1
|
Dalina AA, Kovaleva IE, Budanov AV. Sestrins are Gatekeepers in the Way from Stress to Aging and Disease. Mol Biol 2018. [DOI: 10.1134/s0026893318060043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
2
|
Duhoux FP, Ameye G, Lambot V, Herens C, Lambert F, Raynaud S, Wlodarska I, Michaux L, Roche-Lestienne C, Labis E, Taviaux S, Chapiro E, Nguyen-Khac F, Khac FN, Struski S, Dobbelstein S, Dastugue N, Lippert E, Speleman F, Van Roy N, De Weer A, Rack K, Talmant P, Richebourg S, Mugneret F, Tigaud I, Mozziconacci MJ, Laibe S, Nadal N, Terré C, Libouton JM, Decottignies A, Vikkula M, Poirel HA. Refinement of 1p36 alterations not involving PRDM16 in myeloid and lymphoid malignancies. PLoS One 2011; 6:e26311. [PMID: 22039459 PMCID: PMC3198844 DOI: 10.1371/journal.pone.0026311] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 09/23/2011] [Indexed: 01/06/2023] Open
Abstract
Fluorescence in situ hybridization was performed to characterize 81 cases of myeloid and lymphoid malignancies with cytogenetic 1p36 alterations not affecting the PRDM16 locus. In total, three subgroups were identified: balanced translocations (N = 27) and telomeric rearrangements (N = 15), both mainly observed in myeloid disorders; and unbalanced non-telomeric rearrangements (N = 39), mainly observed in lymphoid proliferations and frequently associated with a highly complex karyotype. The 1p36 rearrangement was isolated in 12 cases, mainly myeloid disorders. The breakpoints on 1p36 were more widely distributed than previously reported, but with identifiable rare breakpoint cluster regions, such as the TP73 locus. We also found novel partner loci on 1p36 for the known multi-partner genes HMGA2 and RUNX1. We precised the common terminal 1p36 deletion, which has been suggested to have an adverse prognosis, in B-cell lymphomas [follicular lymphomas and diffuse large B-cell lymphomas with t(14;18)(q32;q21) as well as follicular lymphomas without t(14;18)]. Intrachromosomal telomeric repetitive sequences were detected in at least half the cases of telomeric rearrangements. It is unclear how the latter rearrangements occurred and whether they represent oncogenic events or result from chromosomal instability during oncogenesis.
Collapse
Affiliation(s)
- Francois P Duhoux
- Center for Human Genetics, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
A distinctive subtype of t(14;18)-negative nodal follicular non-Hodgkin lymphoma characterized by a predominantly diffuse growth pattern and deletions in the chromosomal region 1p36. Blood 2008; 113:1053-61. [PMID: 18978208 DOI: 10.1182/blood-2008-07-168682] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Follicular lymphoma (FL) is a morphologically and genetically well-characterized B-cell non-Hodgkin lymphoma that can show predominantly follicular, combined follicular and diffuse, or predominantly diffuse growth patterns. Although approximately 85% of FLs harbor the translocation t(14;18)(q32;q21) and consistently display a follicular growth pattern, predominantly diffuse FLs are less well characterized on the phenotypical, molecular, and clinical level. We studied 35 predominantly diffuse FL by immunohistochemistry, classical chromosome banding analysis, fluorescence in situ hybridization (FISH), and gene expression profiling. A total of 28 of 29 analyzable cases lacked t(14;18), and 27 of 29 cases revealed a unifying chromosomal aberration, a deletion in 1p36. Morphologically, 12 FLs were grade 1 and 23 were grade 2, and the immunophenotype with frequent expression of CD10, BCL6, and CD23 was in line with a germinal center B-cell phenotype. The gene expression profiles of 4 predominantly diffuse FLs fell into the spectrum of typical FL, with a unique enrichment of specific gene signatures. Remarkably, patients with diffuse FL frequently presented with low clinical stage and large but localized inguinal tumors. These results suggest that predominantly diffuse FL represent a distinct subtype of t(14;18)-negative nodal FL with a unifying genetic alteration (deletion of 1p36) and characteristic clinical features.
