1
|
Takiguchi M, Kazuki Y, Hiramatsu K, Abe S, Iida Y, Takehara S, Nishida T, Ohbayashi T, Wakayama T, Oshimura M. A novel and stable mouse artificial chromosome vector. ACS Synth Biol 2014; 3:903-14. [PMID: 23654256 DOI: 10.1021/sb3000723] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human chromosome fragments (hCFs) and human artificial chromosomes (HACs) can be transferred into mouse ES cells to produce trans-chromosomic (Tc) mice. Although hCFs and HACs containing large genomic DNAs can be autonomously maintained in Tc mice, their retention rate is variable in mouse ES cell lines and Tc mouse tissues, possibly because of centromere differences between the species. To improve the retention rate of artificial chromosomes in mouse cells, we constructed novel mouse artificial chromosome (MAC) vectors by truncating a natural mouse chromosome at a site adjacent to the centromeric region. We obtained cell clones containing the MAC vectors that were stably maintained in mouse ES cells and various tissues in Tc mice. The MACs possess acceptor sites into which a desired gene or genes can be inserted. Thus, Tc mice harboring the MAC vectors may be valuable tools for functional analyses of desired genes, producing humanized model mice, and synthetic biology.
Collapse
Affiliation(s)
- Masato Takiguchi
- Department
of Biomedical Science,
Institute of Regenerative Medicine and Biofunction, Graduate School
of Medical Science, Tottori University,
86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Yasuhiro Kazuki
- Department
of Biomedical Science,
Institute of Regenerative Medicine and Biofunction, Graduate School
of Medical Science, Tottori University,
86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Chromosome Engineering Research
Center, Tottori University, Tottori, Japan
| | - Kei Hiramatsu
- Department
of Biomedical Science,
Institute of Regenerative Medicine and Biofunction, Graduate School
of Medical Science, Tottori University,
86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Satoshi Abe
- Department
of Biomedical Science,
Institute of Regenerative Medicine and Biofunction, Graduate School
of Medical Science, Tottori University,
86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Yuichi Iida
- Department
of Biomedical Science,
Institute of Regenerative Medicine and Biofunction, Graduate School
of Medical Science, Tottori University,
86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Shoko Takehara
- Chromosome Engineering Research
Center, Tottori University, Tottori, Japan
| | - Tadashi Nishida
- Division of Laboratory Animal
Science, Research Center for Bioscience and Technology, Tottori University, Tottori, Japan
| | - Tetsuya Ohbayashi
- Division of Laboratory Animal
Science, Research Center for Bioscience and Technology, Tottori University, Tottori, Japan
| | - Teruhiko Wakayama
- RIKEN Center for Developmental Biology, 2-2-3 minatojima Minamimachi
Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mitsuo Oshimura
- Department
of Biomedical Science,
Institute of Regenerative Medicine and Biofunction, Graduate School
of Medical Science, Tottori University,
86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Chromosome Engineering Research
Center, Tottori University, Tottori, Japan
- JST, CREST, 5, Sanbancho, Tokyo, Japan
| |
Collapse
|
2
|
Abe S, Tanaka H, Notsu T, Horike SI, Fujisaki C, Qi DL, Ohhira T, Gilley D, Oshimura M, Kugoh H. Localization of an hTERT repressor region on human chromosome 3p21.3 using chromosome engineering. Genome Integr 2010; 1:6. [PMID: 20678252 PMCID: PMC2907559 DOI: 10.1186/2041-9414-1-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 05/26/2010] [Indexed: 11/10/2022] Open
Abstract
Telomerase is a ribonucleoprotein enzyme that synthesizes telomeric DNA. The reactivation of telomerase activity by aberrant upregulation/expression of its catalytic subunit hTERT is a major pathway in human tumorigenesis. However, regulatory mechanisms that control hTERT expression are largely unknown. Previously, we and others have demonstrated that the introduction of human chromosome 3, via microcell-mediated chromosome transfer (MMCT), repressed transcription of the hTERT gene. These results suggested that human chromosome 3 contains a regulatory factor(s) involved in the repression of hTERT. To further localize this putative hTERT repressor(s), we have developed a unique experimental approach by introducing various truncated chromosome 3 regions produced by a novel chromosomal engineering technology into the renal cell carcinoma cell line (RCC23 cells). These cells autonomously express ectopic hTERT (exohTERT) promoted by a retroviral LTR promoter in order to permit cellular division after repression of endogenous hTERT. We found a telomerase repressor region located within a 7-Mb interval on chromosome 3p21.3. These results provide important information regarding hTERT regulation and a unique method to identify hTERT repressor elements.
