1
|
Xie J, Kong X, Wang W, Li Y, Lin M, Li H, Chen J, Zhou W, He J, Wu H. Vasculogenic Mimicry Formation Predicts Tumor Progression in Oligodendroglioma. Pathol Oncol Res 2021; 27:1609844. [PMID: 34483751 PMCID: PMC8408314 DOI: 10.3389/pore.2021.1609844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022]
Abstract
Vasculogenic mimicry (VM) has been identified as an important vasculogenic mechanism in malignant tumors, but little is known about its clinical meanings and mechanisms in oligodendroglioma. In this study, VM-positive cases were detected in 28 (20.6%) out of 136 oligodendroglioma samples, significantly associated with higher WHO grade, lower Karnofsky performance status (KPS) scores, and recurrent tumor (p < 0.001, p = 0.040, and p = 0.020 respectively). Patients with VM-positive oligodendroglioma had a shorter progress-free survival (PFS) compared with those with VM-negative tumor (p < 0.001), whereas no significant difference was detected in overall survival (OS) between these patients. High levels of phosphorylate serine/threonine kinases Ataxia-telangiectasia mutated (pATM) and phosphorylate Ataxia-telangiectasia and Rad3-Related (pATR) were detected in 31 (22.8%) and 34 (25.0%), respectively out of 136 oligodendroglioma samples. Higher expressions of pATM and pATR were both associated with a shorter PFS (p < 0.001 and p < 0.001). VM-positive oligodendroglioma specimens tended to exhibit higher pATM and pATR staining than VM-negative specimens (rs = 0.435, p < 0.001 and rs = 0.317, p < 0.001). Besides, Hypoxia-inducible factor-1α (HIF1α) expression was detected in 14(10.3%) samples, correlated with higher WHO grade and non-frontal lobe (p = 0.010 and p = 0.029). However, no obvious connection was detected between HIF1α expression and VM formation (p = 0.537). Finally, either univariate or multivariate analysis suggested that VM was an independent unfavorable predictor for oligodendroglioma patients (p < 0.001, HR = 7.928, 95%CI: 3.382-18.584, and p = 0.007, HR = 4.534, 95%CI: 1.504-13.675, respectively). VM is a potential prognosticator for tumor progression in oligodendroglioma patients. Phosphorylation of ATM and ATR linked to treatment-resistance may be associated with VM formation. The role of VM in tumor progression and the implication of pATM/pATR in VM formation may provide potential therapeutic targets for oligodendroglioma treatment.
Collapse
Affiliation(s)
- Jing Xie
- School of Medicine, Shandong University, Jinan, China.,Department of Pathology, Anhui Provincial Hospital, Shandong University, Hefei, China.,Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xue Kong
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuan Li
- Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengyu Lin
- Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Heng Li
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jingjing Chen
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenchao Zhou
- Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jie He
- School of Medicine, Shandong University, Jinan, China.,Department of Pathology, Anhui Provincial Hospital, Shandong University, Hefei, China.,Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haibo Wu
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Bensouilah FZ, Chellat-Rezgoune D, Garcia-Gonzalez MA, Carrera N, Abadi N, Dahdouh A, Satta D. Association of single nucleotide polymorphisms with renal cell carcinoma in Algerian population. AFRICAN JOURNAL OF UROLOGY 2020. [DOI: 10.1186/s12301-020-00055-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Renal cell carcinoma (RCC) is a common malignant tumor of the urinary system. The etiology of RCC is a complex interaction between environmental and multigenetic factors. Genome-wide association studies have identified new susceptibility risk loci for RCC. We examined associations of genetic variants of genes that are involved in metabolism, DNA repair and oncogenes with renal cancer risk. A total of 14 single nucleotide polymorphisms (SNPs) in 11 genes (VEGF, VHL, ATM, FAF1, LRRIQ4, RHOBTB2, OBFC1, DPF3, ALDH9A1 and EPAS1) were examined.
Methods
The current case–control study included 87 RCC patients and 114 controls matched for age, gender and ethnic origin. The 14 tag-SNPs were genotyped by Sequenom MassARRAY® iPLEX using blood genomic DNA.
