1
|
Xiong F, Wang D, Xiong W, Wang X, Huang WH, Wu GH, Liu WZ, Wang Q, Chen JS, Kuai YY, Wang B, Chen YJ. Unveiling the role of HP1α-HDAC1-STAT1 axis as a therapeutic target for HP1α-positive intrahepatic cholangiocarcinoma. J Exp Clin Cancer Res 2024; 43:152. [PMID: 38812060 PMCID: PMC11137995 DOI: 10.1186/s13046-024-03070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICCA) is a heterogeneous group of malignant tumors characterized by high recurrence rate and poor prognosis. Heterochromatin Protein 1α (HP1α) is one of the most important nonhistone chromosomal proteins involved in transcriptional silencing via heterochromatin formation and structural maintenance. The effect of HP1α on the progression of ICCA remained unclear. METHODS The effect on the proliferation of ICCA was detected by experiments in two cell lines and two ICCA mouse models. The interaction between HP1α and Histone Deacetylase 1 (HDAC1) was determined using Electrospray Ionization Mass Spectrometry (ESI-MS) and the binding mechanism was studied using immunoprecipitation assays (co-IP). The target gene was screened out by RNA sequencing (RNA-seq). The occupation of DNA binding proteins and histone modifications were predicted by bioinformatic methods and evaluated by Cleavage Under Targets and Tagmentation (CUT & Tag) and Chromatin immunoprecipitation (ChIP). RESULTS HP1α was upregulated in intrahepatic cholangiocarcinoma (ICCA) tissues and regulated the proliferation of ICCA cells by inhibiting the interferon pathway in a Signal Transducer and Activator of Transcription 1 (STAT1)-dependent manner. Mechanistically, STAT1 is transcriptionally regulated by the HP1α-HDAC1 complex directly and epigenetically via promoter binding and changes in different histone modifications, as validated by high-throughput sequencing. Broad-spectrum HDAC inhibitor (HDACi) activates the interferon pathway and inhibits the proliferation of ICCA cells by downregulating HP1α and targeting the heterodimer. Broad-spectrum HDACi plus interferon preparation regimen was found to improve the antiproliferative effects and delay ICCA development in vivo and in vitro, which took advantage of basal activation as well as direct activation of the interferon pathway. HP1α participates in mediating the cellular resistance to both agents. CONCLUSIONS HP1α-HDAC1 complex influences interferon pathway activation by directly and epigenetically regulating STAT1 in transcriptional level. The broad-spectrum HDACi plus interferon preparation regimen inhibits ICCA development, providing feasible strategies for ICCA treatment. Targeting the HP1α-HDAC1-STAT1 axis is a possible strategy for treating ICCA, especially HP1α-positive cases.
Collapse
Affiliation(s)
- Fei Xiong
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430074, China
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University Beijing, Beijing, 100050, China
| | - Da Wang
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430074, China
| | - Wei Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xin Wang
- Departement of Pediatric Surgery, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430016, China
| | - Wen-Hua Huang
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Guan-Hua Wu
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430074, China
| | - Wen-Zheng Liu
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430074, China
| | - Qi Wang
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430074, China
| | - Jun-Sheng Chen
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430074, China
| | - Yi-Yang Kuai
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430074, China
| | - Bing Wang
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430074, China.
| | - Yong-Jun Chen
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430074, China.
| |
Collapse
|
2
|
Bouyahya A, El Omari N, Bakha M, Aanniz T, El Menyiy N, El Hachlafi N, El Baaboua A, El-Shazly M, Alshahrani MM, Al Awadh AA, Lee LH, Benali T, Mubarak MS. Pharmacological Properties of Trichostatin A, Focusing on the Anticancer Potential: A Comprehensive Review. Pharmaceuticals (Basel) 2022; 15:ph15101235. [PMID: 36297347 PMCID: PMC9612318 DOI: 10.3390/ph15101235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Abstract
Trichostatin A (TSA), a natural derivative of dienohydroxamic acid derived from a fungal metabolite, exhibits various biological activities. It exerts antidiabetic activity and reverses high glucose levels caused by the downregulation of brain-derived neurotrophic factor (BDNF) expression in Schwann cells, anti-inflammatory activity by suppressing the expression of various cytokines, and significant antioxidant activity by suppressing oxidative stress through multiple mechanisms. Most importantly, TSA exhibits potent inhibitory activity against different types of cancer through different pathways. The anticancer activity of TSA appeared in many in vitro and in vivo investigations that involved various cell lines and animal models. Indeed, TSA exhibits anticancer properties alone or in combination with other drugs used in chemotherapy. It induces sensitivity of some human cancers toward chemotherapeutical drugs. TSA also exhibits its action on epigenetic modulators involved in cell transformation, and therefore it is considered an epidrug candidate for cancer therapy. Accordingly, this work presents a comprehensive review of the most recent developments in utilizing this natural compound for the prevention, management, and treatment of various diseases, including cancer, along with the multiple mechanisms of action. In addition, this review summarizes the most recent and relevant literature that deals with the use of TSA as a therapeutic agent against various diseases, emphasizing its anticancer potential and the anticancer molecular mechanisms. Moreover, TSA has not been involved in toxicological effects on normal cells. Furthermore, this work highlights the potential utilization of TSA as a complementary or alternative medicine for preventing and treating cancer, alone or in combination with other anticancer drugs.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Correspondence: (A.B.); (L.-H.L.); (M.S.M.)