Collapse
Affiliation(s)
- Satoshi Abe
- Department of Biomedical Science, Graduate School of Medical Science, and Chromosome Engineering Research Center, Tottori University, 86 Nishicho, Yonago 683-8503, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Oshimura M, Katoh M. Transfer of human artificial chromosome vectors into stem cells. Reprod Biomed Online 2008; 16:57-69. [PMID: 18252049 DOI: 10.1016/s1472-6483(10)60557-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human chromosome fragments and human artificial chromosomes (HAC) represent feasible gene delivery vectors via microcell-mediated chromosome transfer. Strategies to construct HAC involve either 'build up' or 'top-down' approaches. For each approach, techniques for manipulating HAC in donor cells in order to deliver HAC to recipient cells are required. The combination of chromosome fragments or HAC with microcell-mediated chromosome transfer has facilitated human gene mapping and various genetic studies. The recent emergence of stem cell-based tissue engineering has opened up new avenues for gene and cell therapies. The task now is to develop safe and effective vectors that can deliver therapeutic genes into specific stem cells and maintain long-term regulated expression of these genes. Although the transfer-efficiency needs to be improved, HAC possess several characteristics that are required for gene therapy vectors, including stable episomal maintenance and the capacity for large gene insets. HAC can also carry genomic loci with regulatory elements, which allow for the expression of transgenes in a genetic environment similar to the natural chromosome. This review describes the lessons and prospects learned, mainly from recent studies in developing HAC and HAC-mediated gene expression in embryonic and adult stem cells, and in transgenic animals.
Collapse
Affiliation(s)
- Mitsuo Oshimura
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan.
| | | |
Collapse
|
4
|
Doherty AMO, Fisher EMC. Microcell-mediated chromosome transfer (MMCT): small cells with huge potential. Mamm Genome 2004; 14:583-92. [PMID: 14629108 DOI: 10.1007/s00335-003-4002-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microcell-mediated chromosome transfer (MMCT) is a technique that has been in use since the 1970s for the fusion of microcells, containing single or a small number of chromosomes, with whole cells, and the subsequent selection of the hybrids. MMCT can be carried out with somatic cells, embryonic carcinoma (EC) or embryonic stem (ES) cell recipients, to study in vitro or in vivo effects of the transferred genetic material. These effects may be unpredictable--do the transferred genes function normally while in the regulatory milieu of the host cell? Will epigenetic effects become apparent, and how will these alter gene expression? What happens to the host cell phenotype? Here, we present a review of MMCT in which we argue that, although this is an old technique, its adaptability and efficiency make it an excellent method for the dissection of gene function and dysfunction in a very wide range of current systems.
Collapse
Affiliation(s)
- Aideen M O Doherty
- Department of Neurodegenerative Disease, Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | | |
Collapse
|
5
|
Yawata T, Kamino H, Kugoh H, Katoh M, Nomura N, Oishi M, Horikawa I, Barrett JC, Oshimura M. Identification of a </= 600-kb region on human chromosome 1q42.3 inducing cellular senescence. Oncogene 2003; 22:281-90. [PMID: 12527897 DOI: 10.1038/sj.onc.1206143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The introduction of a human chromosome 1 via microcell-mediated chromosome transfer (MMCT) induces the cellular senescence in mouse melanoma B16-F10 cells. The senescent cells maintained still the telomerase activity, which is frequently associated with immortal growth of human cells, suggesting that a telomerase-independent mechanism is involved in the senescence observed in this mouse cell line. To map the senescence-inducing gene to a specific chromosomal region, we took two experimental approaches: identification of a minimal region with the senescence-inducing activity via MMCT of a series of subchromosomal transferrable fragments (STFs), each consisting of a different profile of human chromosome 1-derived regions, and identification of a region commonly deleted from the transferred chromosome 1 in the revertant clones that escaped cellular senescence. These approaches identified a 2.7-3.0 Mb of senescence-inducing region shared among the active STFs and a 2.4-3.0 Mb of commonly deleted region in the revertant clones. These two regions overlapped each other to map the responsible gene at the 450 to 600-kb interval between UniSTS93710 and D1S3542 on chromosome 1q42.3. This study provides essential information and materials for cloning and characterization of a novel senescence-inducing gene that functions in a telomerase-independent pathway, which is likely to be conserved between mice and humans.
