1
|
Wang J, Lu C, Wei S. Whole-genome sequencing identifies I-SceI-mediated transgene integration sites in Xenopus tropicalis snai2:eGFP line. G3 (BETHESDA, MD.) 2022; 12:jkac037. [PMID: 35171990 PMCID: PMC9073676 DOI: 10.1093/g3journal/jkac037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022]
Abstract
Transgenesis with the meganuclease I-SceI is a safe and efficient method, but the underlying mechanisms remain unclear due to the lack of information on transgene localization. Using I-SceI, we previously developed a transgenic Xenopus tropicalis line expressing enhanced green fluorescent protein driven by the neural crest-specific snai2 promoter/enhancer, which is a powerful tool for studying neural crest development and craniofacial morphogenesis. Here, we carried out whole-genome shotgun sequencing for the snai2:eGFP embryos to identify the transgene integration sites. With a 19x sequencing coverage, we estimated that 6 copies of the transgene were inserted into the Xenopus tropicalis genome in the hemizygous transgenic embryos. Two transgene integration loci adjacent to each other were identified in a noncoding region on chromosome 1, possibly as a result of duplication after a single transgene insertion. Interestingly, genomic DNA at the boundaries of the transgene integration loci contains short sequences homologous to the I-SceI recognition site, suggesting that the integration was not random but probably mediated by sequence homology. To our knowledge, our work represents the first genome-wide sequencing study on a transgenic organism generated with I-SceI, which is useful for evaluating the potential genetic effects of I-SceI-mediated transgenesis and further understanding the mechanisms underlying this transgenic method.
Collapse
Affiliation(s)
- Jian Wang
- Department of Biological Sciences and Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Congyu Lu
- Department of Biological Sciences and Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Shuo Wei
- Department of Biological Sciences and Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
2
|
Transgenesis in the acoel worm Hofstenia miamia. Dev Cell 2021; 56:3160-3170.e4. [PMID: 34752780 DOI: 10.1016/j.devcel.2021.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 12/27/2022]
Abstract
The acoel worm Hofstenia miamia, which can replace tissue lost to injury via differentiation of a population of stem cells, has emerged as a new research organism for studying regeneration. To enhance the depth of mechanistic studies in this system, we devised a protocol for microinjection into embryonic cells that resulted in stable transgene integration into the genome and generated animals with tissue-specific fluorescent transgene expression in epidermis, gut, and muscle. We demonstrate that transgenic Hofstenia are amenable to the isolation of specific cell types, investigations of regeneration, tracking of photoconverted molecules, and live imaging. Further, our stable transgenic lines revealed insights into the biology of Hofstenia, including a high-resolution three-dimensional view of cell morphology and the organization of muscle as a cellular scaffold for other tissues. Our work positions Hofstenia as a powerful system with multiple toolkits for mechanistic investigations of development, whole-body regeneration, and stem cell biology.
Collapse
|
3
|
Kourakis MJ, Borba C, Zhang A, Newman-Smith E, Salas P, Manjunath B, Smith WC. Parallel visual circuitry in a basal chordate. eLife 2019; 8:44753. [PMID: 30998184 PMCID: PMC6499539 DOI: 10.7554/elife.44753] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/11/2019] [Indexed: 12/28/2022] Open
Abstract
A common CNS architecture is observed in all chordates, from vertebrates to basal chordates like the ascidian Ciona. Ciona stands apart among chordates in having a complete larval connectome. Starting with visuomotor circuits predicted by the Ciona connectome, we used expression maps of neurotransmitter use with behavioral assays to identify two parallel visuomotor circuits that are responsive to different components of visual stimuli. The first circuit is characterized by glutamatergic photoreceptors and responds to the direction of light. These photoreceptors project to cholinergic motor neurons, via two tiers of cholinergic interneurons. The second circuit responds to changes in ambient light and mediates an escape response. This circuit uses GABAergic photoreceptors which project to GABAergic interneurons, and then to cholinergic interneurons. Our observations on the behavior of larvae either treated with a GABA receptor antagonist or carrying a mutation that eliminates photoreceptors indicate the second circuit is disinhibitory.
