up (mean follow-up period = 19 months). In conclusion, we present the first case series of NRG1-rearranged sarcomas characterized by high-grade fascicular spindle cell morphology, non-specific immunoprofile, and aggressive clinical behavior. Further studies are needed to determine whether this distinct subgroup of spindle cell sarcomas are amenable to targeted therapies.
Collapse
Affiliation(s)
| | - Youran Zou
- Department of Pathology, Kaiser Permanente Oakland Medical Center, Oakland, California
| | | |
Collapse
|
14
|
McCluggage WG, Singh N, Gilks CB. Key changes to the world health organisation (who) classification of female genital tumours introduced in the 5 TH edition (2020). Histopathology 2022; 80:762-778. [PMID: 34996131 DOI: 10.1111/his.14609] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An updated World Health Organisation (WHO) Classification of Female Genital Tumours was published in Autumn 2020. We discuss the major new additions and changes from the prior 2014 Classification with discussion of the reasons underlying these. A feature of the new Classification is the greater emphasis on key molecular events with integration of morphological and-molecular features. Most of the major changes from the prior Classification pertain to uterine (corpus and cervix) and vulval tumours but changes in all organs are covered.
Collapse
Affiliation(s)
- W Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Naveena Singh
- Department of Cellular Pathology, Barts Health NHS Trust, London, United Kingdom
| | - C Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Abstract
This review covers the significant new developments in the pathological classification of gynecological tumors. Many of these were included in the updated World Health Organization Classification of Female Genital Tract Tumours, published in 2020. Topics include the compelling evidence that a large majority of extrauterine high‐grade serous carcinomas arise from the fallopian tube; the Cancer Genome Atlas (TCGA) Classification of endometrial carcinomas; the discovery that most so‐called synchronous endometrial and ovarian endometrioid carcinomas represent metastasis from the endometrium to the ovary; and the division of cervical, vaginal, and vulval carcinomas into clinically meaningful HPV‐associated and HPV‐independent types. Newly described tumor types are covered, including endometrial and ovarian mesonephric‐like adenocarcinoma, uterine sarcoma types associated with specific molecular abnormalities, and gastric (gastrointestinal)‐type adenocarcinomas of the endometrium and vagina. Important molecular events in ovarian sex cord–stromal tumors are also discussed. Review of significant new developments in the classification of gynecological tumors; many are included in the 2020 World Health Organization Classification of Female Genital Tract Tumours.
Collapse
Affiliation(s)
- W Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast, UK
| |
Collapse
|
16
|
Dundr P, Gregová M, Hojný J, Krkavcová E, Michálková R, Němejcová K, Bártů M, Hájková N, Laco J, Mára M, Richtárová A, Zima T, Stružinská I. Uterine cellular leiomyomas are characterized by common HMGA2 aberrations, followed by chromosome 1p deletion and MED12 mutation: morphological, molecular, and immunohistochemical study of 52 cases. Virchows Arch 2021; 480:281-291. [PMID: 34626221 DOI: 10.1007/s00428-021-03217-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
Cellular leiomyoma (CL) represents an uncommon variant of uterine leiomyoma with limited data concerning its immunohistochemical and molecular profile. We performed a comprehensive analysis of 52 CL cases all of which were analyzed immunohistochemically. Molecular analysis was possible in 32 cases with sufficient DNA, and 38 cases with sufficient RNA. The immunohistochemical results showed a high expression of smooth muscle markers (calponin (100%), desmin (100%), smooth muscle actin (98.1%), caldesmon (96.1%), transgelin (96.1%), smooth muscle myosin heavy chain (86.5%), and smoothelin (61.5%)). Concerning markers of endometrial stromal differentiation, the expression of CD10 was observed in 65.4% cases (42.2% with H-score > 50), and IFITM1 in 36.5% cases (1.9% with H-score > 50). 36.5% showed HMGA2 overexpression at the IHC level, associated with increased mRNA expression in 14/14 cases. The rearrangement of the HMGA2 gene was detected in 13.2%. Chromosome 1p deletion was found in 19.3%, while 9.4% of tumors showed a pathogenic mutation in the MED12 gene. In conclusion, CL is immunohistochemically characterized by a high expression of "smooth muscle" markers commonly associated with a co-expression of "endometrial stromal" markers, where IFITM1 shows superior performance compared to CD10 regarding its specificity for differentiation from endometrial stromal tumors. The sensitivity of smoothelin in CL seems rather low, but no data is available to assess its specificity. On a molecular level, the most common mutually exclusive aberration in CL affects HMGA2, followed by chromosome 1p deletions and MED12 mutations.
Collapse
Affiliation(s)
- Pavel Dundr
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic.
| | - Mária Gregová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Jan Hojný
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Eva Krkavcová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Romana Michálková
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Kristýna Němejcová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Michaela Bártů
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Nikola Hájková
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, Faculty of Medicine in Hradec Králové, University Hospital in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Michal Mára
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Adéla Richtárová
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ivana Stružinská
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| |
Collapse
|
17
|
Li C, Wang C. LG-ESSs and HG-ESSs: underlying molecular alterations and potential therapeutic strategies. J Zhejiang Univ Sci B 2021; 22:633-646. [PMID: 34414699 PMCID: PMC8377580 DOI: 10.1631/jzus.b2000797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/29/2022]
Abstract
Endometrial stromal tumors (ESTs) include endometrial stromal nodule (ESN), low-grade endometrial stromal sarcoma (LG-ESS), high-grade endometrial stromal sarcoma (HG-ESS), and undifferentiated uterine sarcoma (UUS). Since these are rare tumor types, there is an unmet clinical need for the systematic therapy of advanced LG-ESS or HG-ESS. Cytogenetic and molecular advances in ESTs have shown that multiple recurrent gene fusions are present in a large proportion of LG-ESSs, and HG-ESSs are identified by the tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (YWHAE)-family with sequence similarity 22 (FAM22) fusion. Recently, a group of ESSs harboring both zinc finger CCCH domain-containing protein 7B (ZC3H7B)-B-cell lymphoma 6 corepressor(BCOR) fusion and internal tandem duplication (ITD) of the BCOR gene have been provisionally classified as HG-ESSs. In this review, we firstly describe current knowledge about the molecular characteristics of recurrent aberrant proteins and their roles in the tumorigenesis of LG-ESSs and HG-ESSs. Next, we summarize the possibly shared signal pathways in the tumorigenesis of LG-ESSs and HG-ESSs, and list potentially actionable targets. Finally, based on the above discussion, we propose a few promising therapeutic strategies for LG-ESSs and HG-ESSs with recurrent gene alterations.
Collapse
Affiliation(s)
- Chunhui Li
- Quality Management Office, The Second Hospital of Jilin University, Changchun 130041, China
| | - Chunhong Wang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
18
|
Targeted RNA expression profiling identifies high-grade endometrial stromal sarcoma as a clinically relevant molecular subtype of uterine sarcoma. Mod Pathol 2021; 34:1008-1016. [PMID: 33077922 DOI: 10.1038/s41379-020-00705-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
High-grade endometrial stromal sarcoma (HGESS) may harbor YWHAE-NUTM2A/B fusion, ZC3H7B-BCOR fusion, and BCOR internal tandem duplication (ITD). NTRK3 upregulation and pan-Trk expression were reported in soft tissue lesions that share similar morphology and genetic abnormalities. To confirm these findings in HGESS, differential expression analysis was performed at gene level comparing 11 HGESS with 48 other uterine sarcomas, including 9 low-grade endometrial stromal sarcomas, 23 undifferentiated uterine sarcomas, and 16 leiomyosarcomas, using targeted RNA sequencing data. Pan-Trk immunohistochemistry was performed on 35 HGESS, including 10 tumors with RNA expression data, with genotypes previously confirmed by targeted RNA sequencing, fluorescence in situ hybridization, and/or genomic PCR. Unsupervised hierarchical clustering of the top 25% of differentially expressed probes identified three molecular groups: (1) high NTRK3, FGFR3, RET, BCOR, GLI1, and PTCH1 and low ESR1 expression; (2) low NTRK3, FGFR3, RET, BCOR, GLI1, and PTCH1 and high ESR1 expression; and (3) low NTRK3, FGFR3, RET, BCOR, GLI1, PTCH1, and ESR1 expression. Among HGESS, 64% of tumors clustered in group 1, while 27% clustered in group 2. Cytoplasmic and/or nuclear pan-Trk staining of variable extent and intensity was seen in 91% of HGESS regardless of cyclin D1 and/or BCOR positivity. ER and PR expression was seen in 44% of HGESS despite ESR1 downregulation. Two patients with ER and PR positive but ESR1 downregulated stage I HGESS were treated with endocrine therapy, and both recurred at 12 and 36 months after primary resection. By RNA expression, HGESS appear homogenous and distinct from other uterine sarcomas by activation of kinases, including NTRK3, and sonic hedgehog pathway genes along with downregulation of ESR1. Most HGESS demonstrate pan-Trk staining which may serve as a diagnostic biomarker. ESR1 downregulation is seen in some HGESS that express ER and PR which raises implications in the utility of endocrine therapy in these patients.
Collapse
|
19
|
Mayr D, Schmoeckel E, Höhn AK, Hiller GGR, Horn LC. [Current WHO classification of the female genitals : Many new things, but also some old]. DER PATHOLOGE 2021; 42:259-269. [PMID: 33822250 DOI: 10.1007/s00292-021-00933-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
The new WHO classification of tumors of the female genitalia entails some changes, especially those of prognostic and therapeutic relevance: there is a return to the term borderline tumor. Implants are again subdivided into noninvasive implants of the epithelial or desmoplastic type as before. Invasive extraovarian implants are classified as low-grade serous carcinoma (LGSC). Former seromucinous carcinomas are now classified as endometrioid carcinomas (seromucinous subtype). New entities of ovarian carcinomas are mesonephric-like adenocarcinoma, undifferentiated and dedifferentiated carcinoma, and mixed carcinoma. The classification of neuroendocrine neoplasms is analogous to that of pulmonary and gastrointestinal neuroendocrine neoplasms, regardless of their location. Endometrioid endometrial carcinoma can be classified into four molecular subtypes, which have significant prognostic significance. New subtypes include mucinous carcinoma of the intestinal type and mesonephric-like adenocarcinoma. Stromasarcomas of the endometrium are further subclassified based on specific molecular alterations. Adenocarcinomas (ACs) and squamous cell carcinomas (PECs) of the lower female genital tract are distinguished from HPV-associated and HPV-independent carcinomas. Block-like staining for p16 is the accepted surrogate immunohistochemical marker. Grading has not been reported for PEC. For HPV-associated AC of the cervix uteri, prognostic assessment is based on the pattern of invasion (so-called Silva pattern). Serous carcinomas in the cervix uteri are endometrial carcinomas with cervical infiltration.