Collapse
Affiliation(s)
- Toshio Yawata
- Department of Molecular and Cell Genetics, Faculty of Medicine, School of Life Sciences, Tottori University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Murakami Y. Functional cloning of a tumor suppressor gene, TSLC1, in human non-small cell lung cancer. Oncogene 2002; 21:6936-48. [PMID: 12362275 DOI: 10.1038/sj.onc.1205825] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The identification of a tumor suppressor gene in non-small cell lung cancer (NSCLC) is one of the most important issues to elucidate the molecular mechanisms of this type of refractory cancer and to establish a novel strategy against it. Since NSCLC, like most other human cancers, develops as a sporadic disease, linkage analysis is not available for gene cloning. This review describes the functional cloning approaches to a tumor suppressor gene in sporadic cancers. Suppression of the malignant phenotype of cancer cells by fusion with a normal fibroblast was the first demonstration of the recessive phenotype of cancer cells in 1969. Evidence of tumor suppressor genes on the specific chromosomes was later provided by functional complementation of the cancer phenotype through microcell-mediated chromosome transfer. Further introduction of more restricted DNA fragments by YAC transfer provides a potent tool to localize the gene to a small segment, appropriate for the subsequent gene cloning. TSLC1, a novel tumor suppressor gene in NSCLC, was identified on chromosome 11q23.2 through a series of functional complementation of A549 cells in tumorigenicity. Two-hit inactivation of the TSLC1 by promoter methylation and gene deletion was observed in 40% of primary NSCLC tumors. The strong tumor suppressor activity of TSLC1, and its possible involvement in cell adhesion, suggest that the functional cloning approach could cast a new light on a group of genes that have not yet been characterized, but are important for general human carcinogenesis as well as tumor suppression.
Collapse
Affiliation(s)
- Yoshinori Murakami
- Tumor Suppression and Functional Genomics Project, National Cancer Center Research Institute, Japan.
| |
Collapse
|
7
|
Hernandez D, Mee PJ, Martin JE, Tybulewicz VL, Fisher EM. Transchromosomal mouse embryonic stem cell lines and chimeric mice that contain freely segregating segments of human chromosome 21. Hum Mol Genet 1999; 8:923-33. [PMID: 10196383 DOI: 10.1093/hmg/8.5.923] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
At least 8% of all human conceptions have major chromosome abnormalities and the frequency of chromosomal syndromes in newborns is >0.5%. Despite these disorders making a large contribution to human morbidity and mortality, we have little understanding of their aetiology and little molecular data on the importance of gene dosage to mammalian cells. Trisomy 21, which results in Down syndrome (DS), is the most frequent aneuploidy in humans (1 in 600 live births, up to 1 in 150 pregnancies world-wide) and is the most common known genetic cause of mental retardation. To investigate the molecular genetics of DS, we report here the creation of mice that carry different human chromosome 21 (Hsa21) fragments as a freely segregating extra chromosome. To produce these 'transchromosomal' animals, we placed a selectable marker into Hsa21 and transferred the chromosome from a human somatic cell line into mouse embryonic stem (ES) cells using irradiation microcell-mediated chromosome transfer (XMMCT). 'Transchromosomal' ES cells containing different Hsa21 regions ranging in size from approximately 50 to approximately 0.2 Mb have been used to create chimeric mice. These mice maintain Hsa21 sequences and express Hsa21 genes in multiple tissues. This novel use of the XMMCT protocol is applicable to investigations requiring the transfer of large chromosomal regions into ES or other cells and, in particular, the modelling of DS and other human aneuploidy syndromes.
Collapse
Affiliation(s)
- D Hernandez
- Department of Neurogenetics, Imperial College School of Medicine, Norfolk Place, London W2 1PG, UK
| | | | | | | | | |
Collapse
|
8
|
Abstract
Many genetic alterations have recently been identified in transitional cell carcinoma (TCC) of the bladder. These include alterations to known proto-oncogenes and tumour suppressor genes and the identification of multiple sites of nonrandom chromosomal deletion which are predicted to define the location of as yet unidentified tumour suppressor genes. This review summarises recent efforts to define the location of novel bladder tumour suppressor genes using loss of heterozygositiy (LOH) and homozygous deletion analyses and to isolate the genes targeted by these deletions. For three of the four regions of deletion on chromosome 9, the most frequently deleted chromosome in TCC, candidate genes have been identified. It is anticipated that the identification of the genes and/or genetic regions which are frequently altered in TCC will provide useful tools for diagnosis, prediction of prognosis, patient monitoring and novel therapies.