Collapse
Affiliation(s)
- Matthew J Kourakis
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - Cezar Borba
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Angela Zhang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, United States
| | - Erin Newman-Smith
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States.,Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Priscilla Salas
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - B Manjunath
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - William C Smith
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States.,Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| |
Collapse
|
4
|
Maguire JE, Pandey A, Wu Y, Di Gregorio A. Investigating Evolutionarily Conserved Molecular Mechanisms Controlling Gene Expression in the Notochord. TRANSGENIC ASCIDIANS 2018. [DOI: 10.1007/978-981-10-7545-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Abstract
Transgenesis is an indispensable method for elucidating the cellular and molecular mechanisms underlying biological phenomena. In Ciona, transgenic lines that have a transgene insertion in their genomes have been created. The transgenic lines are valuable because they express reporter genes in a nonmosaic manner. This nonmosaic manner allows us to accurately observe tissues and organs. The insertions of transgenes can destroy genes to create mutants. The insertional mutagenesis is a splendid method for investigating functions of genes. In Ciona intestinalis, expression of the gfp reporter gene is subjected to epigenetic silencing in the female germline. This epigenetic silencing has been used to establish a novel method for knocking down maternal expression of genes. The genetic procedures based on germline transgenesis facilitate studies for addressing gene functions in Ciona.
Collapse
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan.
| |
Collapse
|
6
|
Morales Diaz H, Mejares E, Newman-Smith E, Smith WC. ACAM, a novel member of the neural IgCAM family, mediates anterior neural tube closure in a primitive chordate. Dev Biol 2016; 409:288-296. [PMID: 26542009 DOI: 10.1016/j.ydbio.2015.10.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 01/18/2023]
Abstract
The neural IgCAM family of cell adhesion molecules, which includes NCAM and related molecules, has evolved via gene duplication and alternative splicing to allow for a wide range of isoforms with distinct functions and homophilic binding properties. A search for neural IgCAMs in ascidians (Ciona intestinalis, Ciona savignyi, and Phallusia mammillata) has identified a novel set of truncated family members that, unlike the known members, lack fibronectin III domains and consist of only repeated Ig domains. Within the tunicates this form appears to be unique to the ascidians, and it was designated ACAM, for Ascidian Cell Adhesion Molecule. In C. intestinalis ACAM is expressed in the developing neural plate and neural tube, with strongest expression in the anterior sensory vesicle precursor. Unlike the two other conventional neural IgCAMs in C. intestinalis, which are expressed maternally and throughout the morula and blastula stages, ACAM expression initiates at the gastrula stage. Moreover, C. intestinalis ACAM is a target of the homeodomain transcription factor OTX, which plays an essential role in the development of the anterior central nervous system. Morpholino (MO) knockdown shows that ACAM is required for neural tube closure. In MO-injected embryos neural tube closure was normal caudally, but the anterior neuropore remained open. A similar phenotype was seen with overexpression of a secreted version of ACAM. The presence of ACAM in ascidians highlights the diversity of this gene family in morphogenesis and neurodevelopment.
Collapse
Affiliation(s)
- Heidi Morales Diaz
- Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, United States
| | - Emil Mejares
- Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, United States
| | - Erin Newman-Smith
- Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, United States
| | - William C Smith
- Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, United States.
| |
Collapse
|
7
|
Veeman M, Reeves W. Quantitative and in toto imaging in ascidians: working toward an image-centric systems biology of chordate morphogenesis. Genesis 2015; 53:143-59. [PMID: 25262824 PMCID: PMC4378666 DOI: 10.1002/dvg.22828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/20/2014] [Accepted: 09/25/2014] [Indexed: 12/16/2022]
Abstract
Developmental biology relies heavily on microscopy to image the finely controlled cell behaviors that drive embryonic development. Most embryos are large enough that a field of view with the resolution and magnification needed to resolve single cells will not span more than a small region of the embryo. Ascidian embryos, however, are sufficiently small that they can be imaged in toto with fine subcellular detail using conventional microscopes and objectives. Unlike other model organisms with particularly small embryos, ascidians have a chordate embryonic body plan that includes a notochord, hollow dorsal neural tube, heart primordium and numerous other anatomical details conserved with the vertebrates. Here we compare the size and anatomy of ascidian embryos with those of more traditional model organisms, and relate these features to the capabilities of both conventional and exotic imaging methods. We review the emergence of Ciona and related ascidian species as model organisms for a new era of image-based developmental systems biology. We conclude by discussing some important challenges in ascidian imaging and image analysis that remain to be solved.
Collapse
Affiliation(s)
- Michael Veeman
- Division of Biology, Kansas State University, Manhattan KS, USA
| | - Wendy Reeves
- Division of Biology, Kansas State University, Manhattan KS, USA
| |
Collapse
|
8
|
Crocetta F, Marino R, Cirino P, Macina A, Staiano L, Esposito R, Pezzotti MR, Racioppi C, Toscano F, De Felice E, Locascio A, Ristoratore F, Spagnuolo A, Zanetti L, Branno M, Sordino P. Mutation studies in ascidians: a review. Genesis 2014; 53:160-9. [PMID: 25395385 DOI: 10.1002/dvg.22837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 12/21/2022]
Abstract
Historically, mutations have had a significant impact on the study of developmental processes and phenotypic evolution. Lesions in DNA are created by artificial methods or detected by natural genetic variation. Random mutations are then ascribed to genetic change by direct sequencing or positional cloning. Tunicate species of the ascidian genus Ciona represent nearly fully realized model systems in which gene function can be investigated in depth. Additionally, tunicates are valuable organisms for the study of naturally occurring mutations due to the capability to exploit genetic variation down to the molecular level. Here, we summarize the available information about how mutations are studied in ascidians with examples of insights that have resulted from these applications. We also describe notions and methodologies that might be useful for the implementation of easy and tight procedures for mutations studies in Ciona.