Collapse
Affiliation(s)
- Doris Mayr
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Straße 36, 80337, München, Deutschland.
| | - Elisa Schmoeckel
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Straße 36, 80337, München, Deutschland
| | - Anne Kathrin Höhn
- Arbeitsgruppe Mamma‑, Gynäko- & Perinatalpathologie, Institut für Pathologie, Universitätsklinikum Leipzig AöR, Leipzig, Deutschland
| | - Grit Gesine Ruth Hiller
- Arbeitsgruppe Mamma‑, Gynäko- & Perinatalpathologie, Institut für Pathologie, Universitätsklinikum Leipzig AöR, Leipzig, Deutschland
| | - Lars-Christian Horn
- Arbeitsgruppe Mamma‑, Gynäko- & Perinatalpathologie, Institut für Pathologie, Universitätsklinikum Leipzig AöR, Leipzig, Deutschland
| |
Collapse
|
20
|
Barets D, Appay R, Heinisch M, Battistella M, Bouvier C, Chotard G, Le Loarer F, Macagno N, Perbet R, Pissaloux D, Rousseau A, Tauziède-Espariat A, Varlet P, Vasiljevic A, Colin C, Fina F, Figarella-Branger D. Specific and Sensitive Diagnosis of BCOR-ITD in Various Cancers by Digital PCR. Front Oncol 2021; 11:645512. [PMID: 33718245 PMCID: PMC7948083 DOI: 10.3389/fonc.2021.645512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 11/25/2022] Open
Abstract
BCOR is an epigenetic regulator altered by various mechanisms including BCOR-internal tandem duplication (BCOR-ITD) in a wide range of cancers. Six different BCOR-ITD in the 3’-part of the coding sequence of exon 15 have been reported ranging from 89 to 114 bp in length. BCOR-ITD is a common genetic alteration found in clear cell sarcoma of the kidney and primitive myxoid mesenchymal tumor of infancy (PMMTI) and it characterizes a new type of central nervous system tumor: “CNS tumor with BCOR-ITD”. It can also be detected in undifferentiated round cell sarcoma (URCS) and in high-grade endometrial stromal sarcoma (HGESS). Therefore, it is of utmost importance to search for this genetic alteration in these cancers with the most frequent technique being RNA-sequencing. Here, we developed a new droplet PCR assay (dPCR) to detect the six sequences characterizing BCOR-ITD. To achieve this goal, we used a single colored probe to detect both the duplicated region and the normal sequence that acts as a reference. We first generated seven synthetic DNA sequences: ITD0 (the normal sequence) and ITD1 to ITD6 (the duplicated sequences described in the literature) and then we set up the optima dPCR conditions. We validated our assay on 19 samples from a representative panel of human tumors (9 HGNET-BCOR, 5 URCS, 3 HGESS, and 2 PMMTI) in which BCOR-ITD status was known using at least one other method including RNA sequencing, RT-PCR or DNA-methylation profiling for CNS tumors. Our results showed that our technique was 100% sensitive and specific. DPCR detected BCOR-ITD in 13/19 of the cases; in the remaining 6 cases additional RNA-sequencing revealed BCOR gene fusions. To conclude, in the era of histomolecular classification of human tumors, our modified dPCR assay is of particular interest to detect BCOR-ITD since it is a robust and less expensive test that can be applied to a broad spectrum of cancers that share this alteration.
Collapse
Affiliation(s)
- Doriane Barets
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Romain Appay
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Marie Heinisch
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Maxime Battistella
- Department of Pathology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Inserm U976, Paris, France
| | - Corinne Bouvier
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Guillaume Chotard
- Service de Pathologie, Groupe Hospitalier Pellegrin, CHU de Bordeaux, Bordeaux, France
| | | | - Nicolas Macagno
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Romain Perbet
- Institute of Pathology, CHU Lille, Lille, France.,LilNCog, Lille Neuroscience and Cognition, Univ. Lille, Inserm, CHU Lille, U1172, Lille, France
| | - Daniel Pissaloux
- Department of Translational Research and Innovation, Léon Bérard Cancer Center, Lyon, France.,Claude Bernard University Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Léon Bérard, Lyon, France
| | - Audrey Rousseau
- Département de Pathologie Cellulaire et Tissulaire, CHU Angers, Angers, France
| | - Arnaud Tauziède-Espariat
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Alexandre Vasiljevic
- Centre de Pathologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Carole Colin
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Frédéric Fina
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,ID Solutions, Research and Development, Grabels, France
| | - Dominique Figarella-Branger
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| |
Collapse
|
21
|
Mohammad N, Stewart CJR, Chiang S, Turashvili G, Dickson BC, Ng TL, Köbel M, McCluggage WG, Croce S, Lee CH. p53 immunohistochemical analysis of fusion-positive uterine sarcomas. Histopathology 2021; 78:805-813. [PMID: 33118176 DOI: 10.1111/his.14292] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022]
Abstract
AIMS Uterine sarcomas can be grouped into tumours with pathognomonic genetic fusions such as low-grade endometrial stromal sarcoma (LGESS), high-grade endometrial stromal sarcoma (HGESS), and inflammatory myofibroblastic tumour (IMT), and tumours lacking genetic fusions such as leiomyosarcoma (LMS) and undifferentiated uterine sarcoma (UUS). Members of the latter group frequently harbour TP53 mutations. The aim of this study was to evaluate TP53 mutations by the use of immunohistochemistry in fusion-positive uterine sarcomas. METHODS AND RESULTS We performed p53 immunohistochemical staining on 124 uterine sarcomas harbouring genetic fusions and 38 fusion-negative LMSs and UUSs. These included 41 HGESSs with YWHAE, BCOR and BCORL1 fusions/rearrangements, 13 IMTs with ALK fusion, 12 sarcomas with NTRK1/3 fusion, three sarcomas with PDGFB fusion, and 55 LGESSs with JAZF1, SUZ12 and PHF1 fusions/rearrangements. All HGESSs, LGESSs, IMTs and sarcomas with PDGFB fusion showed wild-type p53 expression. Among NTRK1/3-positive sarcomas, a TPR-NTRK1-positive sarcoma with nuclear pleomorphism showed mutation-type p53 expression. The remaining 11 NTRK1/3-positive sarcomas showed wild-type p53 expression, except for the subclonal p53 mutation-type staining in a minor pleomorphic focus of an NTRK3-positive sarcoma. Twenty-one of 27 (78%) LMSs and six of nine (67%) UUSs showed mutation-type p53 expression. CONCLUSION p53 immunohistochemistry may be considered in the initial work-up of a uterine sarcoma, as mutation-type staining would make a fusion-positive sarcoma very unlikely. Mutation-type p53 expression, however, can be seen in a small subset of NTRK1/3-positive sarcomas showing pleomorphic round/ovoid cell histology, which may represent a mechanism of progression in these tumours.
Collapse
Affiliation(s)
- Nissreen Mohammad
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Colin J R Stewart
- Department of Histopathology, King Edward Memorial Hospital and School for Women's and Infants' Health, University of Western Australia, Perth, WA, Australia
| | - Sarah Chiang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gulisa Turashvili
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Tony L Ng
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, Calgary Laboratory Services and University of Calgary, Calgary, AB, Canada
| | - W Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast, UK
| | - Sabrina Croce
- Department of Pathology, Institut Bergonié Cancer Institute, Bordeaux, France
| | - Cheng-Han Lee
- Department of Pathology and Laboratory Medicine, BC Cancer, Vancouver, BC, Canada
| |
Collapse
|
22
|
Micci F, Heim S, Panagopoulos I. Molecular pathogenesis and prognostication of "low-grade'' and "high-grade" endometrial stromal sarcoma. Genes Chromosomes Cancer 2020; 60:160-167. [PMID: 33099834 PMCID: PMC7894482 DOI: 10.1002/gcc.22907] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Endometrial stromal sarcomas (ESS) are a heterogeneous group of rare mesenchymal cancers. Considerable knowledge has been gained in recent years about the molecular characteristics of these cancers, which helps to classify them in a more meaningful manner leading to improved diagnosis, prognostication, and treatment. According to this classification, ESS is now grouped as low‐ or high‐grade. ESS may have overlapping clinical presentation, morphology, and immunohistochemical profile. Their genetic characteristics allow subdivision of many of them depending on which pathogenetically important fusion genes they carry, but clearly much more needs to be unraveled in this regard. We here provide an overview of the molecular pathogenetic knowledge gained so far on low‐ and high‐grade ESS.
Collapse
Affiliation(s)
- Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo, Norway
| |
Collapse
|
23
|
Nacev BA, Jones KB, Intlekofer AM, Yu JSE, Allis CD, Tap WD, Ladanyi M, Nielsen TO. The epigenomics of sarcoma. Nat Rev Cancer 2020; 20:608-623. [PMID: 32782366 PMCID: PMC8380451 DOI: 10.1038/s41568-020-0288-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Epigenetic regulation is critical to physiological control of development, cell fate, cell proliferation, genomic integrity and, fundamentally, transcriptional regulation. This epigenetic control occurs at multiple levels including through DNA methylation, histone modification, nucleosome remodelling and modulation of the 3D chromatin structure. Alterations in genes that encode chromatin regulators are common among mesenchymal neoplasms, a collection of more than 160 tumour types including over 60 malignant variants (sarcomas) that have unique and varied genetic, biological and clinical characteristics. Herein, we review those sarcomas in which chromatin pathway alterations drive disease biology. Specifically, we emphasize examples of dysregulation of each level of epigenetic control though mechanisms that include alterations in metabolic enzymes that regulate DNA methylation and histone post-translational modifications, mutations in histone genes, subunit loss or fusions in chromatin remodelling and modifying complexes, and disruption of higher-order chromatin structure. Epigenetic mechanisms of tumorigenesis have been implicated in mesenchymal tumours ranging from chondroblastoma and giant cell tumour of bone to chondrosarcoma, malignant peripheral nerve sheath tumour, synovial sarcoma, epithelioid sarcoma and Ewing sarcoma - all diseases that present in a younger patient population than most cancers. Finally, we review current and potential future approaches for the development of sarcoma therapies based on this emerging understanding of chromatin dysregulation.