Collapse
Affiliation(s)
- M A Knowles
- ICRF Cancer Medicine Research Unit, St. James's University Hospital, Leeds, UK.
| |
Collapse
|
9
|
Tanaka H, Shimizu M, Horikawa I, Kugoh H, Yokota J, Barrett JC, Oshimura M. Evidence for a putative telomerase repressor gene in the 3p14.2-p21.1 region. Genes Chromosomes Cancer 1998; 23:123-33. [PMID: 9739015 DOI: 10.1002/(sici)1098-2264(199810)23:2<123::aid-gcc5>3.0.co;2-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Telomeres, which are the repeated sequences located on both ends of chromosomes in eukaryotes, are known to shorten with each cell division, and their eventual loss is thought to result in cellular senescence. Unlike normal somatic cells, most tumor cells show activation of telomerase, a ribonucleoprotein enzyme that stably maintains telomere length by addition of the sequences of TTAGGG repeats to telomeres. The KC12 cell line derived from a renal cell carcinoma in a patient with von Hippel-Lindau disease showed telomerase activity and loss of heterozygosity on the short arm of chromosome 3. Introduction of a normal human chromosome 3 into KC12 cells by microcell fusion induced cellular senescence, accompanied by suppression of telomerase activity and shortening of telomere length. Microcell hybrids that escaped from cellular senescence maintained telomere length and telomerase activity similar to those of the parental KC12 cells. We previously showed a similar suppression of telomerase activity by introduction of chromosome 3 into another renal cell carcinoma cell line, RCC23. The putative telomerase repressor gene was mapped to chromosome region 3p14.2-p21.1 by deletion mapping of KC12 + chromosome 3 revertants that escaped from cellular senescence and by transfer of subchromosomal fragments of chromosome 3 into RCC23 cells.
Collapse
Affiliation(s)
- H Tanaka
- Department of Molecular and Cell Genetics, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Uejima H, Shinohara T, Nakayama Y, Kugoh H, Oshimura M. Mapping a novel cellular-senescence gene to human chromosome 2q37 by irradiation microcell-mediated chromosome transfer. Mol Carcinog 1998; 22:34-45. [PMID: 9609099 DOI: 10.1002/(sici)1098-2744(199805)22:1<34::aid-mc5>3.0.co;2-l] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To identify the subchromosomal region that carries the cellular-senescence-restoring program of the human cervical carcinoma cell line SiHa, we constructed by irradiation microcell-mediated chromosome transfer a library of mouse A9 cells containing various fragments of human chromosome 2 tagged with pSV2neo in 2p11-p12. Eighty-seven clones were isolated and screened for the presence of human sequences by inter-Alu and inter-L1 polymerase chain reaction (PCR), and six clones exhibiting PCR-laddering patterns that differed from those of the A9 cells containing an intact chromosome 2 were examined further. Chromosome analysis and fluorescence in situ hybridization (FISH) using human-specific repetitive sequences revealed that four of these clones contained single subchromosomal transferable fragments (STFs). Southern blot hybridization of 14 cosmid markers revealed that the STFs in A9 cells were derived from human chromosome 2. These STFs were transferred into SiHa cells by microcell fusion, and one of the STFs restored the cellular-senescence program. The concordance of the cellular-senescence-restoring program with the presence or absence of specific DNA fragments of chromosome 2 indicated that the putative cellular-senescence gene was located in 2q32-qter. For more detailed mapping, we constructed mouse A9 cells containing STFs derived from human chromosome 2 tagged with pSTneo at different regions in 2q31-qter. PCR-laddering and FISH analyses were used to identify six clones that contained different STFs. These STFs were transferred into SiHa cells, and one of the three clones that restored cellular senescence contained a small fragment of human chromosome 2. This STF was shown by PCR analysis using 14 human chromosome 2-specific primer pairs to be smaller than 12.2 cM and was mapped to the 2q37 region by FISH analysis with inter-Alu PCR. Beta-galactosidase activity, which is a biomarker of senescent cells, and telomerase activity similar to that found in parental SiHa cells were detected in SiHa microcell hybrids, suggesting that the putative cellular-senescence gene was not involved in a telomerase pathway but rather in an alternate pathway of cellular senescence.