Collapse
|
4
|
Spitz R, Hero B, Ernestus K, Berthold F. FISH analyses for alterations in chromosomes 1, 2, 3, and 11 define high-risk groups in neuroblastoma. MEDICAL AND PEDIATRIC ONCOLOGY 2003; 41:30-5. [PMID: 12764740 DOI: 10.1002/mpo.10313] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The prognostic chromosomal markers 1p loss and MYCN amplification (MNA) are only present in a subgroup of approximately 30% of neuroblastomas. To further characterize high and low risk subsets we investigated alterations in chromosome arms 3p and 11q, additional changes in 1p and MYCN as well as the somy-status of chromosome 1 in the same sample. PROCEDURE Fluorescence in situ hybridization (FISH) was used as an alternative technique to PCR/LOH- or comparative genomic hybridization (CGH) analyses. Alterations in chromosomes 3p and 11q were investigated in 182 unselected tumors, 1p loss and MNA in 174 and 179 of these, respectively. The somy-status of chromosome 1 was determined in 165 tumors as it highly correlates with the tumor ploidy. RESULTS Alterations in the four chromosomal regions were found in the following frequencies: 3p26: 19%, 11q23: 29%, 1p36: 29%, MNA: 19%. Fifty-two percent of all cases displayed structural aberrations in at least one chromosomal region, 83% in stage 4 and 30% in stages 1-3, 4s. All aberrations were thus correlated with stage 4 disease but were also present in a substantial subset of localized and 4s tumors. Trisomy of chromosome 1 was found in 38% of the tumors, disomy or tetrasomy in 62%. Patients with alterations in any of the four chromosomes and di/tetrasomy 1 showed a significantly increased age at diagnosis. Loss in 1p and MNA were closely associated with each other, as well as 3p and 11q aberrations but not the groups 1p/MNA versus 3p/11q. Only a small portion of trisomic tumors showed aberrations in at least one of the four chromosomal regions (14%) in contrast to the majority of the di/tetrasomic cases (74%). As already known the MYCN status discriminated between good and poor outcome in localized and metastatic stage 4 tumors. In addition alterations in 1p or 11q, deletion in 3p and di/tetrasomy 1 were associated with an unfavorable prognosis in MYCN single copy tumors of stages 1-3, 4s. Multivariate analysis revealed 11q alterations and MNA as the most important chromosomal prognostic factors in all stages. CONCLUSION FISH analyses for chromosomal alterations in 3p and 11q as well as in 1p and MYCN allows to define different groups with an increased risk for disease progression.
Collapse
MESH Headings
- Child
- Chromosome Deletion
- Chromosomes, Human/genetics
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 3/genetics
- Cohort Studies
- DNA Probes
- Female
- Germany
- Humans
- In Situ Hybridization, Fluorescence
- Male
- N-Myc Proto-Oncogene Protein
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Staging
- Neuroblastoma/diagnosis
- Neuroblastoma/genetics
- Neuroblastoma/mortality
- Neuroblastoma/pathology
- Nuclear Proteins/genetics
- Oncogene Proteins/genetics
- Proportional Hazards Models
- Survival Analysis
Collapse
Affiliation(s)
- Ruediger Spitz
- University Children's Hospital, Pediatric Oncology, Köln, Germany.
| | | | | | | |
Collapse
|
5
|
Spitz R, Hero B, Westermann F, Ernestus K, Schwab M, Berthold F. Fluorescence in situ hybridization analyses of chromosome band 1p36 in neuroblastoma detect two classes of alterations. Genes Chromosomes Cancer 2002; 34:299-305. [PMID: 12007190 DOI: 10.1002/gcc.10070] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chromosomal alterations in 1p36 were investigated in 196 neuroblastoma tumors using fluorescence in situ hybridization. Additionally, by using the same technique, it was determined whether MYCN was amplified in 149 of these. The most frequent finding was a deletion in 1p36, leading to monosomy of this region (29 cases, 15%). Furthermore, we found tumors with at least two intact copies of chromosome 1 and additional 1p36-deleted copies. Altogether, 21 tumors (11%) displayed this imbalance of 1p36. Similar to the cases with deletion, imbalances were predominantly found in stage 4 tumors (81%), and they were significantly associated with an increased patient age (P = 0.01). Nearly all 1p-deleted tumors showed amplification of MYCN (24/27 analyzed samples, 89%), whereas only 8 of 21 (38%) with imbalance did. Eight cases with imbalance were investigated for loss of heterozygosity (LOH) using microsatellite markers in 1p35-36. Only 4 displayed 1p36 LOH, whereas the remaining 4 were heterozygous. Both patients with deletion of 1p and with imbalance had a poor outcome [3-year rate of event-free-survival (EFS): 33 +/- 15% and 41 +/- 15%], which was significantly worse compared to the outcome of patients without 1p alterations (3-year EFS: 70 +/- 5%; P = 0.01 and P = 0.0059). We conclude that besides monosomic short arm deletions, imbalance of 1p36 is a strong marker of a poor prognosis in neuroblastoma and not necessarily associated with MYCN amplification and LOH.