Collapse
Affiliation(s)
- Benjamin A Nacev
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Kevin B Jones
- Department of Orthopaedics, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrew M Intlekofer
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jamie S E Yu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - C David Allis
- The Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
24
|
Pisapia DJ, Ohara K, Bareja R, Wilkes DC, Hissong E, Croyle JA, Kim JH, Saab J, MacDonald TY, Beg S, O’Reilly C, Kudman S, Rubin MA, Elemento O, Sboner A, Greenfield J, Mosquera JM. Fusions involving BCOR and CREBBP are rare events in infiltrating glioma. Acta Neuropathol Commun 2020; 8:80. [PMID: 32493417 PMCID: PMC7271411 DOI: 10.1186/s40478-020-00951-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022] Open
Abstract
BCOR has been recognized as a recurrently altered gene in a subset of pediatric tumors of the central nervous system (CNS). Here, we describe a novel BCOR-CREBBP fusion event in a case of pediatric infiltrating astrocytoma and further probe the frequency of related fusion events in CNS tumors. We analyzed biopsy samples taken from a 15-year-old male with an aggressive, unresectable and multifocal infiltrating astrocytoma. We performed RNA sequencing (RNA-seq) and targeted DNA sequencing. In the index case, the fused BCOR-CREBBP transcript comprises exons 1-4 of BCOR and exon 31 of CREBBP. The fused gene thus retains the Bcl6 interaction domain of BCOR while eliminating the domain that has been shown to interact with the polycomb group protein PCGF1. The fusion event was validated by FISH and reverse transcriptase PCR. An additional set of 177 pediatric and adult primary CNS tumors were assessed via FISH for BCOR break apart events, all of which were negative. An additional 509 adult lower grade infiltrating gliomas from the publicly available TCGA dataset were screened for BCOR or CREBBP fusions. In this set, one case was found to harbor a CREBBP-GOLGA6L2 fusion and one case a CREBBP-SRRM2 fusion. In a third patient, both BCOR-L3MBTL2 and EP300-BCOR fusions were seen. Of particular interest to this study, EP300 is a paralog of CREBBP and the breakpoint seen involves a similar region of the gene to that of the index case; however, the resultant transcript is predicted to be completely distinct. While this gene fusion may play an oncogenic role through the loss of tumor suppressor functions of BCOR and CREBBP, further screening over larger cohorts and functional validation is needed to determine the degree to which this or similar fusions are recurrent and to elucidate their oncogenic potential.
Collapse
|
25
|
Kommoss FK, Chang KT, Stichel D, Banito A, Jones DT, Heilig CE, Fröhling S, Sahm F, Stenzinger A, Hartmann W, Mechtersheimer G, Sinn HP, Schmidt D, Kommoss F, von Deimling A, Koelsche C. Endometrial stromal sarcomas with BCOR-rearrangement harbor MDM2 amplifications. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2020; 6:178-184. [PMID: 32352245 PMCID: PMC7339170 DOI: 10.1002/cjp2.165] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
Recently a novel subtype of endometrial stromal sarcoma (ESS) defined by recurrent genomic alterations involving BCOR has been described (HGESS‐BCOR). We identified a case of HGESS‐BCOR with a ZC3H7B‐BCOR gene fusion, which harbored an amplification of the MDM2 locus. This index case prompted us to investigate MDM2 amplification in four additional cases of HGESS‐BCOR. Tumors were analyzed for MDM2 amplification by array‐based profiling of copy number alterations (CNAs) and fluorescence in situ hybridization (FISH), as well as for MDM2 expression by immunohistochemistry (IHC). Additionally, a cohort of other mesenchymal uterine neoplasms, including 17 low‐grade ESS, 6 classical high‐grade ESS with YWHAE‐rearrangement, 16 uterine tumors resembling ovarian sex cord tumors, 7 uterine leiomyomas and 8 uterine leiomyosarcomas, was analyzed for CNAs in MDM2. Copy number profiling identified amplification of the 12q15 region involving the MDM2 locus in all five HGESS‐BCOR. Subsequent validation analyses of three tumors confirmed MDM2 amplification using MDM2 FISH. Accordingly, IHC showed MDM2 overexpression in all analyzed cases. None of the other uterine neoplasms in our series, including tumors that are in the histopathological differential diagnoses of HGESS‐BCOR, showed copy number gains of MDM2. Together, our results indicate that HGESS‐BCOR carries MDM2 amplifications, which has diagnostic implications and could potentially be used for targeted therapies in these clinically aggressive tumors.
Collapse
Affiliation(s)
- Felix Kf Kommoss
- Department of Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kenneth Te Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Damian Stichel
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Banito
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Pediatric Soft Tissue Sarcoma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Tw Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Pediatric Glioma Research Group, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph E Heilig
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Translational Medical Oncology, DKFZ and NCT Heidelberg, Heidelberg, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Translational Medical Oncology, DKFZ and NCT Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Albrecht Stenzinger
- Department of Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Gunhild Mechtersheimer
- Department of Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hans-Peter Sinn
- Department of Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dietmar Schmidt
- MVZ für Histologie, Zytologie und Molekulare Diagnostik Trier GmbH, Trier, Germany
| | - Friedrich Kommoss
- Institute of Pathology, Medizin Campus Bodensee, Friedrichshafen, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Koelsche
- Department of Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
26
|
Racanelli D, Brenca M, Baldazzi D, Goeman F, Casini B, De Angelis B, Guercio M, Milano GM, Tamborini E, Busico A, Dagrada G, Garofalo C, Caruso C, Brunello A, Pignochino Y, Berrino E, Grignani G, Scotlandi K, Parra A, Hattinger CM, Ibrahim T, Mercatali L, De Vita A, Carriero MV, Pallocca M, Loria R, Covello R, Sbaraglia M, Dei Tos AP, Falcioni R, Maestro R. Next-Generation Sequencing Approaches for the Identification of Pathognomonic Fusion Transcripts in Sarcomas: The Experience of the Italian ACC Sarcoma Working Group. Front Oncol 2020; 10:489. [PMID: 32351889 PMCID: PMC7175964 DOI: 10.3389/fonc.2020.00489] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/18/2020] [Indexed: 12/27/2022] Open
Abstract
This work describes the set-up of a shared platform among the laboratories of the Alleanza Contro il Cancro (ACC) Italian Research Network for the identification of fusion transcripts in sarcomas by using Next Generation Sequencing (NGS). Different NGS approaches, including anchored multiplex PCR and hybrid capture-based panels, were employed to profile a large set of sarcomas of different histotypes. The analysis confirmed the reliability of NGS RNA-based approaches in detecting sarcoma-specific rearrangements. Overall, the anchored multiplex PCR assay proved to be a fast and easy-to-analyze approach for routine diagnostics laboratories.
Collapse
Affiliation(s)
- Dominga Racanelli
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Monica Brenca
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Davide Baldazzi
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Frauke Goeman
- Department of Research, Diagnosis and Innovative Technology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Beatrice Casini
- Department of Research, Diagnosis and Innovative Technology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Biagio De Angelis
- Department of Onco-Haematology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marika Guercio
- Department of Onco-Haematology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppe Maria Milano
- Department of Onco-Haematology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elena Tamborini
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Adele Busico
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gianpaolo Dagrada
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Cecilia Garofalo
- Advanced Translational Research Laboratory, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Chiara Caruso
- Advanced Translational Research Laboratory, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Antonella Brunello
- Medical Oncology 1, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Ymera Pignochino
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Enrico Berrino
- Unit of Pathology, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Italy
| | - Giovanni Grignani
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Parra
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Maria Vincenza Carriero
- Tumor Progression Unit, Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale" IRCCS, Naples, Italy
| | - Matteo Pallocca
- Department of Research, Diagnosis and Innovative Technology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Rossella Loria
- Department of Research, Diagnosis and Innovative Technology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Renato Covello
- Department of Research, Diagnosis and Innovative Technology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marta Sbaraglia
- Department of Pathology, Azienda Ospedaliera Universitaria di Padova, Padua, Italy
| | - Angelo Paolo Dei Tos
- Department of Pathology, Azienda Ospedaliera Universitaria di Padova, Padua, Italy.,Department of Medicine, University of Padua School of Medicine, Padua, Italy
| | - Rita Falcioni
- Department of Research, Diagnosis and Innovative Technology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| |
Collapse
|
27
|
PGR Gene Fusions Identify a Molecular Subset of Uterine Epithelioid Leiomyosarcoma With Rhabdoid Features. Am J Surg Pathol 2020; 43:810-818. [PMID: 30829727 DOI: 10.1097/pas.0000000000001239] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic aberrations among uterine epithelioid leiomyosarcomas are unknown. Following identification of an index case with NR4A3-PGR fusion demonstrating monomorphic morphologic features, we interrogated additional uterine tumors demonstrating similar histology and sought to describe the morphologic and immunohistochemical characteristics of PGR-rearranged sarcomas. Targeted next-generation RNA sequencing was performed on RNA extracted from formalin-fixed paraffin-embedded tissue of the index case. Fluorescence in situ hybridization using custom probes flanking PGR and NR4A3 genes was applied to 17 epithelioid leiomyosarcomas, 6 endometrial stromal tumors, and 3 perivascular epithelioid cell tumors. NR4A3-PGR fusion (n=4) and PGR rearrangement (n=2) were detected in 6 (35%) epithelioid leiomyosarcomas. Median patient age was 45 years, and all presented with FIGO stage I or II tumors, 2 being alive with disease at 75 and 180 months. All tumors were centered in the cervical stroma or myometrium and consisted of cells with abundant eosinophilic cytoplasm (epithelioid), including many displaying dense intracytoplasmic inclusions (rhabdoid). Myxoid matrix and hydropic change imparted a microcystic growth pattern in 4 tumors. Five also showed a minor spindle cell component which was low-grade in 3, consisting of bland spindle cells with low mitotic activity. High-grade spindle cell morphology was seen in 2 tumors, exhibiting a storiform pattern of atypical spindle cells associated with brisk mitotic activity. Desmin, estrogen receptor, and progesterone receptor were positive in all 6 tumors, while CD10 and HMB45 were negative. PGR rearrangements define a genetic subset of epithelioid leiomyosarcomas with often biphasic morphology consisting of epithelioid and rhabdoid as well as spindle cell components.