Results
Genotype CG and allele G of ATM rs1800057 were significantly associated with RCC susceptibility (p = 0.043; OR = 8.47; CI = 1.00–71.76). Meanwhile, we found that genotype AA of rs67311347 polymorphism could increase the risk of RCC (p = 0.03; OR = 2.95; IC = 1.10–7.89). While, genotype TT and T allele of ALDH9A1 rs3845536 were observed to approach significance for a protective role against RCC (p = 0.007; OR = 0.26; CI = 0.09–0.70).
Conclusion
Our results indicate that ATM rs1800057 may have an effect on the risk of RCC, and suggest that ALDH9A1 was a protective factor against RCC in Algerian population.
Collapse
|
3
|
Kaneyasu T, Mori S, Yamauchi H, Ohsumi S, Ohno S, Aoki D, Baba S, Kawano J, Miki Y, Matsumoto N, Nagasaki M, Yoshida R, Akashi-Tanaka S, Iwase T, Kitagawa D, Masuda K, Hirasawa A, Arai M, Takei J, Ide Y, Gotoh O, Yaguchi N, Nishi M, Kaneko K, Matsuyama Y, Okawa M, Suzuki M, Nezu A, Yokoyama S, Amino S, Inuzuka M, Noda T, Nakamura S. Prevalence of disease-causing genes in Japanese patients with BRCA1/2-wildtype hereditary breast and ovarian cancer syndrome. NPJ Breast Cancer 2020; 6:25. [PMID: 32566746 PMCID: PMC7293299 DOI: 10.1038/s41523-020-0163-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/30/2020] [Indexed: 12/30/2022] Open
Abstract
Panel sequencing of susceptibility genes for hereditary breast and ovarian cancer (HBOC) syndrome has uncovered numerous germline variants; however, their pathogenic relevance and ethnic diversity remain unclear. Here, we examined the prevalence of germline variants among 568 Japanese patients with BRCA1/2-wildtype HBOC syndrome and a strong family history. Pathogenic or likely pathogenic variants were identified on 12 causal genes for 37 cases (6.5%), with recurrence for 4 SNVs/indels and 1 CNV. Comparisons with non-cancer east-Asian populations and European familial breast cancer cohorts revealed significant enrichment of PALB2, BARD1, and BLM mutations. Younger onset was associated with but not predictive of these mutations. Significant somatic loss-of-function alterations were confirmed on the wildtype alleles of genes with germline mutations, including PALB2 additional somatic truncations. This study highlights Japanese-associated germline mutations among patients with BRCA1/2 wildtype HBOC syndrome and a strong family history, and provides evidence for the medical care of this high-risk population.
Collapse
Affiliation(s)
- Tomoko Kaneyasu
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku Tokyo, Japan
| | - Seiichi Mori
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku Tokyo, Japan
| | - Hideko Yamauchi
- Department of Breast Surgical Oncology, St. Luke’s International Hospital, 10-1 Akashi-cho, Chuo-ku Tokyo, Japan
| | - Shozo Ohsumi
- National Hospital Organization Shikoku Cancer Center, 160 Kou, Minamiumemoto-machi, Matsuyama, Ehime Japan
| | - Shinji Ohno
- Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku Tokyo, Japan
| | - Daisuke Aoki
- Department of Obstetrics & Gynecology, Keio University School of Medicine, 35 Shinano-cho, Shinjuku-ku Tokyo, Japan
| | - Shinichi Baba
- Sagara Hospital, 3-31 Matsubara-cho, Kagoshima, Japan
| | - Junko Kawano
- Sagara Hospital, 3-31 Matsubara-cho, Kagoshima, Japan
| | - Yoshio Miki
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku Tokyo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku Yokohama, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi Japan
| | - Reiko Yoshida
- Department of Clinical Genetic Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku Tokyo, Japan
| | - Sadako Akashi-Tanaka
- Division of Breast Surgical Oncology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku Tokyo, Japan
| | - Takuji Iwase
- Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku Tokyo, Japan
| | - Dai Kitagawa
- Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku Tokyo, Japan
| | - Kenta Masuda