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Mohamed Bakha
- Unit of Plant Biotechnology and Sustainable Development of Natural Resources “B2DRN”, Polydisciplinary Faculty of Beni Mellal, Sultan Moulay Slimane University, Mghila, P.O. Box 592, Beni Mellal 23000, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat B.P. 6203, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Imouzzer Road Fez, Fez 30050, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93000, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (A.B.); (L.-H.L.); (M.S.M.)
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Mohammad S. Mubarak
- Department of Chemistry, The University of Jordan, Amma 11942, Jordan
- Correspondence: (A.B.); (L.-H.L.); (M.S.M.)
| |
Collapse
|
3
|
Erfani M, Zamani M, Mokarram P. Evidence of histone modification affecting ARID1A expression in colorectal cancer cell lines. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2022; 15:32-38. [PMID: 35611248 PMCID: PMC9123641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/12/2021] [Indexed: 12/04/2022]
Abstract
Aim The current study aimed to focus on the role of histone deacetylation in reduced ARID1A expression in colorectal cancer cell lines. Background ARID1A, a subunit of the switch/sucrose nonfermentable chromatin remodeling complex, has emerged as a bona fide tumor suppressor and is frequently downregulated and inactivated in multiple human cancers. Epigenetic modifications play an important role in dysregulation of gene expression in cancer. DNA methylation has been reported as an important regulator of ARID1A expression in colorectal cancer cell lines; however, the histone modification role in ARID1A suppression in colorectal cancer remains unclear. Methods The expression levels of ARID1A mRNA were determined using real-time quantitative PCR in colorectal cancer cell lines including HCT116, SW48, HT29, SW742, LS180, and SW480. To evaluate the effect of histone deacetylation on ARID1A expression, all cell lines were treated with trichostatin A (TSA), a histone deacetylase inhibitor. SPSS software (Version 23) and GraphPad Prism (Version 6.01) were applied for data analysis using one-way ANOVA, followed by Tukey's multiple comparison tests. Results Treatment of colorectal cancer cell lines with TSA increased ARID1A expression in a cell line-dependent manner, suggesting that histone deacetylation is at least one factor contributing to ARID1A downregulation in colorectal cancer. Conclusion Histone deacetylase inhibitors might provide a strategy to restore ARID1A expression and may bring benefits to the colorectal cancer patients with a broader range of genetic backgrounds.
Collapse
Affiliation(s)
- Mehran Erfani
- Department of Biochemistry, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Department of Biochemistry, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Almasmoum H. The Roles of Transmembrane Mucins Located on Chromosome 7q22.1 in Colorectal Cancer. Cancer Manag Res 2021; 13:3271-3280. [PMID: 33883940 PMCID: PMC8053700 DOI: 10.2147/cmar.s299089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancers. It is associated with a poor prognosis and high mortality. The role of mucins (MUCs) in colon tumorigenesis is unclear, but it might be significant in the progression of malignancy. Some mucins, such as MUC1 and MUC13, act as oncogenes, whereas others, such as MUC2 and MUC6, are tumor suppressors. However, there are still mucins with unidentified roles in CRC. In this review, we discuss the reported roles of mucins in CRC. Moreover, we review the capability of the mucin family to serve as a sensitive and specific histopathological marker for the early diagnosis of CRC. Lastly, the role of mucin genes clustered on chromosome 7q22 in CRC and other cancers is also discussed.
Collapse
Affiliation(s)
- Hussain Almasmoum
- Laboratory Medicine Department, Faculty of Applied Medical Science, Umm Al-Qura University, Makkah, 7607, Saudi Arabia
| |
Collapse
|
5
|
Dehner C, Moon CI, Zhang X, Zhou Z, Miller C, Xu H, Wan X, Yang K, Mashl J, Gosline SJ, Wang Y, Zhang X, Godec A, Jones PA, Dahiya S, Bhatia H, Primeau T, Li S, Pollard K, Rodriguez FJ, Ding L, Pratilas CA, Shern JF, Hirbe AC. Chromosome 8 gain is associated with high-grade transformation in MPNST. JCI Insight 2021; 6:146351. [PMID: 33591953 PMCID: PMC8026192 DOI: 10.1172/jci.insight.146351] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
One of the most common malignancies affecting adults with Neurofibromatosis type 1 (NF1) is the malignant peripheral nerve sheath tumor (MPNST), an aggressive and often fatal sarcoma that commonly arises from benign plexiform neurofibromas. Despite advances in our understanding of MPNST pathobiology, there are few effective therapeutic options, and no investigational agents have proven successful in clinical trials. To further understand the genomic heterogeneity of MPNST, and to generate a preclinical platform that encompasses this heterogeneity, we developed a collection of NF1-MPNST patient-derived xenografts (PDX). These PDX were compared with the primary tumors from which they were derived using copy number analysis, whole exome sequencing, and RNA sequencing. We identified chromosome 8 gain as a recurrent genomic event in MPNST and validated its occurrence by FISH in the PDX and parental tumors, in a validation cohort, and by single-cell sequencing in the PDX. Finally, we show that chromosome 8 gain is associated with inferior overall survival in soft-tissue sarcomas. These data suggest that chromosome 8 gain is a critical event in MPNST pathogenesis and may account for the aggressive nature and poor outcomes in this sarcoma subtype.