Collapse
|
28
|
ZC3H7B-BCOR high-grade endometrial stromal sarcoma may present as myoma nascens with cytoplasmic signet ring cell change. Virchows Arch 2020; 476:615-619. [PMID: 31938824 DOI: 10.1007/s00428-020-02744-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 01/01/2023]
Abstract
We report on 51-year-old woman who presented with brown discharge and postcoital bleeding due to myoma nascens-like polypoid mass distending cervical canal. Histologically, the tumor consisted of high-grade spindle cell component with up to 15 mitotic figures per 10 HPF and also low-grade leiomyoma-like areas with focal myxoid change and so far undescribed cytoplasmic signet ring cell change. Immunohistochemically Desmin, actin, and h-caldesmon were negative. Conversely, BCOR positive expression was coupled with Cyclin D1 positivity and was antibody clone dependent. The molecular NGS and FISH study identified reciprocal fusion gene ZC3H7B-BCOR. In conclusion, these findings further support the idea of routine reflex molecular testing of uterine mesenchymal tumors with unusual clinical presentation or in case malignancy is suspected. Lastly, we suggest ZC3H7B-BCOR rearranged high-grade endometrial stromal sarcoma might be considered as a tumor suitable for BCL6-targeted treatment.
Collapse
|
29
|
Lempiäinen JK, Manjur ABMK, Malinen M, Ketola K, Niskanen EA, Palvimo JJ. BCOR-coupled H2A monoubiquitination represses a subset of androgen receptor target genes regulating prostate cancer proliferation. Oncogene 2020; 39:2391-2407. [PMID: 31925334 DOI: 10.1038/s41388-020-1153-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/17/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022]
Abstract
We have identified BCL6 corepressor (BCOR) as a hormone-dependent interaction partner of androgen receptor (AR), a key transcription factor in the development of normal and cancerous prostate. BCOR is often mutated in cancers and hematological diseases and as a component of a non-canonical polycomb repressive complex 1 (ncPRC1.1) required for arranging many facets of cellular differentiation. However, its role in androgen signaling or prostate cancer cells remains unknown. Here, our genome-wide analyses reveal that BCOR is recruited in an androgen-dependent fashion to majority of AR-binding chromatin sites in castration-resistant prostate cancer (CRPC) cells. Interestingly, depletion of BCOR has a significant effect on the expression of androgen-repressed genes linked to regulation of cell proliferation, differentiation and development. At many of these genes, such as HOX genes, the depletion leads to a decrease in H2A K119 monoubiquitination and an increase in mRNA expression. Consistently, BCOR depletion impairs the proliferation and viability of CRPC cells, inducing their apoptosis. Collectively, our data indicate a key role for the BCOR-ncPRC1.1 complex in the corepression of an important subset of AR target genes and the regulation of prostate cancer cell proliferation.
Collapse
Affiliation(s)
| | | | - Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Kirsi Ketola
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
30
|
Kommoss FKF, Stichel D, Schrimpf D, Kriegsmann M, Tessier-Cloutier B, Talhouk A, McAlpine JN, Chang KTE, Sturm D, Pfister SM, Romero-Pérez L, Kirchner T, Grünewald TGP, Buslei R, Sinn HP, Mechtersheimer G, Schirmacher P, Schmidt D, Lehr HA, Sahm F, Huntsman DG, Gilks CB, Kommoss F, von Deimling A, Koelsche C. DNA methylation-based profiling of uterine neoplasms: a novel tool to improve gynecologic cancer diagnostics. J Cancer Res Clin Oncol 2019; 146:97-104. [PMID: 31768620 DOI: 10.1007/s00432-019-03093-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Uterine neoplasms comprise a broad spectrum of lesions, some of which may pose a diagnostic challenge even to experienced pathologists. Recently, genome-wide DNA methylation-based classification of central nervous system tumors has been shown to increase diagnostic precision in clinical practice when combined with standard histopathology. In this study, we describe DNA methylation patterns of a diverse set of uterine neoplasms and test the applicability of array-based DNA methylation profiling. METHODS A multicenter cohort including prototypical epithelial and mesenchymal uterine neoplasms was collected. Tumors were subject to pathology review and array-based DNA methylation profiling (Illumina Infinium HumanMethylation450 or EPIC [850k] BeadChip). Methylation data were analyzed by unsupervised hierarchical clustering and t-SNE analysis. RESULTS After sample retrieval and pathology review the study cohort consisted of 49 endometrial carcinomas (EC), 5 carcinosarcomas (MMMT), 8 uterine leiomyomas (ULMO), 7 uterine leiomyosarcomas (ULMS), 15 uterine tumor resembling ovarian sex cord tumors (UTROSCT), 17 low-grade endometrial stromal sarcomas (LGESS) and 9 high-grade endometrial stromal sarcomas (HGESS). Analysis of methylation data identified distinct methylation clusters, which correlated with established diagnostic categories of uterine neoplasms. MMMT clustered together with EC, while ULMO, ULMS and UTROSCT each formed distinct clusters. The LGESS cluster differed from that of HGESS, and within the branch of HGESS, we observed a notable subgrouping of YWHAE- and BCOR-rearranged tumors. CONCLUSION Herein, we describe distinct DNA methylation signatures in uterine neoplasms and show that array-based DNA methylation analysis holds promise as an ancillary tool to further characterize uterine neoplasms, especially in cases which are diagnostically challenging by conventional techniques.
Collapse
Affiliation(s)
- Felix K F Kommoss
- Department of Pathology, Institute of Pathology, Heidelberg University Hospital, INF 224, 69120, Heidelberg, Germany
| | - Damian Stichel
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark Kriegsmann
- Department of Pathology, Institute of Pathology, Heidelberg University Hospital, INF 224, 69120, Heidelberg, Germany
| | - Basile Tessier-Cloutier
- Department of Pathology and Laboratory Medicine, University of British Columbia and BC Cancer Agency, Vancouver, BC, Canada
| | - Aline Talhouk
- Department of Pathology and Laboratory Medicine, University of British Columbia and BC Cancer Agency, Vancouver, BC, Canada
| | - Jessica N McAlpine
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, University of British Columbia, Vancouver, BC, Canada
| | - Kenneth T E Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Dominik Sturm
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Laura Romero-Pérez
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Rolf Buslei
- Institute of Pathology, Sozialstiftung Bamberg, Bamberg, Germany
| | - Hans-Peter Sinn
- Department of Pathology, Institute of Pathology, Heidelberg University Hospital, INF 224, 69120, Heidelberg, Germany
| | - Gunhild Mechtersheimer
- Department of Pathology, Institute of Pathology, Heidelberg University Hospital, INF 224, 69120, Heidelberg, Germany
| | - Peter Schirmacher
- Department of Pathology, Institute of Pathology, Heidelberg University Hospital, INF 224, 69120, Heidelberg, Germany
| | | | - Hans-Anton Lehr
- Institute of Pathology, Medizin Campus Bodensee, Friedrichshafen, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia and BC Cancer Agency, Vancouver, BC, Canada
| | - C Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia and BC Cancer Agency, Vancouver, BC, Canada
| | - Friedrich Kommoss
- Institute of Pathology, Medizin Campus Bodensee, Friedrichshafen, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Koelsche
- Department of Pathology, Institute of Pathology, Heidelberg University Hospital, INF 224, 69120, Heidelberg, Germany.
| |
Collapse
|
31
|
Agaram NP, Zhang L, Dickson BC, Swanson D, Sung YS, Panicek DM, Hameed M, Healey JH, Antonescu CR. A molecular study of synovial chondromatosis. Genes Chromosomes Cancer 2019; 59:144-151. [PMID: 31589790 DOI: 10.1002/gcc.22812] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022] Open
Abstract
Synovial chondromatosis (SC) is a rare benign cartilaginous neoplasm in which recurrent fibronectin 1 (FN1) and activin receptor 2A (ACVR2A) gene rearrangements have been recently reported. Triggered by a case of malignant transformation in SC (synovial chondrosarcoma) showing a novel KMT2A-BCOR gene fusion by targeted RNA sequencing, we sought to evaluate the molecular abnormalities in a cohort of 27 SC cases using a combined methodology of fluorescence in situ hybridization (FISH) and/or targeted RNA sequencing. Results showed that FN1 and /or ACVR2A gene rearrangements were noted in 18 cases (67%), with an FN1-ACVR2A fusion being confirmed in 15 (56%) cases. Two cases showed only FN1 gene rearrangement, without other abnormalities. A novel FN1-NFATc2 gene fusion was noted in one case by RNA sequencing. The remaining nine cases showed no abnormalities in FN1 and ACVR2A genes. No additional cases showed BCOR gene alterations. In conclusion, this study confirms that FN1-ACVR2A fusion is the leading pathogenetic event in SC, at even higher frequency than previously reported. FISH methodology emerges as an appropriate tool in the identification of FN1 and ACVR2A gene abnormalities, which can be used in challenging cases. Further studies are needed to determine the recurrent potential of BCOR abnormalities in this disease.
Collapse
Affiliation(s)
- Narasimhan P Agaram
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lei Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - David Swanson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yun-Shao Sung
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David M Panicek
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John H Healey
- Orthopaedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
32
|
Lax SF. [Mesenchymal and mixed uterine tumors : Current overview and practical aspects]. DER PATHOLOGE 2019; 40:36-45. [PMID: 30694356 DOI: 10.1007/s00292-019-0567-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Benign leiomyomas are the most frequent mesenchymal tumors of the uterus. In contrast, uterine sarcomas are very rare. Leiomyosarcomas are the most frequent sarcomas followed by endometrial stromal sarcomas (ESS). Leiomyosarcomas are characterized by marked nuclear atypia and high mitotic count and may also show tumor cell necrosis and myometrial and vascular invasion. For cases of diagnostic uncertainty, the category of smooth muscle tumor of uncertain malignant potential (STUMP) may be considered but should be rarely used. Besides low-grade ESS and stromal nodules, a category of high-grade ESS was reconsidered by the WHO in 2014. High-grade ESS are characterized by fibromyxoid and round cell histology, myoinvasive growth, and immunoreactivity for cyclin D1 and BCOR and distinct gene fusions involving YWHAE and BCOR, respectively. The very rare undifferentiated uterine sarcomas need to be redefined due to overlap with high-grade ESS. Uterine tumors resembling ovarian sex cord tumors (UTROSCT) rarely behave malignant, but need to be distinguished from endometrial carcinomas. Mixed epithelial and mesenchymal tumors of the uterus are rare with carcinosarcomas occurring more frequently than adenosarcomas. For prognosis of adenosarcomas the recognition of sarcomatous overgrowth is crucial. Carcinosarcomas are histologically heterogeneous although genetically clonal; biologically they are considered as undifferentiated carcinomas. There will be an increasing importance of molecular pathology for the classification of rare and unusual mesenchymal uterine tumors.