Collapse
Affiliation(s)
- H Uejima
- Department of Molecular and Cell Genetics, School of Life Sciences, Faculty of Medicine, Tottori University, and CREST (JST), Yonago, Japan
| | | | | | | | | |
Collapse
|
11
|
Matsuura S, Weemaes C, Smeets D, Takami H, Kondo N, Sakamoto S, Yano N, Nakamura A, Tauchi H, Endo S, Oshimura M, Komatsu K. Genetic mapping using microcell-mediated chromosome transfer suggests a locus for Nijmegen breakage syndrome at chromosome 8q21-24. Am J Hum Genet 1997; 60:1487-94. [PMID: 9199571 PMCID: PMC1716114 DOI: 10.1086/515461] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nijmegen breakage syndrome (NBS) is an autosomal recessive disorder characterized by microcephaly, short stature, immunodeficiency, and a high incidence of cancer. Cultured cells from NBS show chromosome instability, an increased sensitivity to radiation-induced cell killing, and an abnormal cell-cycle regulation after irradiation. Hitherto, patients with NBS have been divided into the two complementation groups V1 and V2, on the basis of restoration of radioresistant DNA synthesis, suggesting that each group arises from a different gene. However, the presence of genetic heterogeneity in NBS has been considered to be controversial. To localize the NBS gene, we have performed functional complementation assays using somatic cell fusion between NBS-V1 and NBS-V2 cells, on the basis of hyper-radiosensitivity, and then have performed a genomewide search for the NBS locus, using microcell-mediated chromosome transfer followed by complementation assays based on radiosensitivity. We found that radiation resistance was not restored in the fused NBS-V1 and NBS-V2 cells and that only human chromosome 8 complements the sensitivity to ionizing radiation, in NBS cell lines. In complementation assays performed after the transfer of a reduced chromosome, merely the long arm of chromosome 8 was sufficient for restoring the defect. Our results strongly suggest that NBS is a homogeneous disorder and that the gene for NBS is located at 8q21-24.
Collapse
Affiliation(s)
- S Matsuura
- Department of Radiation Biology, Hiroshima University, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nihei N, Ichikawa T, Kawana Y, Kuramochi H, Kugoh H, Oshimura M, Hayata I, Shimazaki J, Ito H. Mapping of metastasis suppressor gene(s) for rat prostate cancer on the short arm of human chromosome 8 by irradiated microcell-mediated chromosome transfer. Genes Chromosomes Cancer 1996; 17:260-8. [PMID: 8946208 DOI: 10.1002/(sici)1098-2264(199612)17:4<260::aid-gcc8>3.0.co;2-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Our previous studies demonstrated that human chromosome 8 contains metastasis suppressor gene(s) for rat prostate cancer. However, it is still unknown which portion of human chromosome 8 is associated with suppression of metastatic ability, because all of the clones in which metastatic ability is suppressed contain at least one copy of intact human chromosome 8. In the present study, we used the irradiated microcell-mediated chromosome transfer technique to enrich for specific chromosomal arm deletions of selected chromosomes. The resultant series of human chromosomes 8 with a variety of chromosomal deletions was introduced into highly metastatic Dunning rat prostate cancer cells. All of the resultant microcell hybrids showed reduced metastatic ability. To obtain a smaller size of human chromosome 8 and to locate further the region of metastasis suppressor gene(s), the most reduced size of human chromosome 8 that was generated with the initial irradiated chromosome transfer was retransferred into the Dunning cancer cells without irradiation. The resultant microcell hybrids were analyzed to determine which portion of human chromosome 8 suppressed the metastatic ability of the recipient cells. This analysis demonstrates that the portion of human chromosome 8 containing metastasis suppressor gene(s) for rat prostate cancer cells lies on human chromosome segment 8p21-p12, where frequent allelic losses have been detected in allelotype analyses of human prostate cancer. This suggests that one of the metastasis suppressor genes for rat prostate cancer on human chromosome 8 may also play an important role in the progression of human prostate cancer.