Collapse
Affiliation(s)
| | - Chang In Moon
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Xiyuan Zhang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Zhaohe Zhou
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Chris Miller
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hua Xu
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA.,The First Affiliated Hospital, Nanchang University, Nangchang, China
| | - Xiaodan Wan
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA.,The First Affiliated Hospital, Nanchang University, Nangchang, China
| | - Kuangying Yang
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jay Mashl
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Sara Jc Gosline
- Pacific Northwest National Laboratory, Seattle, Washington, USA
| | - Yuxi Wang
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Xiaochun Zhang
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Abigail Godec
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Paul A Jones
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Sonika Dahiya
- Department of Pathology and Immunology and.,Siteman Cancer Center Division of Pediatric Oncology, St. Louis, Missouri, USA
| | - Himanshi Bhatia
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tina Primeau
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shunqiang Li
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA.,Siteman Cancer Center Division of Pediatric Oncology, St. Louis, Missouri, USA
| | - Kai Pollard
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | - Fausto J Rodriguez
- Department of Pathology, John Hopkins University, Baltimore, Maryland, USA
| | - Li Ding
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA.,Siteman Cancer Center Division of Pediatric Oncology, St. Louis, Missouri, USA
| | - Christine A Pratilas
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Angela C Hirbe
- Department of Internal Medicine, Division of Oncology, Washington University in St. Louis, St. Louis, Missouri, USA.,Siteman Cancer Center Division of Pediatric Oncology, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Liu JH, Cao YM, Rong ZP, Ding J, Pan X. Trichostatin A Induces Autophagy in Cervical Cancer Cells by Regulating the PRMT5-STC1-TRPV6-JNK Pathway. Pharmacology 2020; 106:60-69. [PMID: 33142290 DOI: 10.1159/000507937] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/15/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of trichostatin A (TSA) on cervical cancer and the related mechanisms. METHODS The HeLa and Caski cervical cancer cell lines were treated with different concentrations of TSA. Cell viability was measured by MTT assays. Cell apoptosis was analysed using flow cytometry. Expression of transient receptor potential cation channel, subfamily V, member 6 (TRPV6), protein arginine methyltransferase 5 (PRMT5), and stanniocalcin 1 (STC1) was determined by qRT-PCR and Western blotting. Protein levels of LC3 II/I, beclin1, p62, JNK, and p-JNK were detected by Western blotting. RESULTS Treatment with TSA significantly decreased HeLa and Caski cell viability and enhanced the apoptosis rate in a dose-dependent manner. TSA markedly elevated beclin1 protein levels and the LC3 II/I ratio and significantly reduced p62 levels in a dose-dependent manner. In addition, TSA (1 μM) significantly suppressed PRMT5 and TRPV6 levels and enhanced STC1 and p-JNK levels. The lysosomal inhibitor bafilomycin-A1 synergistically enhanced the TSA-mediated increase in autophagic flux. Either the overexpression of TRPV6 or the inhibition of JNK signalling markedly enhanced cell viability, inhibited apoptosis, and autophagy and reduced p-JNK levels in TSA-treated cells. The inhibition of STC1 significantly increased TRPV6 protein levels and reduced p-JNK levels. Overexpression of PRMT5 dramatically decreased STC1 and p-JNK protein levels and increased TRPV6 levels. CONCLUSION TSA suppresses cervical cancer cell proliferation and induces apoptosis and autophagy through regulation of the PRMT5/STC1/TRPV6/JNK axis.
Collapse
Affiliation(s)
- Jian-Hao Liu
- School of Pharmaceutical Sciences of Central South University, Changsha, China
| | - Yan-Ming Cao
- Department of Oncology, Xiangya Third Hospital, Central South University, Changsha, China
| | - Zhi-Peng Rong
- Department of Oncology, Xiangya Third Hospital, Central South University, Changsha, China
| | - Juan Ding
- Department of Oncology, Xiangya Third Hospital, Central South University, Changsha, China
| | - Xi Pan
- Department of Oncology, Xiangya Third Hospital, Central South University, Changsha, China,
| |
Collapse
|