Collapse
Affiliation(s)
- Ruediger Spitz
- University Children's Hospital, Department of Pediatric Oncology, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Ohira M, Kageyama H, Mihara M, Furuta S, Machida T, Shishikura T, Takayasu H, Islam A, Nakamura Y, Takahashi M, Tomioka N, Sakiyama S, Kaneko Y, Toyoda A, Hattori M, Sakaki Y, Ohki M, Horii A, Soeda E, Inazawa J, Seki N, Kuma H, Nozawa I, Nakagawara A. Identification and characterization of a 500-kb homozygously deleted region at 1p36.2-p36.3 in a neuroblastoma cell line. Oncogene 2000; 19:4302-7. [PMID: 10980605 DOI: 10.1038/sj.onc.1203786] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss of heterozygosity of the distal region of chromosome 1p where tumor suppressor gene(s) might harbor is frequently observed in many human cancers including neuroblastoma (NBL) with MYCN amplification and poor prognosis. We have identified for the first time a homozygously deleted region at the marker D1S244 within the smallest region of overlap at 1p36.2-p36.3 in two NBL cell lines, NB-1 and NB-C201 (MASS-NB-SCH1), although our genotyping has suggested the possibility that both lines are derived from the same origin. The 800-kb PAC contig covering the entire region of homozygous deletion was made and partially sequenced (about 60%). The estimated length of the deleted region was 500 kb. We have, thus far, identified six genes within the region which include three known genes (DFF45, PGD, and CORT) as well as three other genes which have been reported during processing our present project for the last 3(1/2) years (HDNB1/UFD2, KIAA0591F/KIF1B-beta, and PEX14). They include the genes related to apoptosis, glucose metabolism, ubiquitin-proteasome pathway, a neuronal microtubule-associated motor molecule and biogenesis of peroxisome. At least three genes (HDNB1/UFD2, KIAA0591F/KIF1B-beta, and PEX14) were differentially expressed at high levels in favorable and at low levels in unfavorable subsets of primary neuroblastoma. Since the 1p distal region is reported to be imprinted, those differentially expressed genes could be the new members of the candidate NBL suppressor, although RT-PCR-SSCP analysis has demonstrated infrequent mutation of the genes so far identified. Full-sequencing and gene prediction for the region of homozygous deletion would elucidate more detailed structure of this region and might lead to discovery of additional candidate genes. Oncogene (2000) 19, 4302 - 4307
Collapse
Affiliation(s)
- M Ohira
- Division of Biochemistry, Chiba Cancer Center Research Institute, Chiba 260-8717, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Taylor CP, Bown NP, McGuckin AG, Lunec J, Malcolm AJ, Pearson AD, Sheer D. Fluorescence in situ hybridization techniques for the rapid detection of genetic prognostic factors in neuroblastoma. United Kingdom Children's Cancer Study Group. Br J Cancer 2000; 83:40-9. [PMID: 10883666 PMCID: PMC2374533 DOI: 10.1054/bjoc.2000.1280] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuroblastoma is the commonest extracranial solid tumour in children. There are a number of molecular genetic features known which are of prognostic importance and which are used to direct therapy. Identification and targeting of high-risk individuals with intensive therapeutic regimens may allow an improvement in survival rates. The most powerful biological parameters associated with prognosis in this malignancy are chromosomal changes, especially MYCN amplification, deletion of chromosome 1p and aneuploidy. Rapid characterization of these aberrations at the time of diagnosis is paramount if stratification according to risk group is to be achieved. This paper describes the rapid detection of del(1p), MYCN amplification and trisomy using interphase fluorescence in situ hybridization on imprints from fresh tumour biopsies. The results are related to those obtained by standard molecular methods and karyotyping.