Collapse
Affiliation(s)
- S F Lax
- Institut für Klinische Pathologie und Molekularpathologie, LKH Graz II, Standort West, Akademisches Lehrkrankenhaus der Medizinischen Universität Graz, Göstinger Straße 22, 8020, Graz, Österreich.
| |
Collapse
|
33
|
Dvorská D, Škovierová H, Braný D, Halašová E, Danková Z. Liquid Biopsy as a Tool for Differentiation of Leiomyomas and Sarcomas of Corpus Uteri. Int J Mol Sci 2019; 20:E3825. [PMID: 31387281 PMCID: PMC6695893 DOI: 10.3390/ijms20153825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/10/2023] Open
Abstract
Utilization of liquid biopsy in the management of cancerous diseases is becoming more attractive. This method can overcome typical limitations of tissue biopsies, especially invasiveness, no repeatability, and the inability to monitor responses to medication during treatment as well as condition during follow-up. Liquid biopsy also provides greater possibility of early prediction of cancer presence. Corpus uteri mesenchymal tumors are comprised of benign variants, which are mostly leiomyomas, but also a heterogenous group of malignant sarcomas. Pre-surgical differentiation between these tumors is very difficult and the final description of tumor characteristics usually requires excision and histological examination. The leiomyomas and malignant leiomyosarcomas are especially difficult to distinguish and can, therefore, be easily misdiagnosed. Because of the very aggressive character of sarcomas, liquid biopsy based on early diagnosis and differentiation of these tumors would be extremely helpful. Moreover, after excision of the tumor, liquid biopsy can contribute to an increased knowledge of sarcoma behavior at the molecular level, especially on the formation of metastases which is still not well understood. In this review, we summarize the most important knowledge of mesenchymal uterine tumors, the possibilities and benefits of liquid biopsy utilization, the types of molecules and cells that can be analyzed with this approach, and the possibility of their isolation and capture. Finally, we review the typical abnormalities of leiomyomas and sarcomas that can be searched and analyzed in liquid biopsy samples with the final aim to pre-surgically differentiate between benign and malignant mesenchymal tumors.
Collapse
Affiliation(s)
- Dana Dvorská
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Henrieta Škovierová
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dušan Braný
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia.
| | - Erika Halašová
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Zuzana Danková
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
34
|
Ferris SP, Velazquez Vega J, Aboian M, Lee JC, Van Ziffle J, Onodera C, Grenert JP, Saunders T, Chen YY, Banerjee A, Kline CN, Gupta N, Raffel C, Samuel D, Ruiz-Diaz I, Magaki S, Wilson D, Neltner J, Al-Hajri Z, Phillips JJ, Pekmezci M, Bollen AW, Tihan T, Schniederjan M, Cha S, Perry A, Solomon DA. High-grade neuroepithelial tumor with BCOR exon 15 internal tandem duplication-a comprehensive clinical, radiographic, pathologic, and genomic analysis. Brain Pathol 2019; 30:46-62. [PMID: 31104347 DOI: 10.1111/bpa.12747] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022] Open
Abstract
High-grade neuroepithelial tumor with BCOR exon 15 internal tandem duplication (HGNET BCOR ex15 ITD) is a recently proposed tumor entity of the central nervous system (CNS) with a distinct methylation profile and characteristic genetic alteration. The complete spectrum of histologic features, accompanying genetic alterations, clinical outcomes, and optimal treatment for this new tumor entity are largely unknown. Here, we performed a comprehensive assessment of 10 new cases of HGNET BCOR ex15 ITD. The tumors mostly occurred in young children and were located in the cerebral or cerebellar hemispheres. On imaging all tumors were large, well-circumscribed, heterogeneous masses with variable enhancement and reduced diffusion. They were histologically characterized by predominantly solid growth, glioma-like fibrillarity, perivascular pseudorosettes, and palisading necrosis, but absence of microvascular proliferation. They demonstrated sparse to absent GFAP expression, no synaptophysin expression, variable OLIG2 and NeuN positivity, and diffuse strong BCOR nuclear positivity. While BCOR exon 15 internal tandem duplication was the solitary pathogenic alteration identified in six cases, four cases contained additional alterations including CDKN2A/B homozygous deletion, TERT amplification or promoter hotspot mutation, and damaging mutations in TP53, BCORL1, EP300, SMARCA2 and STAG2. While the limited clinical follow-up in prior reports had indicated a uniformly dismal prognosis for this tumor entity, this cohort includes multiple long-term survivors. Our study further supports inclusion of HGNET BCOR ex15 ITD as a distinct CNS tumor entity and expands the known clinicopathologic, radiographic, and genetic features.
Collapse
Affiliation(s)
- Sean P Ferris
- Department of Pathology, University of California, San Francisco, CA
| | | | - Mariam Aboian
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Julieann C Lee
- Department of Pathology, University of California, San Francisco, CA
| | - Jessica Van Ziffle
- Department of Pathology, University of California, San Francisco, CA.,Clinical Cancer Genomics Laboratory, University of California, San Francisco, CA
| | - Courtney Onodera
- Department of Pathology, University of California, San Francisco, CA.,Clinical Cancer Genomics Laboratory, University of California, San Francisco, CA
| | - James P Grenert
- Department of Pathology, University of California, San Francisco, CA.,Clinical Cancer Genomics Laboratory, University of California, San Francisco, CA
| | - Tara Saunders
- Department of Pathology, University of California, San Francisco, CA
| | - Yunn-Yi Chen
- Department of Pathology, University of California, San Francisco, CA
| | - Anu Banerjee
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, CA
| | - Cassie N Kline
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, CA.,Department of Neurology, University of California, San Francisco, CA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, CA
| | - Corey Raffel
- Department of Neurological Surgery, University of California, San Francisco, CA
| | - David Samuel
- Department of Hematology-Oncology, Valley Children's Hospital, Madera, CA
| | - Irune Ruiz-Diaz
- Department of Pathology, Hospital Universitario Donostia, Gipuzkoa, Spain
| | - Shino Magaki
- Department of Pathology and Human Anatomy, Loma Linda University Medical Center, Loma Linda, CA
| | - Dianne Wilson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY
| | - Janna Neltner
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY
| | - Zahra Al-Hajri
- Department of Histopathology, Khoula Hospital, Muscat, Sultanate of Oman
| | - Joanna J Phillips
- Department of Pathology, University of California, San Francisco, CA.,Department of Neurological Surgery, University of California, San Francisco, CA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, CA
| | - Andrew W Bollen
- Department of Pathology, University of California, San Francisco, CA
| | - Tarik Tihan
- Department of Pathology, University of California, San Francisco, CA
| | | | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Arie Perry
- Department of Pathology, University of California, San Francisco, CA.,Department of Neurological Surgery, University of California, San Francisco, CA
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, CA.,Clinical Cancer Genomics Laboratory, University of California, San Francisco, CA
| |
Collapse
|
35
|
Abstract
BCOR is a gene that encodes for an epigenetic regulator involved in the specification of cell differentiation and body structure development and takes part in the noncanonical polycomb repressive complex 1. This review provides a comprehensive summary of BCOR’s involvement in oncology, illustrating that various BCOR aberrations, such as the internal tandem duplications of the PCGF Ub-like fold discriminator domain and different gene fusions (mainly BCOR–CCNB3, BCOR–MAML3 and ZC3H7B–BCOR), represent driver elements of various sarcomas such as clear cell sarcoma of the kidney, primitive mesenchymal myxoid tumor of infancy, small round blue cell sarcoma, endometrial stromal sarcoma and histologically heterogeneous CNS neoplasms group with similar genomic methylation patterns known as CNS-HGNET-BCOR. Furthermore, other BCOR alterations (often loss of function mutations) recur in a large variety of mesenchymal, epithelial, neural and hematological tumors, suggesting a central role in cancer evolution.
Collapse
Affiliation(s)
- Annalisa Astolfi
- 'Giorgio Prodi' Cancer Research Center, University of Bologna, 40138 Bologna, Italy
| | - Michele Fiore
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Fraia Melchionda
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Valentina Indio
- 'Giorgio Prodi' Cancer Research Center, University of Bologna, 40138 Bologna, Italy
| | - Salvatore N Bertuccio
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Andrea Pession
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy.,Department of Medical & Surgical Sciences, University of Bologna, S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| |
Collapse
|
36
|
Xu Y, Liang ZX, Guo JT, Su X, Lu YL, Guan XZ. Cystic and solitary nodular pulmonary metastases in a patient with low-grade endometrial stromal sarcoma: A case report and literature review. Oncol Lett 2019; 18:1133-1144. [PMID: 31423173 PMCID: PMC6607033 DOI: 10.3892/ol.2019.10409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/17/2019] [Indexed: 01/24/2023] Open
Abstract
Pulmonary metastases of endometrial stromal sarcoma (ESS) are uncommon and can be difficult to diagnose. The aims of the present study were to investigate the clinical and pathological features, and enhance the awareness of pulmonary metastases in patients with low-grade ESS. The study reports a case of low-grade ESS that resulted in cystic and nodular pulmonary metastases. Furthermore, the PubMed database was searched using 'pulmonary metastases of low-grade endometrial stromal sarcoma' as the key phrase. The literature on pulmonary metastases of low-grade ESS was reviewed and 35 cases were included in the present study. The clinical manifestations, imaging data, pathological features, treatment and prognosis of the 35 previously reported cases and the current case were retrospectively analyzed. The age range of the 36 patients diagnosed with low-grade ESS was 28-65 years. The time period from confirmation of ESS to lung metastases was 1.5-27 years. In 50% of the patients, the pulmonary metastases were asymptomatic. The most common pulmonary symptom was dyspnea, followed by chest pain, pneumothorax and coughing. The most common chest imaging presentation was multiple pulmonary nodules, followed by a solitary nodule or mass. Histology was used to identify that the pulmonary metastases had the pathological features of low-grade ESS. The immunohistochemical results demonstrated strong diffuse immunoreactivity for cluster of differentiation 10, estrogen receptor and progesterone receptor in almost all the specimens. The review of the literature revealed that pulmonary metastases from low-grade ESS are rare but not negligible. Furthermore, the detailed clinical information, imaging findings and immunohistochemical detection are important for making a diagnosis.