- Department of Obstetrics & Gynecology, Keio University School of Medicine, 35 Shinano-cho, Shinjuku-ku Tokyo, Japan
| | - Akira Hirasawa
- Department of Obstetrics & Gynecology, Keio University School of Medicine, 35 Shinano-cho, Shinjuku-ku Tokyo, Japan
| | - Masami Arai
- Department of Clinical Genetic Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku Tokyo, Japan
| | - Junko Takei
- Department of Breast Surgical Oncology, St. Luke’s International Hospital, 10-1 Akashi-cho, Chuo-ku Tokyo, Japan
| | - Yoshimi Ide
- Division of Breast Surgical Oncology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku Tokyo, Japan
| | - Osamu Gotoh
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku Tokyo, Japan
| | - Noriko Yaguchi
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku Tokyo, Japan
| | - Mitsuyo Nishi
- Sagara Hospital, 3-31 Matsubara-cho, Kagoshima, Japan
| | - Keika Kaneko
- National Hospital Organization Shikoku Cancer Center, 160 Kou, Minamiumemoto-machi, Matsuyama, Ehime Japan
| | - Yumi Matsuyama
- National Hospital Organization Shikoku Cancer Center, 160 Kou, Minamiumemoto-machi, Matsuyama, Ehime Japan
| | - Megumi Okawa
- Department of Breast Surgical Oncology, St. Luke’s International Hospital, 10-1 Akashi-cho, Chuo-ku Tokyo, Japan
| | - Misato Suzuki
- Department of Breast Surgical Oncology, St. Luke’s International Hospital, 10-1 Akashi-cho, Chuo-ku Tokyo, Japan
| | - Aya Nezu
- Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku Tokyo, Japan
| | - Shiro Yokoyama
- Division of Breast Surgical Oncology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku Tokyo, Japan
| | - Sayuri Amino
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku Tokyo, Japan
| | - Mayuko Inuzuka
- Division of Breast Surgical Oncology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku Tokyo, Japan
| | - Tetsuo Noda
- Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku Tokyo, Japan
| | - Seigo Nakamura
- Division of Breast Surgical Oncology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku Tokyo, Japan
| |
Collapse
|
4
|
Dominguez-Valentin M, Nakken S, Tubeuf H, Vodak D, Ekstrøm PO, Nissen AM, Morak M, Holinski-Feder E, Holth A, Capella G, Davidson B, Evans DG, Martins A, Møller P, Hovig E. Results of multigene panel testing in familial cancer cases without genetic cause demonstrated by single gene testing. Sci Rep 2019; 9:18555. [PMID: 31811167 PMCID: PMC6898579 DOI: 10.1038/s41598-019-54517-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/15/2019] [Indexed: 01/08/2023] Open
Abstract
We have surveyed 191 prospectively sampled familial cancer patients with no previously detected pathogenic variant in the BRCA1/2, PTEN, TP53 or DNA mismatch repair genes. In all, 138 breast cancer (BC) cases, 34 colorectal cancer (CRC) and 19 multiple early-onset cancers were included. A panel of 44 cancer-predisposing genes identified 5% (9/191) pathogenic or likely pathogenic variants and 87 variants of uncertain significance (VUS). Pathogenic or likely pathogenic variants were identified mostly in familial BC individuals (7/9) and were located in 5 genes: ATM (3), BRCA2 (1), CHEK2 (1), MSH6 (1) and MUTYH (1), followed by multiple early-onset (2/9) individuals, affecting the CHEK2 and ATM genes. Eleven of the 87 VUS were tested, and 4/11 were found to have an impact on splicing by using a minigene splicing assay. We here report for the first time the splicing anomalies using this assay for the variants ATM c.3806A > G and BUB1 c.677C > T, whereas CHEK1 c.61G > A did not result in any detectable splicing anomaly. Our study confirms the presence of pathogenic or likely pathogenic variants in genes that are not routinely tested in the context of the above-mentioned clinical phenotypes. Interestingly, more than half of the pathogenic germline variants were found in the moderately penetrant ATM and CHEK2 genes, where only truncating variants from these genes are recommended to be reported in clinical genetic testing practice.