Collapse
MESH Headings
- Aneuploidy
- Biopsy
- Blotting, Southern
- Bone Marrow/pathology
- Cell Nucleus/pathology
- Centromere/genetics
- Child
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 1/ultrastructure
- Chromosomes, Human, Pair 8/genetics
- Chromosomes, Human, Pair 8/ultrastructure
- Gene Amplification
- Genes, myc
- Genetic Predisposition to Disease
- Humans
- In Situ Hybridization, Fluorescence/methods
- Karyotyping
- Neuroblastoma/genetics
- Neuroblastoma/mortality
- Neuroblastoma/pathology
- Prognosis
- Sensitivity and Specificity
- Trisomy
Collapse
Affiliation(s)
- C P Taylor
- Human Cytogenetics Laboratory, Imperial Cancer Research Fund, Lincoln's Inn Fields, London, UK
| | | | | | | | | | | | | |
Collapse
|
8
|
Garden OA, Musk P, Worthington-White DA, Dewey MJ, Rich IN. Silent polymorphisms within the coding region of human sodium/hydrogen exchanger isoform-1 cDNA in peripheral blood mononuclear cells of leukemia patients: A comparison with healthy controls. CANCER GENETICS AND CYTOGENETICS 2000; 120:37-43. [PMID: 10913675 DOI: 10.1016/s0165-4608(99)00246-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have examined the sequence of the cDNA encoding the sodium/hydrogen exchanger isoform 1 (NHE1), from 23 bases upstream of the start codon to 28 bases downstream of the stop codon. Template was prepared from (1) peripheral blood mononuclear cells (PBMC) isolated from 10 healthy unrelated Caucasian volunteers; (2) PBMCs isolated from 6 leukemic patients (acute lymphoblastic leukemia [ALL], n = 3; chronic lymphocytic leukemia [CLL], n = 1; chronic myelogenous leukemia [CML], n = 2); and (3) samples of 4 leukemic cell lines (ALL: CEM, MOLT4; AML: KG1a; CML: K562). NHE1 cDNA in normal PBMCs showed silent polymorphism of nucleotides 112 (N1: T, frequency 0.70; C, frequency 0.30; prevalence of heterozygosity 0.42); 2248 (N2: G, frequency 0.90; A, frequency 0. 10; heterozygosity 0.18); and 2493 (N3: G, frequency 0.90; A, frequency 0.10; heterozygosity 0.18). Deduced primary structure of NHE1 protein in all normal volunteers was identical to that previously published for NHE1 from renal and cardiac tissue. Similar to normal PBMCs, NHE1 cDNA from leukemic cells showed polymorphism of nucleotides N1, N2, and N3, but failed to demonstrate leukemia-specific sequence differences. We conclude that the coding region of NHE1 cDNA shows a greater level of polymorphism than is currently recognized, but that sequence mutation of NHE1 is not a key event in the pathogenesis of leukemia.
Collapse
Affiliation(s)
- O A Garden
- Division of Transplantation Medicine, South Carolina Cancer Center, Palmetto Richland Memorial Hospital, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | | | | | | |
Collapse
|
9
|
Spotila LD, Rodriguez H, Koch M, Adams K, Caminis J, Tenenhouse HS, Tenenhouse A. Association of a polymorphism in the TNFR2 gene with low bone mineral density. J Bone Miner Res 2000; 15:1376-83. [PMID: 10893687 DOI: 10.1359/jbmr.2000.15.7.1376] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previous genetic linkage data suggested that a gene on chromosome 1p36.2-36.3 might be linked to low bone mineral density (BMD). Here, we examine the gene for tumor necrosis factor receptor 2 (TNFR2), a candidate gene within that interval, for association with low BMD in a group of 159 unrelated individuals. We assess two polymorphic sites within the gene, a microsatellite repeat within intron 4, and a three-nucleotide variation in the 3' untranslated region (UTR) of the gene. The latter has five alleles of which the rarest allele is associated with low spinal BMD Z score (p = 0.008). Lowest mean spinal BMD Z scores were observed for individuals having genotypes that were heterozygous for the rarest allele. No homozygotes for the rarest allele were observed. Preliminary analysis suggests that there is a difference in the genotype frequency distribution between the group with low BMD and a control group.