Collapse
Affiliation(s)
- Yang Xu
- Department of Respiratory Diseases, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Zhi-Xin Liang
- Department of Respiratory Diseases, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Jun-Tang Guo
- Department of Thoracic Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Xin Su
- Department of Respiratory Diseases, Hainan Branch of Chinese People's Liberation Army General Hospital, Sanya, Hainan 572013, P.R. China
| | - Yun-Long Lu
- Department of Pathology, Hainan Branch of Chinese People's Liberation Army General Hospital, Sanya, Hainan 572013, P.R. China
| | - Xi-Zhou Guan
- Department of Respiratory Diseases, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
37
|
BCOR-CCNB3 Fusion Positive Sarcomas: A Clinicopathologic and Molecular Analysis of 36 Cases With Comparison to Morphologic Spectrum and Clinical Behavior of Other Round Cell Sarcomas. Am J Surg Pathol 2019; 42:604-615. [PMID: 29300189 DOI: 10.1097/pas.0000000000000965] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BCOR-CCNB3 sarcoma (BCS) is a recently defined genetic entity among undifferentiated round cell sarcomas, which was initially classified as and treated similarly to the Ewing sarcoma (ES) family of tumors. In contrast to ES, BCS shows consistent BCOR overexpression, and preliminary evidence suggests that these tumors share morphologic features with other tumors harboring BCOR genetic alterations, including BCOR internal tandem duplication (ITD) and BCOR-MAML3. To further investigate the pathologic features, clinical behavior, and their relationship to other round cell sarcomas, we collected 36 molecularly confirmed BCSs for a detailed histologic and immunohistochemical analysis. Four of the cases were also analyzed by RNA sequencing (RNAseq). An additional case with BCOR overexpression but negative CCNB3 abnormality showed a novel KMT2D-BCOR fusion by targeted RNAseq. The patients ranged in age from 2 to 44 years old (mean and median, 15), with striking male predominance (M:F=31:5). The tumor locations were slightly more common in bone (n=20) than soft tissue (n=14), with rare visceral (kidney, n=2) involvement. Histologically, BCS showed a spectrum of round to spindle cells with variable cellularity, monomorphic nuclei and fine chromatin pattern, delicate capillary network, and varying amounts of myxoid or collagenous stroma. The morphologic features and immunoprofile showed considerable overlap with other round cell sarcomas with BCOR oncogenic upregulation, that is, BCOR-MAML3 and BCOR ITD. Follow-up available in 22 patients showed a 5-year overall survival of 72%, which was relatively similar to ES (79%, P=0.738) and significantly better than CIC-DUX4 sarcomas (43%, P=0.005) control groups. Local recurrences occurred in 6 patients and distant metastases (lung, soft tissue/bone, pancreas) in 4. Seven of 9 cases treated with an ES chemotherapy regimen with evaluable histologic response showed >60% necrosis in posttherapy resections. Unsupervised clustering by RNAseq data revealed that tumors with BCOR genetic alterations, including BCOR-CCNB3, BCOR-MAML3, and BCOR ITD, formed a tight genomic group distinct from ES and CIC-rearranged sarcomas.
Collapse
|
38
|
Zhang YY, Li Y, Qin M, Cai Y, Jin Y, Pan LY. High-grade endometrial stromal sarcoma: a retrospective study of factors influencing prognosis. Cancer Manag Res 2019; 11:831-837. [PMID: 30697075 PMCID: PMC6340498 DOI: 10.2147/cmar.s187849] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the factors associated with progress-free survival (PFS) and overall survival (OS) in patients with high-grade endometrial stromal sarcoma (HG-ESS). PATIENTS AND METHODS A total of 40 patients were enrolled in this study at the Peking Union Medical College Hospital, Beijing, China, from 2006 to 2016. The study retrospectively analyzed clinical and pathological data, and associations of these variables with PFS and OS were evaluated. RESULTS The age of the patients at the time of diagnosis ranged from 16 to 73 years. Abnormal vaginal bleeding was the most commonly observed symptom. The tumor size ranged from 2 to 19 cm. The tumor locations were as follows: vulva (1 case), ovary (2 cases), broad ligament (2 cases), cervix (7 cases), and uterus (28 cases). A total of 34 (85%) and 6 (15%) patients underwent complete and ovarian preservation surgery, respectively. Notably, 33 (82.5%), 13 (32.5%), and 5 (12.5%) patients received adjuvant chemotherapy, radiation therapy, and hormone treatment, respectively. Lymph node dissection was performed in 15 (37.5%) patients (positive rate: 7.4%), 16 (40%) patients underwent omentectomy (positive rate: 10%), and 12 (30%) patients underwent peritoneal lavage cytology (positive rate: 0%). Eighteen (45%) patients had lymphovascular space invasion, 13 (32.5%) patients had uterine fibroids, and 11 (27.5%) patients were diagnosed with endometriosis. Moreover, the levels of CA125 in the serum were measured prior to and following treatment. The median PFS and OS were 9 and 24 months, respectively. Eventually, 29 (72.5%) patients experienced relapse and 19 (47.5%) patients expired due to the disease. CONCLUSION Patients with advanced HG-ESS (stage II-IV) were associated with poor prognosis. The minimum value of CA125 and endometriosis were independent risk factors for PFS. The stage of disease, size of the tumor, minimum and average values of CA125, menopause, history of uterine leiomyoma, and endometriosis were independent risk factors for OS. The combination of surgery with radiotherapy and chemotherapy may improve the PFS of patients in the early stage of the disease.
Collapse
Affiliation(s)
- Yan-Yan Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China, ;
| | - Yan Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China, ;
| | - Meng Qin
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China, ;
| | - Yan Cai
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China, ;
| | - Ying Jin
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China, ;
| | - Ling-Ya Pan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China, ;
| |
Collapse
|
39
|
Tsuyoshi H, Yoshida Y. Molecular biomarkers for uterine leiomyosarcoma and endometrial stromal sarcoma. Cancer Sci 2018; 109:1743-1752. [PMID: 29660202 PMCID: PMC5989874 DOI: 10.1111/cas.13613] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022] Open
Abstract
Uterine leiomyosarcoma (u‐LMS) and endometrial stromal sarcoma (ESS) are among the most frequent soft tissue sarcomas, which, in adults, lead to fatal lung metastases and patients have an extremely poor prognosis. Due to their rarity and heterogeneity, there are no suitable biomarkers for diagnosis and prognosis, although some biomarker candidates have appeared. In 2017, The Cancer Genome Atlas (TCGA) Research Network's work on u‐LMS has confirmed mutations and deletions in RB1,TP53 and PTEN. In addition, whole‐exome sequencing of u‐LMS has confirmed and demonstrated frequent alterations in TP53,RB1, α‐thalassemia/mental retardation syndrome X‐linked (ATRX) and mediator complex subunit 12 (MED12). MED12 is a useful biomarker to diagnose uterine‐derived LMS and tumors arising from (LM) with a relatively favorable prognosis. TP53 and ATRX mutations can be important mechanisms in the pathogenesis of u‐LMS and are correlated with a poor prognosis. In an update based on the 2014 WHO classification, low‐grade ESS is often associated with gene rearrangement bringing about the JAZF 1‐SUZ12 (formerly JAZF1‐JJAZ1) fusion gene, whereas high‐grade ESS is associated with the YWHAE‐NUTM fusion gene. Low‐grade ESS with JAZF1 rearrangement may correlate with metastasis. However, high‐grade ESS with metastasis with YWHAE rearrangement shows a relatively favorable prognosis. The genetic/molecular genetic aberrations in u‐LMS and ESS are reviewed, focusing on molecular biomarkers for these primary and metastatic tumors.
Collapse
Affiliation(s)
- Hideaki Tsuyoshi
- Faculty of Medical Sciences, Department of Obstetrics and Gynecology, University of Fukui, Fukui, Japan
| | - Yoshio Yoshida
- Faculty of Medical Sciences, Department of Obstetrics and Gynecology, University of Fukui, Fukui, Japan
| |
Collapse
|
40
|
Identification of an EPC2-PHF1 fusion transcript in low-grade endometrial stromal sarcoma. Oncotarget 2018; 9:19203-19208. [PMID: 29721194 PMCID: PMC5922388 DOI: 10.18632/oncotarget.24969] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/16/2018] [Indexed: 12/03/2022] Open
Abstract
Recurrent chromosomal translocations leading to gene fusion formation have been described in uterine sarcomas, including low-grade endometrial stromal sarcoma (LG-ESS). Involvement of the PHF1 gene in chromosomal rearrangements targeting band 6p21 has been found in LG-ESS with different partners from JAZF1 mapping in 7p15, to EPC1 from 10p11, MEAF6 from 1p34, and BRD8 from 5q31. In the present study, RNA sequencing of a LG-ESS showed a novel recombination of PHF1 with the Enhancer of Polycomb homolog 2 (EPC2). RT-PCR followed by Sanger sequencing and FISH analysis confirmed the EPC2-PHF1 fusion transcript.