Collapse
Affiliation(s)
- Mev Dominguez-Valentin
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| | - Sigve Nakken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hélène Tubeuf
- Inserm-U1245, UNIROUEN, Normandie Univ, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Interactive Biosoftware, Rouen, France
| | - Daniel Vodak
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Per Olaf Ekstrøm
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anke M Nissen
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Ziemssenstr. 1, Munich, Germany.,MGZ-Medizinisch Genetisches Zentrum, Munich, Germany
| | - Monika Morak
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Ziemssenstr. 1, Munich, Germany.,MGZ-Medizinisch Genetisches Zentrum, Munich, Germany
| | - Elke Holinski-Feder
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Ziemssenstr. 1, Munich, Germany.,MGZ-Medizinisch Genetisches Zentrum, Munich, Germany
| | - Arild Holth
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Gabriel Capella
- Hereditary Cancer Program, Catalan Institute of Oncology, Insititut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L'Hospitalet de Llobregat, Barcelona, Spain, and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, N-, 0316, Oslo, Norway
| | - D Gareth Evans
- Department of Genomic Medicine, Division of Evolution and Genomic Sciences, The University of Manchester, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, United Kingdom.,Prevent Breast Cancer Centre, Wythenshawe Hospital, Southmoor Road, Manchester, United Kingdom
| | - Alexandra Martins
- Inserm-U1245, UNIROUEN, Normandie Univ, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Pål Møller
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Human Medicine, Universität Witten/Herdecke, Wuppertal, Germany
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Informatics, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Renault AL, Mebirouk N, Fuhrmann L, Bataillon G, Cavaciuti E, Le Gal D, Girard E, Popova T, La Rosa P, Beauvallet J, Eon-Marchais S, Dondon MG, d'Enghien CD, Laugé A, Chemlali W, Raynal V, Labbé M, Bièche I, Baulande S, Bay JO, Berthet P, Caron O, Buecher B, Faivre L, Fresnay M, Gauthier-Villars M, Gesta P, Janin N, Lejeune S, Maugard C, Moutton S, Venat-Bouvet L, Zattara H, Fricker JP, Gladieff L, Coupier I, Chenevix-Trench G, Hall J, Vincent-Salomon A, Stoppa-Lyonnet D, Andrieu N, Lesueur F. Morphology and genomic hallmarks of breast tumours developed by ATM deleterious variant carriers. Breast Cancer Res 2018; 20:28. [PMID: 29665859 PMCID: PMC5905168 DOI: 10.1186/s13058-018-0951-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/05/2018] [Indexed: 01/23/2023] Open
Abstract
Background The ataxia telangiectasia mutated (ATM) gene is a moderate-risk breast cancer susceptibility gene; germline loss-of-function variants are found in up to 3% of hereditary breast and ovarian cancer (HBOC) families who undergo genetic testing. So far, no clear histopathological and molecular features of breast tumours occurring in ATM deleterious variant carriers have been described, but identification of an ATM-associated tumour signature may help in patient management. Methods To characterise hallmarks of ATM-associated tumours, we performed systematic pathology review of tumours from 21 participants from ataxia-telangiectasia families and 18 participants from HBOC families, as well as copy number profiling on a subset of 23 tumours. Morphology of ATM-associated tumours was compared with that of 599 patients with no BRCA1 and BRCA2 mutations from a hospital-based series, as well as with data from The Cancer Genome Atlas. Absolute copy number and loss of heterozygosity (LOH) profiles were obtained from the OncoScan SNP array. In addition, we performed whole-genome sequencing on four tumours from ATM loss-of-function variant carriers with available frozen material. Results We found that ATM-associated tumours belong mostly to the luminal B subtype, are tetraploid and show LOH at the ATM locus at 11q22–23. Unlike tumours in which BRCA1 or BRCA2 is inactivated, tumours arising in ATM deleterious variant carriers are not associated with increased large-scale genomic instability as