Collapse
Affiliation(s)
- L D Spotila
- Department of Bioscience and Biotechnology, Drexel University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Dave BJ, Pickering DL, Hess MM, Weisenburger DD, Armitage JO, Sanger WG. Deletion of cell division cycle 2-like 1 gene locus on 1p36 in non-Hodgkin lymphoma. CANCER GENETICS AND CYTOGENETICS 1999; 108:120-6. [PMID: 9973938 DOI: 10.1016/s0165-4608(98)00138-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our laboratories have documented a significantly high occurrence of chromosome 1p36 rearrangements in non-Hodgkin lymphoma (NHL). The cell division cycle 2-like 1(CDC2L1) (also known as TP58 or PITSLRE) gene, a protein kinase implicated in apoptotic signaling, is located at the very distal region of chromosome 1p36 and is likely to be disrupted by structural rearrangements involving 1p36. To determine the molecular consequences of the recurrent involvement of the 1p36 region, we examined metaphases containing 1p36 abnormalities from 31 specimens derived from 26 patients for the possible deletion of CDC2L1 by fluorescence in situ hybridization (FISH) using the TP58clk-1 DNA probe. Twenty-three cases exhibited the loss of CDC2L1 from the abnormal chromosome 1. In 2 of 26 cases, the gene locus was translocated to the partner chromosome, and in four specimens, all derived from one case, CDC2L1 was not deleted. This pilot investigation suggests that 1p36 rearrangements, and consequently the loss of the CDC2L1 gene locus, is important in NHL. This work also opens avenues for further molecular studies and prognostic correlations.
Collapse
Affiliation(s)
- B J Dave
- Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha 68198-5440, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The field of molecular genetics continues to see an ever increasing number of applications to pediatric tumor analysis. Studies in pediatric tumors have identified novel genes and other genetic changes, a large number of which reflect one of the following mechanisms: (1) activation of proto-oncogenes; (2) loss of tumor suppressor genes; or (3) creation of novel fusion proteins. At least one of these mechanisms is operational in each of the following pediatric tumors: neuroblastoma, Ewing sarcoma and peripheral primitive neuroectodermal tumor (pPNET), intra-abdominal desmoplastic small-cell tumor, rhabdomyosarcoma, synovial sarcoma, and Wilms tumor. Out of this research has come not only an increased understanding of oncogenesis but also, for each of the tumors listed above, diagnostic and/or prognostic markers that can be used by the pathologist and oncologist to improve overall patient management.
Collapse
Affiliation(s)
- P S Thorner
- Department of Pediatric Laboratory Medicine, Division of Pathology, Hospital for Sick Children and the University of Toronto, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | |
Collapse
|
12
|
Van Roy N, Laureys G, Van Gele M, Opdenakker G, Miura R, van der Drift P, Chan A, Versteeg R, Speleman F. Analysis of 1;17 translocation breakpoints in neuroblastoma: implications for mapping of neuroblastoma genes. Eur J Cancer 1997; 33:1974-8. [PMID: 9516836 DOI: 10.1016/s0959-8049(97)00319-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deletions and translocations resulting in loss of distal 1p-material are known to occur frequently in advanced neuroblastomas. Fluorescence in situ hybridisation (FISH) showed that 17q was most frequently involved in chromosome 1p translocations. A review of the literature shows that 10 of 27 cell lines carry 1;17 translocations. Similar translocations were also observed in primary tumours. Together with the occurrence of a constitutional 1;17 translocation in a neuroblastoma patient, these observations suggest a particular role for these chromosome re-arrangements in the development of neuroblastoma. Apart from the loss of distal 1p-material, these translocations invariably lead to extra copies of 17q. This also suggested a possible role for genes on 17q in neuroblastoma tumorigenesis. Further support for this hypothesis comes from the observation that in those cell lines without 1;17 translocations, other chromosome 17q translocations were present. These too lead to extra chromosome 17q material. Molecular analysis of 1;17 translocation breakpoints revealed breakpoint heterogeneity both on 1p and 17q, which suggests the involvement of more than 2 single genes on 1p and 17q. The localisation of the different 1p-breakpoints occurring in 1;17 translocations in neuroblastoma are discussed with respect to the recently identified candidate tumor suppressor regions and genes on 1p. In this study, we focused on the molecular analysis of the 17q breakpoints in 1;17 translocations. Detailed physical mapping of the constitutional 17q breakpoint allowed for the construction of a YAC contig covering the breakpoint. Furthermore, a refined position was determined for a number of 17q breakpoints of 1;17 translocations found in neuroblastoma cell lines. The most distal 17q breakpoint was identified in cell line UHG-NP and mapped telomeric to cosmid cCI17-1049 (17q21). This suggests that genes involved in a dosage-dependent manner in the development of neuroblastoma map in the distal segment 17q22-qter. Future studies aim at the molecular cloning of 1;17 translocation breakpoints and at deciphering the mechanisms leading to 1;17 translocations and possibly to the identification of neuroblastoma genes at or in the vicinity of these breakpoints.