Collapse
Affiliation(s)
- N Nihei
- Department of Urology, School of Medicine, Chiba University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pang JT, Lloyd SE, Wooding C, Farren B, Pottinger B, Harding B, Leigh SE, Pook MA, Benham FJ, Gillett GT, Taggart RT, Thakker RV. Genetic mapping studies of 40 loci and 23 cosmids in chromosome 11p13-11q13, and exclusion of mu-calpain as the multiple endocrine neoplasia type 1 gene. Hum Genet 1996; 97:732-41. [PMID: 8641689 DOI: 10.1007/bf02346182] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Forty loci (16 polymorphic and 24 non-polymorphic) together with 23 cosmids isolated from a chromosome 11-specific library were used to construct a detailed genetic map of 11p13-11q13. The map was constructed by using a panel of 13 somatic cell hybrids that sub-divided this region into 19 intervals, a meiotic mapping panel of 33 multiple endocrine neoplasia type 1 (MEN1) families (134 affected and 269 unaffected members) and a mitotic mapping panel that was used to identify loss of heterozygosity in 38 MEN1-associated tumours. The results defined the most likely order of the 16 loci as being: 11pter-D11S871-(D11S288, D11S149)-11cen-CNTF-PGA-ROM1-D11S480-PYGM- SEA-D11S913-D11S970-D11S97- D11S146-INT2-D11S971-D11S533-11qter. The meiotic mapping studies indicated that the most likely location of the MEN1 gene was in the interval flanked by PYGM and D11S97, and the results of mitotic mapping suggested a possible location of the MEN1 gene telomeric to SEA. Mapping studies of the gene encoding mu-calpain (CAPN1) located CAPN1 to 11q13 and in the vicinity of the MEN1 locus. However, mutational analysis studies did not detect any germ-line CAPN1 DNA sequence abnormalities in 47 unrelated MEN1 patients and the results therefore exclude CAPN1 as the MEN1 gene. The detailed genetic map that has been constructed of the 11p13-11q13 region should facilitate the construction of a physical map and the identification of candidate genes for disease loci mapped to this region.
Collapse
Affiliation(s)
- J T Pang
- MRC Molecular Endocrinology Group, Royal Postgraduate Medical School, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pook MA, Thakrar R, Pottinger B, Harding B, Porteous D, van Heyningen V, Cowell J, Jones C, Povey S, Davies KE, Thakker RV. EagI and NotI linking clones from human chromosomes 11 and Xp. Hum Genet 1996; 97:742-9. [PMID: 8641690 DOI: 10.1007/bf02346183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
EagI and NotI linking libraries were prepared in the lambda vector, EMBL5, from the mouse-human somatic cell hybrid 1W1LA4.9, which contains human chromosomes 11 and Xp as the only human component. Individual clones containing human DNA were isolated by their ability to hybridise with total human DNA and digested with SalI and EcoRI to identify the human insert size and single-copy fragments. The mean (+/- SD) insert sizes of the EagI and NotI clones were 18.3 +/- 3.2 kb and 16.6 +/- 3.6 kb, respectively. Regional localisation of 66 clones (52 EagI, 14 NotI) was achieved using a panel of 20 somatic cell hybrids that contained different overlapping deletions of chromosomes 11 or Xp. Thirty-nine clones (36 EagI, 3 NotI) were localised to chromosome 11; 17 of these were clustered in 11q13 and another nine were clustered in 11q14-q23.1. Twenty-seven clones (16 EagI, 11 NotI) were localised to Xp and 10 of these were clustered in Xp11. The 66 clones were assessed for seven different microsatellite repetitive sequences; restriction fragment length polymorphisms for five clones from 11q13 were also identified. These EagI and NotI clones, which supplement those previously mapped to chromosome 11 and Xp, should facilitate the generation of more detailed maps and the identification of genes that are associated with CpG-rich islands.
Collapse
Affiliation(s)
- M A Pook
- MRC Molecular Endocrinology Group, Royal Postgraduate Medical School, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Reid LH, West A, Gioeli DG, Phillips KK, Kelleher KF, Araujo D, Stanbridge EJ, Dowdy SF, Gerhard DS, Weissman BE. Localization of a tumor suppressor gene in 11p15.5 using the G401 Wilms' tumor assay. Hum Mol Genet 1996; 5:239-47. [PMID: 8824880 DOI: 10.1093/hmg/5.2.239] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multiple studies have underscored the importance of loss of tumor suppressor genes in the development of human cancer. To identify these genes, we used somatic cell hybrids in a functional assay for tumor suppression in vivo. A tumor suppressor gene in 11p15.5 was detected by transferring single human chromosomes into the G401 Wilms' tumor cell line. In order to better map this gene, we created a series of radiation-reduced t(X;11) chromosomes and characterized them at 24 loci between H-RAS and beta-globin. Interestingly, three of the chromosomes were indistinguishable as determined by genomic and cytogenetic analyses. Each contains an interstitial deletion with one breakpoint in 11p14.1 and the other breakpoint between the D11S601 and D11S648 loci in 11p15.5. PFGE analysis localized the 11p15.5 breakpoints to a 175 kb MluI fragment that hybridized to D11S601 and D11S648 probes. Genomic fragments from this 175 kb region were hybridized to DNA from mouse hybrid lines containing the delta t(X;11) chromosomes. This analysis detected the identical 11p15.5 breakpoint which disrupts a 7.8 kb EcoRI fragment in all three of the delta t(X;11) chromosomes, suggesting they are subclones of the same parent colony. Upon transfer into G401 cells, one of the chromosomes suppressed tumor formation in nude mice, while the other two chromosomes lacked this ability. Thus, our mapping data indicate that the gene in 11p15.5 which suppresses tumor formation in G401 cells must lie telomeric to the D11S601 locus. Koi et al. (Science 260: 361-364, 1993) have used a similar functional assay to localize a growth suppressor gene for the RD cell line centromeric to the D11S724 locus. The combination of functional studies by our lab and theirs significantly narrows the location of the tumor suppressor gene in 11p15.5 to the approximately 500 kb region between D11S601 and D11S724.