Collapse
|
41
|
Lewis N, Soslow RA, Delair DF, Park KJ, Murali R, Hollmann TJ, Davidson B, Micci F, Panagopoulos I, Hoang LN, Arias-Stella JA, Oliva E, Young RH, Hensley ML, Leitao MM, Hameed M, Benayed R, Ladanyi M, Frosina D, Jungbluth AA, Antonescu CR, Chiang S. ZC3H7B-BCOR high-grade endometrial stromal sarcomas: a report of 17 cases of a newly defined entity. Mod Pathol 2018; 31:674-684. [PMID: 29192652 DOI: 10.1038/modpathol.2017.162] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/19/2017] [Accepted: 10/14/2017] [Indexed: 12/12/2022]
Abstract
High-grade endometrial stromal sarcoma likely encompasses underrecognized tumors harboring genetic abnormalities besides YWHAE-NUTM2 fusion. Triggered by three initial endometrial stromal sarcomas with ZC3H7B-BCOR fusion characterized by high-grade morphology and aggressive clinical behavior, we herein investigate the clinicopathologic features of this genetic subset by expanding the analysis to 17 such tumors. All of them occurred in adult women with a median age of 54 (range, 28-71) years. They were predominantly based in the endomyometrium and demonstrated tongue-like and/or pushing myometrial invasion. Most were uniformly cellular and displayed haphazard fascicles of spindle cells with mild to moderate nuclear atypia. Myxoid matrix was seen in 14 of 17 (82%) tumors, and collagen plaques were seen in 8 (47%). The mitotic index was ≥10 mitotic figures/10 high-power fields (HPFs) in 14 of 17 (82%) tumors with a median of 14.5 mitotic figures/10 HPFs. No foci of conventional or variant low-grade endometrial stromal sarcoma were seen. All tumors expressed CD10 with only limited or absent desmin, SMA and/or h-caldesmon staining. ER and PR expression in >5% of cells was seen in 4 of 12 (33%) tumors. Diffuse cyclin D1 and BCOR immunoreactivity was present in 7 of 8 (88%) and 7 of 14 (50%) tumors, respectively. Fluorescence in situ hybridization or targeted RNA sequencing confirmed ZC3H7B-BCOR fusion in all tumors, including four and two previously diagnosed as myxoid leiomyosarcoma and undifferentiated uterine sarcoma, respectively. Limited clinical data suggest that patients present at higher stage and have worse prognosis compared with published outcomes in low-grade endometrial stromal sarcoma. Tumors with ZC3H7B-BCOR fusion constitute a distinct group of endometrial stromal sarcomas with high-grade morphology that should be distinguished from other uterine mesenchymal neoplasms that may demonstrate myxoid morphology.
Collapse
Affiliation(s)
- Natasha Lewis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert A Soslow
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Deborah F Delair
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kay J Park
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajmohan Murali
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Travis J Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ben Davidson
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute of Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute of Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Lien N Hoang
- Department of Pathology, Vancouver General Hospital, Vancouver, BC, Canada
| | | | - Esther Oliva
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Robert H Young
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Martee L Hensley
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mario M Leitao
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Denise Frosina
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Achim A Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah Chiang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
42
|
Specht K, Hartmann W. [Ewing sarcomas and Ewing-like sarcomas : New aspects]. DER PATHOLOGE 2018; 39:154-163. [PMID: 29480450 DOI: 10.1007/s00292-018-0421-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sarcomas of the Ewing family of tumors are aggressive neoplasms occurring in bone and soft tissue of mostly children and young adults. Classical Ewing sarcomas are pathognomonically characterized by fusions between a gene of the RNA-binding TET family (EWSR1 or FUS) with a gene of the ETS-transcription family (FLI1, ERG, ETV1, ETV4 or FEV). Less frequent cases designated as Ewing-like sarcomas show different genetic rearrangements between EWSR1 and non-ETS genes (NFATC2, POU5F1, SMARCA5, PATZ, ZSG, SP3). Moreover, new molecular alterations biologically unrelated to Ewing sarcomas have recently been described in the category of undifferentiated round cell sarcomas including CIC-DUX4 fusions or BCOR alterations, each carrying unique gene expression signatures. In contrast to classical Ewing sarcomas, the morphologic spectrum of these tumor entities is much broader and includes round cell areas as well as spindled and myxoid components. The immunohistochemical profile with inconsistent CD99 positivity makes diagnosis more difficult and requires the use of a broad spectrum of antibodies and elaborate molecular work-up. Further studies for future therapeutic decision making in these newly described round cell sarcomas as well as for molecular subclassification of undifferentiated round cell sarcomas are ongoing.
Collapse
Affiliation(s)
- K Specht
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Ismaninger Str. 22, 81675, München, Deutschland.
| | - W Hartmann
- Gerhard-Domagk-Institut für Pathologie, Universitätsklinikum Münster, Münster, Deutschland
| |
Collapse
|
43
|
The JAZF1-SUZ12 fusion protein disrupts PRC2 complexes and impairs chromatin repression during human endometrial stromal tumorogenesis. Oncotarget 2018; 8:4062-4078. [PMID: 27845897 PMCID: PMC5354813 DOI: 10.18632/oncotarget.13270] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/29/2016] [Indexed: 11/27/2022] Open
Abstract
The Polycomb repressive complex 2 (PRC2), which contains three core proteins EZH2, EED and SUZ12, controls chromatin compaction and transcription repression through trimethylation of lysine 27 on histone 3. The (7;17)(p15;q21) chromosomal translocation present in most cases of endometrial stromal sarcomas (ESSs) results in the in-frame fusion of the JAZF1 and SUZ12 genes. We have investigated whether and how the fusion protein JAZF1-SUZ12 functionally alters PRC2. We found that the fusion protein exists at high levels in ESS containing the t(7;17). Co-transient transfection assay indicated JAZF1-SUZ12 destabilized PRC2 components EZH2 and EED, resulting in decreased histone methyl transferase (HMT) activity, which was confirmed by in vitro studies using reconstituted PRC2 and nucleosome array substrates. We also demonstrated the PRC2 containing the fusion protein decreased the binding affinity to target chromatin loci. In addition, we found that trimethylation of H3K27 was decreased in ESS samples with the t(7;17), but there was no detectable change in H3K9 in these tissues. Moreover, re-expression of SUZ12 in Suz12 (−/−) ES cells rescued the neuronal differentiation while the fusion protein failed to restore this function and enhanced cell proliferation. In summary, our studies reveal that JAZF1-SUZ12 fusion protein disrupts the PRC2 complex, abolishes HMT activity and subsequently activates chromatin/genes normally repressed by PRC2. Such dyesfunction of PRC2 inhibits normal neural differentiation of ES cell and increases cell proliferation. Related changes induced by the JAZF-SUZ12 protein in endometrial stromal cells may explain the oncogenic effect of the t(7;17) in ESS.
Collapse
|
44
|
Brunetti M, Panagopoulos I, Gorunova L, Davidson B, Heim S, Micci F. RNA-sequencing identifies novel GREB1-NCOA2 fusion gene in a uterine sarcoma with the chromosomal translocation t(2;8)(p25;q13). Genes Chromosomes Cancer 2017; 57:176-181. [PMID: 29218853 PMCID: PMC5838407 DOI: 10.1002/gcc.22518] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 01/03/2023] Open
Abstract
Sarcomas account for 3% of all uterine malignancies and many of them are characterized by acquired, specific fusion genes whose detection has increased pathogenetic knowledge and diagnostic precision. We describe a novel fusion gene, GREB1-NCOA2, detected by transcriptome sequencing and validated by reverse transcriptase polymerase chain reaction and Sanger sequencing in an undifferentiated uterine sarcoma. The chimeric transcript was an in-frame fusion between exon 3 of GREB1 and exon 15 of NCOA2. The fusion is reported here for the first time, but it involves the GREB1 gene, an important promoter of tumor growth and progression, and NCOA2 which is known to be involved in transcriptional regulation. The alteration and recombination of these genes played a role in the tumorigenesis and/or progression of this sarcoma.
Collapse
Affiliation(s)
- Marta Brunetti
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ben Davidson
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
45
|
Micci F, Brunetti M, Dal Cin P, Nucci MR, Gorunova L, Heim S, Panagopoulos I. Fusion of the genes BRD8 and PHF1 in endometrial stromal sarcoma. Genes Chromosomes Cancer 2017; 56:841-845. [PMID: 28758277 PMCID: PMC5763393 DOI: 10.1002/gcc.22485] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 01/01/2023] Open
Abstract
We present a new endometrial stromal sarcoma (ESS)-associated genomic rearrangement involving chromosome arms 5p and 6p and leading to the formation of a BRD8-PHF1 fusion gene. The PHF1 (PHD finger protein 1) gene, from 6p21, is known to be rearranged in ESS in a promiscuous way inasmuch as it has been shown to recombine with JAZF1, EPC1, MEAF6, and now also with BRD8, in tumors of this type. In all rearrangements of PHF1, including the present one, a recurrent theme is that the entire coding part of PHF1 constitutes the 3' end of the fusion. BRD8 (bromodomain containing 8) encodes a protein which is involved in regulation of protein acetylation and/or histone acetyl transferase activity. All the genetic fusions identified so far in ESS appear to recombine genes involved in transcriptional regulation, that is, polycomb group complex-mediated and aberrant methylation/acetylation genes. This adds to the likelihood that the new BRD8-PHF1 shares the same pathogenetic mechanism as the other ESS-specific rearrangements.
Collapse
Affiliation(s)
- Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University HospitalNorway
| | - Marta Brunetti
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University HospitalNorway
| | - Paola Dal Cin
- Department of PathologyBrigham and Women's HospitalBostonMassachusetts
| | - Marisa R. Nucci
- Department of PathologyBrigham and Women's HospitalBostonMassachusetts
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University HospitalNorway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University HospitalNorway
- Faculty of MedicineUniversity of OsloNorway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University HospitalNorway
| |
Collapse
|
46
|
Recurrent BCOR Internal Tandem Duplication and YWHAE-NUTM2B Fusions in Soft Tissue Undifferentiated Round Cell Sarcoma of Infancy: Overlapping Genetic Features With Clear Cell Sarcoma of Kidney. Am J Surg Pathol 2017; 40:1009-20. [PMID: 26945340 DOI: 10.1097/pas.0000000000000629] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Soft tissue undifferentiated round cell sarcoma (URCS) occurring in infants is a heterogenous group of tumors, often lacking known genetic abnormalities. On the basis of a t(10;17;14) karyotype in a pelvic URCS of a 4-month-old boy showing similar breakpoints with clear cell sarcoma of kidney (CCSK), we have investigated the possibility of shared genetic abnormalities in CCSK and soft tissue URCS. Most CCSKs are characterized by BCOR exon 16 internal tandem duplications (ITDs), whereas a smaller subset shows YWHAE-NUTM2B/E fusions. Because of overlapping clinicopathologic features, we have also investigated these genetic alterations in the so-called primitive myxoid mesenchymal tumor of infancy (PMMTI). Among the 22 infantile URCSs and 7 PMMTIs selected, RNA sequencing was performed in 5 and 2 cases, with frozen tissue, respectively. The remaining cases with archival material were tested for YWHAE-NUTM2B/E by fluorescence in situ hybridization (FISH) or reverse transcription-polymerase chain reaction (RT-PCR), and BCOR ITD by PCR. A control group of 4 CCSKs and 14 URCSs in older children or adults without known gene fusion and 20 other sarcomas with similar histomorphology or age at presentation were also tested. A YWHAE-NUTM2B fusion was confirmed in the index case by FISH and RT-PCR, whereas BCOR ITD was lacking. An identical YWHAE-NUTM2B fusion was found in another URCS case of a 5-month-old girl with a back lesion. The remaining cases and control group lacked YWHAE gene rearrangements; instead, consistent BCOR ITDs, similar to CCSK, were found in 15/29 (52%) infantile sarcoma cases (9/22 infantile URCS and 6/7 PMMTI). In the control cohort, BCOR ITD was found only in 3 CCSK cases but not in the other sarcomas. Histologically, URCS with both genotypes and PMMTI shared significant histologic overlap, with uniform small blue round cells with fine chromatin and indistinct nucleoli. A prominent capillary network similar to CCSK, rosette structures, and varying degree of myxoid change were occasionally seen. BCOR ITD-positive tumors occurred preferentially in the somatic soft tissue of the trunk, abdomen, and head and neck, sparing the extremities. RNAseq showed high BCOR mRNA levels in BCOR ITD-positive cases, compared with other URCSs. In summary, we report recurrent BCOR exon 16 ITD and YWHAE-NUTM2B fusions in half of infantile soft tissue URCS and most PMMTI cases, but not in other pediatric sarcomas. These findings suggest a significant overlap between infantile URCS and CCSK, such as age at presentation, histologic features, and genetic signature, thus raising the possibility of a soft tissue counterpart to CCSK.