Collapse
Affiliation(s)
- N Van Roy
- Department of Medical Genetics, University Hospital Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Schwarz H, Arden K, Lotz M. CD137, a member of the tumor necrosis factor receptor family, is located on chromosome 1p36, in a cluster of related genes, and colocalizes with several malignancies. Biochem Biophys Res Commun 1997; 235:699-703. [PMID: 9207223 DOI: 10.1006/bbrc.1997.6870] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CD137 (ILA/4-1BB) is a member of the tumor-necrosis-factor receptor family. Members of this receptor family and their structurally related ligands are important regulators of a wide variety of physiological processes and play an especially important role in the regulation of immune responses. CD137 regulates cell proliferation and survival of T-lymphocytes. Using Southern blot analysis and polymerase chain reaction, we localized the CD137 gene to chromosome 1p36. This chromosomal region harbors the genes of several other members of this receptor family and is associated with deletions and rearrangements in several malignancies.
Collapse
Affiliation(s)
- H Schwarz
- Department of Pathology, University of Regensburg, Germany
| | | | | |
Collapse
|
14
|
Jensen SJ, Sulman EP, Maris JM, Matise TC, Vojta PJ, Barrett JC, Brodeur GM, White PS. An integrated transcript map of human chromosome 1p35-p36. Genomics 1997; 42:126-36. [PMID: 9177782 DOI: 10.1006/geno.1997.4714] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The distal short arm of human chromosome 1 (1p) is rearranged in a variety of malignancies, and several genetic diseases also map to this region. We have constructed an integrated transcript map to precisely define the positions of genes and expressed sequence tags (ESTs) previously mapped to 1p35-p36, a region spanning approximately 40 Mb. To anchor the integrated map, a framework genetic map was constructed with 24 genetic markers and a marker order of 1000:1 odds, yielding an average resolution of 2.8 cM. An additional 106 genetic markers were localized relative to the framework genetic map. To place markers more precisely within 1p35-p36, a chromosome 1-specific, radiation-reduced hybrid (RH) panel was created. Individual DNA fragments of the RH panel were identified and ordered by PCR with the framework genetic map. A total of 250 markers, including 142 genes and ESTs, were mapped by PCR against the RH panel. The map has an observed resolution of 800 kb, and the results closely match and more precisely define previous mapping information for most markers. This map will help to identify candidate genes for genetic diseases mapping to distal 1p and is fully integrated with existing genetic and RH maps of the human genome.
Collapse
Affiliation(s)
- S J Jensen
- Division of Oncology, The Children's Hospital of Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Reddy UR, Phatak S, Allen C, Nycum LM, Sulman EP, White PS, Biegel JA. Localization of the human Ror1 gene (NTRKR1) to chromosome 1p31-p32 by fluorescence in situ hybridization and somatic cell hybrid analysis. Genomics 1997; 41:283-5. [PMID: 9143508 DOI: 10.1006/geno.1997.4653] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ror1 is an orphan cell surface receptor with strong homology to the tyrosine kinase domain of growth factor receptors, in particular the Trk family. Southern blot analysis of genomic DNA from somatic cell hybrids revealed that Ror1 is located on chromosome 1. We have mapped the Ror1 gene to chromosome 1p12-p32 using PCR on a somatic cell hybrid panel that subdivides chromosome 1p. We have further localized the gene to chromosome 1p31-p32 by fluorescence in situ hybridization using a PAC clone that contains the Ror1 gene.