measured by the large-scale state transitions signature. Losses at 13q14.11-q14.3, 17p13.2-p12, 21p11.2-p11.1 and 22q11.23 were observed. Somatic alterations at these loci may therefore represent biomarkers for ATM testing and harbour driver mutations in potentially ‘druggable’ genes that would allow patients to be directed towards tailored therapeutic strategies. Conclusions Although ATM is involved in the DNA damage response, ATM-associated tumours are distinct from BRCA1-associated tumours in terms of morphological characteristics and genomic alterations, and they are also distinguishable from sporadic breast tumours, thus opening up the possibility to identify ATM variant carriers outside the ataxia-telangiectasia disorder and direct them towards effective cancer risk management and therapeutic strategies. Electronic supplementary material The online version of this article (10.1186/s13058-018-0951-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne-Laure Renault
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Noura Mebirouk
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | | | | | - Eve Cavaciuti
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Dorothée Le Gal
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Elodie Girard
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Tatiana Popova
- Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,INSERM U830, Paris, France
| | - Philippe La Rosa
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Juana Beauvallet
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Séverine Eon-Marchais
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Marie-Gabrielle Dondon
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | | | | | - Walid Chemlali
- Unité de Pharmacogénomique, Institut Curie, Paris, France
| | - Virginie Raynal
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Martine Labbé
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Ivan Bièche
- Unité de Pharmacogénomique, Institut Curie, Paris, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | | | - Pascaline Berthet
- Unité de Pathologie Gynécologique, Centre François Baclesse, Caen, France
| | - Olivier Caron
- Service d'Oncologie Génétique, Gustave Roussy, Villejuif, France
| | | | - Laurence Faivre
- Institut GIMI, CHU de Dijon, Hôpital d'Enfants, Dijon, France.,Oncogénétique, Centre de Lutte contre le Cancer Georges François Leclerc, Dijon, France
| | - Marc Fresnay
- Département d'Hématologie et d'Oncologie Médicale, CLCC Antoine Lacassagne, Nice, France
| | | | - Paul Gesta
- Service d'Oncogénétique Régional Poitou-Charentes, Centre Hospitalier Georges-Renon, Niort, France
| | - Nicolas Janin
- Service de Génétique, Clinique Universitaire Saint-Luc, Brussels, Belgium
| | - Sophie Lejeune
- Service de Génétique Clinique Guy Fontaine, Hôpital Jeanne de Flandre, Lille, France
| | - Christine Maugard
- Laboratoire de Diagnostic Génétique, UF1422 Oncogénétique Moléculaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Oncogénétique Evaluation familiale et suivi, UF6948 Oncogénétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sébastien Moutton
- Laboratoire Maladies Rares: Génétique et Métabolisme, CHU de Bordeaux-GH Pellegrin, Bordeaux, France
| | | | - Hélène Zattara
- Département de Génétique, Hôpital de la Timone, Marseille, France
| | | | | | - Isabelle Coupier
- Service de Génétique Médicale et Oncogénétique, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France.,Unité d'Oncogénétique, ICM Val d'Aurelle, Montpellier, France
| | | | | | | | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Janet Hall
- UMR INSERM 1052, Lyon, France.,CNRS 5286, Lyon, France.,Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | | | - Dominique Stoppa-Lyonnet
- INSERM U830, Paris, France.,Service de Génétique, Institut Curie, Paris, France.,Université Paris Descartes, Paris, France
| | - Nadine Andrieu
- INSERM, U900, Paris, France.,Institut Curie, Paris, France.,Mines Paris Tech, Fontainebleau, France.,PSL Research University, Paris, France
| | - Fabienne Lesueur
- INSERM, U900, Paris, France. .,Institut Curie, Paris, France. .,Mines Paris Tech, Fontainebleau, France. .,PSL Research University, Paris, France.
| |
Collapse
|