Collapse
|
47
|
Novel High-grade Endometrial Stromal Sarcoma: A Morphologic Mimicker of Myxoid Leiomyosarcoma. Am J Surg Pathol 2017; 41:12-24. [PMID: 27631520 DOI: 10.1097/pas.0000000000000721] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endometrial stromal sarcomas (ESS) are often underpinned by recurrent chromosomal translocations resulting in the fusion of genes involved in epigenetic regulation. To date, only YWHAE-NUTM2 rearrangements are associated with distinctive high-grade morphology and aggressive clinical behavior. We identified 3 ESS morphologically mimicking myxoid leiomyosarcoma of the uterus and sought to describe their unique histopathologic features and identify genetic alterations using next-generation sequencing. All cases displayed predominantly spindled cells associated with abundant myxoid stroma and brisk mitotic activity. Tumors involved the endometrium and demonstrated tongue-like myometrial infiltration. All 3 were associated with an aggressive clinical course, including multisite bony metastases in 1 patient, progressive peritoneal disease after chemotherapy in another, and metastases to the lung and skin in the last patient. All 3 ESS were found to harbor ZC3H7B-BCOR gene fusions by targeted sequencing and fluorescence in situ hybridization. On the basis of the review of these cases, we find that ESS with ZC3H7B-BCOR fusion constitutes a novel type of high-grade ESS and shares significant morphologic overlap with myxoid leiomyosarcoma.
Collapse
|
48
|
BCOR Overexpression Is a Highly Sensitive Marker in Round Cell Sarcomas With BCOR Genetic Abnormalities. Am J Surg Pathol 2017; 40:1670-1678. [PMID: 27428733 DOI: 10.1097/pas.0000000000000697] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
With the advent of next-generation sequencing, an increasing number of novel gene fusions and other abnormalities have emerged recently in the spectrum of EWSR1-negative small blue round cell tumors (SBRCTs). In this regard, a subset of SBRCTs harboring either BCOR gene fusions (BCOR-CCNB3, BCOR-MAML3), BCOR internal tandem duplications (ITD), or YWHAE-NUTM2B share a transcriptional signature including high BCOR mRNA expression, as well as similar histologic features. Furthermore, other tumors such as clear cell sarcoma of kidney (CCSK) and primitive myxoid mesenchymal tumor of infancy also demonstrate BCOR ITDs and high BCOR gene expression. The molecular diagnosis of these various BCOR genetic alterations requires an elaborate methodology including custom BAC fluorescence in situ hybridization (FISH) probes and reverse transcription polymerase chain reaction assays. As these tumors show high level of BCOR overexpression regardless of the genetic mechanism involved, either conventional gene fusion or ITD, we sought to investigate the performance of an anti-BCOR monoclonal antibody clone C-10 (sc-514576) as an immunohistochemical marker for sarcomas with BCOR gene abnormalities. Thus we assessed the BCOR expression in a pathologically and genetically well-characterized cohort of 25 SBRCTs, spanning various BCOR-related fusions and ITDs and YWHAE-NUTM2B fusion. In addition, we included related pathologic entities such as 8 CCSKs and other sarcomas with BCOR gene fusions. As a control group we included 20 SBRCTs with various (non-BCOR) genetic abnormalities, 10 fusion-negative SBRCTs, 74 synovial sarcomas, 29 rhabdomyosarcomas, and other sarcoma types. In addition, we evaluated the same study group for SATB2 immunoreactivity, as these tumors also showed SATB2 mRNA upregulation. All SBRCTs with BCOR-MAML3 and BCOR-CCNB3 fusions, as well as most with BCOR ITD (93%), and all CCSKs showed strong and diffuse nuclear BCOR immunoreactivity. Furthermore, all SBRCTs with YWHAE-NUTM2B also were positive. SATB2 stain was also positive in tumors with YWHAE-NUTM2B, BCOR-MAML3, BCOR ITD (75%), BCOR-CCNB3 (71%), and a subset of CCSKs (33%). In conclusion, BCOR immunohistochemical stain is a highly sensitive marker for SBRCTs and CCSKs with BCOR abnormalities and YWHAE-rearrangements and can be used as a useful diagnostic marker in these various molecular subsets. SATB2 immunoreactivity is also present in the majority of this group of tumors.
Collapse
|
49
|
Kao YC, Sung YS, Zhang L, Kenan S, Singer S, Tap WD, Swanson D, Dickson BC, Antonescu CR. BCOR upregulation in a poorly differentiated synovial sarcoma with SS18L1-SSX1 fusion-A pathologic and molecular pitfall. Genes Chromosomes Cancer 2017; 56:296-302. [PMID: 27914109 DOI: 10.1002/gcc.22435] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/27/2016] [Accepted: 11/28/2016] [Indexed: 12/28/2022] Open
Abstract
The diagnosis of poorly differentiated synovial sarcoma (PD-SS) may be challenging due to overlapping morphologic features with other undifferentiated round cell sarcomas (URCS). Particularly relevant is the histologic overlap and shared BCOR overexpression between a subset of SS and URCS with various BCOR genetic abnormalities. Here, we report a case of PD-SS lacking the canonical SS18-SSX gene fusion, but showing strong BCOR immunoreactivity and BCOR gene abnormalities by FISH, which were misinterpreted as a URCS with BCOR gene rearrangements. The tumor had an unusual clinical presentation arising as an intraneural tumor in the ankle of a 29-year-old female. The tumor displayed a mixture of fascicular spindle cells and undifferentiated round cell components. FISH studies showed no SS18 gene abnormality; however, RNA sequencing identified a fusion transcript involving SS18L1 (a paralog gene of SS18 at 20q13.33) and SSX1. Further FISH testing validated rearrangements in SSX1 and SS18L1 genes, in addition to complex structural abnormalities of the Xp11.22-4 region. This is the second reported SS case harboring an SS18L1-SSX1 alternative fusion variant, similarly occurring in association with a large nerve. The lack of SS18 gene rearrangements by FISH corroborated with the BCOR overexpression at both mRNA and protein level may result in diagnostic pitfalls with URCS with BCOR gene abnormalities. Our results further suggest that BCOR upregulation is emerging as a common downstream pathway for SS with either typical SS18-SSX transcript or with rare fusion variants, such as SS18L1-SSX. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yu-Chien Kao
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, Taiwan.,Department of Pathology, Memorial Sloan Kettering Cancer Center, NY
| | - Yun-Shao Sung
- Department of Pathology, Memorial Sloan Kettering Cancer Center, NY
| | - Lei Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, NY
| | - Samuel Kenan
- Department of Surgery, Long Island Jewish Medical Center, New Hyde Park, NY
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, NY
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, NY
| | - David Swanson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | | |
Collapse
|
50
|
Okonechnikov K, Imai-Matsushima A, Paul L, Seitz A, Meyer TF, Garcia-Alcalde F. InFusion: Advancing Discovery of Fusion Genes and Chimeric Transcripts from Deep RNA-Sequencing Data. PLoS One 2016; 11:e0167417. [PMID: 27907167 PMCID: PMC5132003 DOI: 10.1371/journal.pone.0167417] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
Analysis of fusion transcripts has become increasingly important due to their link with cancer development. Since high-throughput sequencing approaches survey fusion events exhaustively, several computational methods for the detection of gene fusions from RNA-seq data have been developed. This kind of analysis, however, is complicated by native trans-splicing events, the splicing-induced complexity of the transcriptome and biases and artefacts introduced in experiments and data analysis. There are a number of tools available for the detection of fusions from RNA-seq data; however, certain differences in specificity and sensitivity between commonly used approaches have been found. The ability to detect gene fusions of different types, including isoform fusions and fusions involving non-coding regions, has not been thoroughly studied yet. Here, we propose a novel computational toolkit called InFusion for fusion gene detection from RNA-seq data. InFusion introduces several unique features, such as discovery of fusions involving intergenic regions, and detection of anti-sense transcription in chimeric RNAs based on strand-specificity. Our approach demonstrates superior detection accuracy on simulated data and several public RNA-seq datasets. This improved performance was also evident when evaluating data from RNA deep-sequencing of two well-established prostate cancer cell lines. InFusion identified 26 novel fusion events that were validated in vitro, including alternatively spliced gene fusion isoforms and chimeric transcripts that include intergenic regions. The toolkit is freely available to download from http:/bitbucket.org/kokonech/infusion.
Collapse
Affiliation(s)
- Konstantin Okonechnikov
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Aki Imai-Matsushima
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Lukas Paul
- Lexogen GmbH, Campus Vienna Biocenter 5, Vienna, Austria
| | | | - Thomas F. Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail: (FGA); (TFM)
| | - Fernando Garcia-Alcalde
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail: (FGA); (TFM)
| |
Collapse
|