Collapse
Affiliation(s)
- U R Reddy
- Division of Neurology Research, Children's Hospital of Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
PURPOSE Neuroblastomas have a variety of clinical behaviors, from spontaneous regression or differentiation to early metastasis and death. We have examined a variety of genetic variables that might explain or predict the clinical behavior. PATIENTS AND METHODS We have studied DNA or RNA from a number of children enrolled in clinical trials with the major pediatric oncology cooperative groups. RESULTS We propose that neuroblastomas may be classified into three subsets with distinct biological features and clinical behavior. The first subset consists of those tumors with hyperdiploid modal karyotypes and high TRK-A expression. Patients with these tumors are usually infants with low stages of disease and a very favorable outcome. The second group consists of tumors that have a near-diploid DNA content, usually with 1p allelic loss or other structural changes, but they lack MYCN amplification, and TRK-A expression is low. The patients are generally older, with advanced stages of disease and an intermediate outcome. The third group is characterized by tumors with MYCN amplification, 1p allelic loss, and low or absent TRK-A expression. The patients are 1-5 years of age and have advanced stages of disease, rapid tumor progression, and a very poor prognosis. Current evidence suggests the tumor types are genetically distinct, and one type seldom if ever evolves into another. CONCLUSIONS Identification of these genetic and clinical subsets permits a more accurate prediction of outcome. This, in turn, allows more appropriate selection of therapeutic intensity to minimize side effects in those with a favorable outcome but optimize the chance of cure in those requiring aggressive treatment.
Collapse
Affiliation(s)
- G M Brodeur
- Division of Oncology, Children's Hospital of Philadelphia, PA 19104-4813, USA
| | | | | | | | | |
Collapse
|
17
|
Sulman EP, Tang XX, Allen C, Biegel JA, Pleasure DE, Brodeur GM, Ikegaki N. ECK, a human EPH-related gene, maps to 1p36.1, a common region of alteration in human cancers. Genomics 1997; 40:371-4. [PMID: 9119409 DOI: 10.1006/geno.1996.4569] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mouse eck, a member of the EPH gene family, has been mapped to mouse chromosome 4. The syntenic relationship between this chromosome and human chromosome 1 suggests that the human ECK gene maps to the distal short arm of human chromosome 1 (1p). Since this region is frequently deleted or altered in certain tumors of neuroectodermal origin, it is important to define the specific chromosomal localization of the human ECK gene. PCR screening of a rodent-human somatic cell hybrid panel by ECK-specific primers showed that ECK is indeed localized to human chromosome 1. Additional PCR screening of a regional screening panel for chromosome 1p indicated that ECK is localized to 1p36, distal to FUCA1. Furthermore, fluorescence in situ hybridization analysis with an ECK-specific P1 clone showed that ECK maps proximal to genetic marker D1S228. Taken together, the data suggest that ECK maps to 1p36.1, a region that is frequently deleted in neuroblastoma, melanoma, and other neuroectodermal tumors.
Collapse
Affiliation(s)
- E P Sulman
- Division of Oncology, Children's Hospital of Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Both cytogenetic and molecular genetic approaches have unveiled non-random genomic alterations in 1p associated with a number of human malignancies. These have been interpreted to suggest the existence of cancer-related genes in 1p. Earlier studies had employed chromosome analysis or used molecular probes mapped by in situ hybridization. Further, studies of the various tumor types often involved different molecular probes that had been mapped by different technical approaches, like linkage analysis, radioactive or fluorescence in situ hybridization, or by employing a panel of mouse x human radiation reduced somatic cell hybrids. The lack of maps fully integrating all loci has complicated the generation of a comparative and coherent picture of 1p damage in human malignancies even among different studies on the same tumor type. Only recently has the availability of genetically mapped, highly polymorphic loci at (CA)n repeats with sufficient linear density made it possible to scan genomic regions in different types of tumors readily by polymerase chain reaction (PCR) with a standard set of molecular probes. This paper aims at presenting an up-to-date picture of the association of 1p alterations with different human cancers and compiles the corresponding literature. From this it will emerge that the pattern of alterations in individual tumor types can be complex and that a stringent molecular and functional definition of the role that Ip alterations might have in tumorigenesis will require a more detailed analysis of the genomic regions involved.