Collapse
Affiliation(s)
- L H Reid
- Department of Pathology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Horikawa I, Yamada H, Kugoh H, Yuasa Y, Suzuki M, Oshimura M. Subchromosomal mapping of a putative transformation suppressor gene on human chromosome 1. Jpn J Cancer Res 1995; 86:444-50. [PMID: 7790318 PMCID: PMC5920853 DOI: 10.1111/j.1349-7006.1995.tb03077.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We previously reported that the introduction of a normal human chromosome 1 via microcell-mediated chromosome transfer suppressed the transformed phenotypes, including anchorage-independent growth, of Kirsten murine sarcoma virus-transformed NIH3T3 (DT) cells. Soft-agar clones derived from DT-#1 cells (DT cells with an intact transferred human chromosome 1) exclusively failed to retain an intact form of this chromosome. Thus, a gene(s) with a suppressive activity on this chromosome had probably been lost. We therefore attempted to identify a commonly deleted region on human chromosome 1 in these soft-agar clones. Although eight of the 9 soft-agar clones examined still contained regions on this chromosome, to a greater or lesser degree, four loci on 1q21 and 1q23-q24 were commonly lost in all of them. Furthermore, the soft-agar clones had growth properties similar to those of DT cells. Thus, chromosome and DNA analyses suggested that human 1q21 and/or 1q23-q24 carries a transformation suppressor gene(s) which controls the transformed phenotypes of DT cells.
Collapse
Affiliation(s)
- I Horikawa
- Department of Molecular and Cell Genetics, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago
| | | | | | | | | | | |
Collapse
|
17
|
Lagoda PJ, Trent JM, Meese EU. Chromosome specific c-DNA libraries: reduction of unspecific priming events by purification of heteronuclear RNA. Mol Biol Rep 1994; 19:89-92. [PMID: 7520971 DOI: 10.1007/bf00997152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chromosome specific c-DNA libraries greatly facilitate the isolation of disease associated genes which have been previously linked to particular chromosomes. Recently, several methods have been developed and employed for the isolation of transcribed sequences from specific human chromosomes and chromosome regions. Heteronuclear (hn) RNA from somatic human/rodent cell hybrids has been used as starting material to selectively prime the synthesis of human specific c-DNAs. A drawback of this method is the high number of rodent clones found in these chromosome specific c-DNA libraries. Here, we provide direct evidence that unspecific priming events account for the majority of these rodent clones. Using an Alu consensus primer hn-RNA human specific c-DNA libraries have been established and the specificity of Alu-priming has been evaluated. Using a variety of purification schemes for isolating hn-RNA we have significantly reduced the percentage of unspecific priming events. We also included a comparison of the hn-RNA yield from different somatic hybrids prior and after purification.
Collapse
Affiliation(s)
- P J Lagoda
- CIRAD-BIOTROP AGETROP, Montpellier, France
| | | | | |
Collapse
|
18
|
Abstract
Terminal deletions are found frequently in both malignancies and clinically recognizable deletion syndromes in man. Little is known, particularly in cancer, of the specific mechanisms which lead to the generation of deleted chromosomes or the process by which these broken chromosomes are stabilized. We demonstrate that several examples of apparent terminal deletions are, in fact, subtelomeric translocations which were not detectable using conventional cytogenetics. The unexpectedly high frequency of this phenomenon and the diversity of partner chromosomes involved in the subtelomeric translocations is consistent with a model in which telomere capture can stabilize chromosome breakage in man.