Collapse
Affiliation(s)
- M Schwab
- DKFZ, Deutsches Krebsforschungszentrum, Abteilung Zytogenetik, Heidelberg, Germany
| | | | | |
Collapse
|
19
|
White PS, Maris JM, Beltinger C, Sulman E, Marshall HN, Fujimori M, Kaufman BA, Biegel JA, Allen C, Hilliard C, Valentine MB, Look AT, Enomoto H, Sakiyama S, Brodeur GM. A region of consistent deletion in neuroblastoma maps within human chromosome 1p36.2-36.3. Proc Natl Acad Sci U S A 1995; 92:5520-4. [PMID: 7777541 PMCID: PMC41727 DOI: 10.1073/pnas.92.12.5520] [Citation(s) in RCA: 195] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Deletion of the short arm of human chromosome 1 is the most common cytogenetic abnormality observed in neuroblastoma. To characterize the region of consistent deletion, we performed loss of heterozygosity (LOH) studies on 122 neuroblastoma tumor samples with 30 distal chromosome 1p polymorphisms. LOH was detected in 32 of the 122 tumors (26%). A single region of LOH, marked distally by D1Z2 and proximally by D1S228, was detected in all tumors demonstrating loss. Also, cells from a patient with a constitutional deletion of 1p36, and from a neuroblastoma cell line with a small 1p36 deletion, were analyzed by fluorescence in situ hybridization. Cells from both sources had interstitial deletions of 1p36.2-36.3 which overlapped the consensus region of LOH defined by the tumors. Interstitial deletion in the constitutional case was confirmed by allelic loss studies using the panel of polymorphic markers. Four proposed candidate genes--DAN, ID3 (heir-1), CDC2L1 (p58), and TNFR2--were shown to lie outside of the consensus region of allelic loss, as defined by the above deletions. These results more precisely define the location of a neuroblastoma suppressor gene within 1p36.2-36.3, eliminating 33 centimorgans of proximal 1p36 from consideration. Furthermore, a consensus region of loss, which excludes the four leading candidate genes, was found in all tumors with 1p36 LOH.
Collapse
Affiliation(s)
- P S White
- Division of Oncology, Children's Hospital of Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Laureys G, Versteeg R, Speleman F, van der Drift P, Francke U, Opdenakker G, Van Roy N. Characterisation of the chromosome breakpoints in a patient with a constitutional translocation t(1;17)(p36.31-p36.13;q11.2-q12) and neuroblastoma. Eur J Cancer 1995; 31A:523-6. [PMID: 7576958 DOI: 10.1016/0959-8049(95)00012-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cytogenetic and molecular studies in neuroblastoma suggest the presence of a tumour suppressor gene at the distal chromosome band 1p36. Previously, we hypothesised that a constitutional translocation involving the region 1p36 [t(1;17)(p36;q12-q21)] in a patient with neuroblastoma predisposed him to tumour development. Here we report the molecular delineation of the translocation breakpoints. Somatic cell hybrids containing the derivative chromosomes were used to determine the position of chromosome 1p and 17q DNA probes respective to the breakpoints using fluorescence in situ hybridisation. The 1p breakpoint was localised between the PND and D1S56 loci. The chromosome 17q breakpoint is flanked by NF1 and SCYA7, as proximal and distal marker, respectively. We redefined the translocation as t(1;17)(p36.31-13;q11.2-q12). The identification of flanking markers of the breakpoints is a prerequisite for breakpoint cloning and identification of a putative neuroblastoma suppressor gene.
Collapse
Affiliation(s)
- G Laureys
- Department of Pediatric Oncology, University of Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Neuroblastomas demonstrate both clinical and biological heterogeneity. We have proposed that neuroblastomas may be classified in three genetically distinct subtypes, based on cytogenetic and molecular analysis. The first comprises those with hyperdiploid or triploid modal karyotypes (or compatible DNA content by flow cytometry), 1p LOH and MYCN amplification are absent, and TRKA expression is high. These patients are likely to be infants with low stages of disease (stages 1, 2, or 4S by the International Neuroblastoma Staging System), and they have a very favourable outcome (> 90% cure). The second group consists of tumours that generally have a near diploid or tetraploid modal chromosome number or DNA content but lack MYCN amplification. They usually have 1p allelic loss, 14q allelic loss or other structural changes, and TRKA expression is usually low. These patients are generally older with advanced stages of disease (stages 3 or 4), and they have a slowly progressive course, with a cure rate of 25-50%. The third group is characterised by tumours with MYCN amplification. These tumours are generally near diploid or tetraploid, with 1p allelic loss, and low or absent TRKA expression. The patients are usually between 1 and 5 years of age with advanced stages of disease, and they have a very poor prognosis (< 5%). It remains to be determined if tumours in one group ever evolve into a less unfavourable group, but current evidence suggests that they are distinct genetically. The identification of the oncogenes, suppressor genes and growth factor receptor pathways involved in neuroblastomas has provided great insight into the mechanisms of malignant transformation and progression, and ultimately they may provide the targets for future therapy.
Collapse
|