Collapse
Affiliation(s)
- P S Meltzer
- University of Michigan, Department of Radiation, Ann Arbor 48109-0668
| | | | | |
Collapse
|
19
|
Jeggo PA, Hafezparast M, Thompson AF, Kaur GP, Sandhu AK, Athwal RS. A hamster-human subchromosomal hybrid cell panel for chromosome 2. SOMATIC CELL AND MOLECULAR GENETICS 1993; 19:39-49. [PMID: 8460397 DOI: 10.1007/bf01233953] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have constructed hamster-human hybrid cell lines containing fragments of human chromosome 2 as their only source of human DNA. Microcell-mediated chromosome transfer was used to transfer human chromosome 2 from a monochromosomal mouse-human hybrid line to a radiation-sensitive hamster mutant (XR-V15B) defective in double-strand break rejoining. The human chromosome 2 carried the Ecogpt gene and hybrids were selected using this marker. The transferred human chromosome was frequently broken, and the resulting microcell hybrids contained different sized segments of the q arm of chromosome 2. Two microcell hybrids were irradiated and fused to XR-V15B to generate additional hybrids bearing reduced amounts of human DNA. All hybrids were analyzed by PCR using primers specific for 27 human genes located on chromosome 2. From these data we have localized the integrated gpt gene on the human chromosome 2 to the region q36-37 and present a gene order for chromosome 2 markers.
Collapse
Affiliation(s)
- P A Jeggo
- MRC Cell Mutation Unit, Sussex University, Falmer, Brighton, U.K
| | | | | | | | | | | |
Collapse
|
20
|
Meese EU, Witkowski CM, Zoghbi HY, Stanbridge EJ, Meltzer PS, Trent JM. Development and utilization of a somatic cell hybrid mapping panel to assign NotI linking probes to the long arm of human chromosome 6. Genomics 1992; 12:542-8. [PMID: 1559705 DOI: 10.1016/0888-7543(92)90446-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A somatic cell hybrid mapping panel that defines seven regions of the long arm and one region of the short arm of human chromosome 6 has been developed. Utilizing this panel, 17 NotI boundary clones from a NotI linking library were regionally assigned to the long arm of chromosome 6. The majority of these clones (11) were found to localize within band regions 6q24-q27. The nonuniform distribution of NotI sites may indicate a cluster of HTF islands and likely represents a coincidence of coding sequences in this region of chromosome 6. Cross-hybridization of these linking clones to DNA from other species (zoo blots) provides further evidence for transcribed sequences in 7 of the NotI clones. These NotI clones were also used to identify corresponding NotI fragments using pulsed-field gel electrophoresis, facilitating further physical mapping of this region. Finally, regional assignment of five polymorphic probes to the long arm of chromosome 6 is also presented. These hybrids and probes should facilitate the construction of a physical and genetic linkage map to assist in the identification of disease loci along chromosome 6.
Collapse
Affiliation(s)
- E U Meese
- Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor 48109
| | | | | | | | | | | |
Collapse
|
21
|
Dowdy S, Fasching C, Araujo D, Lai K, Livanos E, Weissman B, Stanbridge E. Suppression of tumorigenicity in Wilms tumor by the p15.5-p14 region of chromosome 11. Science 1991. [DOI: 10.1126/science.1656527] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Dowdy SF, Fasching CL, Araujo D, Lai KM, Livanos E, Weissman BE, Stanbridge EJ. Suppression of tumorigenicity in Wilms tumor by the p15.5-p14 region of chromosome 11. Science 1991; 254:293-5. [PMID: 1656527 DOI: 10.1126/science.254.5029.293] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Wilms tumor has been associated with genomic alterations at both the 11p13 and 11p15 regions. To differentiate between the involvement of these two loci, a chromosome 11 was constructed that had one or the other region deleted, and this chromosome was introduced into the tumorigenic Wilms tumor cell line G401. When assayed for tumor-forming activity in nude mice, the 11p13-deleted, but not the 11p15.5-p14.1-deleted chromosome, retained its ability to suppress tumor formation. These results provide in vivo functional evidence for the existence of a second genetic locus (WT2) involved in suppressing the tumorigenic phenotype of Wilms tumor.
Collapse
Affiliation(s)
- S F Dowdy
- Department of Microbiology and Molecular Genetics, University of California, Irvine 92717
| | | | | | | | | | | | | |
Collapse
|