Collapse
Affiliation(s)
- Fabio Crocetta
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kourakis MJ, Reeves W, Newman-Smith E, Maury B, Abdul-Wajid S, Smith WC. A one-dimensional model of PCP signaling: polarized cell behavior in the notochord of the ascidian Ciona. Dev Biol 2014; 395:120-30. [PMID: 25173874 DOI: 10.1016/j.ydbio.2014.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/25/2014] [Accepted: 08/19/2014] [Indexed: 12/12/2022]
Abstract
Despite its importance in development and physiology the planar cell polarity (PCP) pathway remains one of the most enigmatic signaling mechanisms. The notochord of the ascidian Ciona provides a unique model for investigating the PCP pathway. Interestingly, the notochord appears to be the only embryonic structure in Ciona activating the PCP pathway. Moreover, the Ciona notochord as a single-file array of forty polarized cells is a uniquely tractable system for the study of polarization dynamics and the transmission of the PCP pathway. Here, we test models for propagation of a polarizing signal, interrogating temporal, spatial and signaling requirements. A simple cell-cell relay cascading through the entire length of the notochord is not supported; instead a more complex mechanism is revealed, with interactions influencing polarity between neighboring cells, but not distant ones. Mechanisms coordinating notochord-wide polarity remain elusive, but appear to entrain general (i.e., global) polarity even while local interactions remain important. However, this global polarizer does not appear to act as a localized, spatially-restricted determinant. Coordination of polarity along the long axis of the notochord requires the PCP pathway, a role we demonstrate is temporally distinct from this pathway's earlier role in convergent extension and intercalation. We also reveal polarity in the notochord to be dynamic: a cell's polarity state can be changed and then restored, underscoring the Ciona notochord's amenability for in vivo studies of PCP.
Collapse
Affiliation(s)
- Matthew J Kourakis
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Wendy Reeves
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Erin Newman-Smith
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Benoit Maury
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Sarah Abdul-Wajid
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - William C Smith
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
10
|
Hozumi A, Mita K, Miskey C, Mates L, Izsvak Z, Ivics Z, Satake H, Sasakura Y. Germline transgenesis of the chordate Ciona intestinalis with hyperactive variants of sleeping beauty transposable element. Dev Dyn 2012; 242:30-43. [PMID: 23073965 DOI: 10.1002/dvdy.23891] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2012] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Transposon-mediated transgenesis is an excellent method for creating stable transgenic lines and insertional mutants. In the chordate Ciona intestinalis, Minos is the only transposon that has been used as the tool for germline transformation. Adding another transposon system in this organism enables us to conduct genetic techniques which can only be realized with the use of two transposons. RESULTS In the present study, we found that another Tc1/mariner superfamily transposon, sleeping beauty (SB), retains sufficient activity for germline transformation of C. intestinalis. SB shows efficiencies of germline transformation, insertion into gene coding regions, and enhancer detection comparable to those of Minos. We have developed a system for the remobilization of SB copies in the C. intestinalis genome by using transgenic lines expressing SB transposase in the germ cells. With this system, we examined the manner of SB mobilization in the C. intestinalis genome. SB shows intrachromosomal transposition more frequently than Minos. CONCLUSIONS SB-based germline transformation and the establishment of a new method that uses its frequent intrachromosomal transposition will result in breakthroughs in genetic approaches that use C. intestinalis together with Minos.
Collapse
Affiliation(s)
- Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ishibashi S, Love NR, Amaya E. A simple method of transgenesis using I-SceI meganuclease in Xenopus. Methods Mol Biol 2012; 917:205-218. [PMID: 22956090 DOI: 10.1007/978-1-61779-992-1_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Here we present a protocol for generating transgenic embryos in Xenopus using I-SceI meganuclease. This method relies on integration of DNA constructs, containing one or two I-SceI meganuclease sites. It is a simpler method than the REMI method of transgenesis, and it is ideally suited for generating transgenic lines in Xenopus laevis and Xenopus tropicalis. In addition to it being simpler than the REMI method, this protocol also results in single copy integration events rather than tandem concatemers. Although the protocol we describe is for X. tropicalis, the method can also be used to generate transgenic lines in X. laevis. We also describe a convenient method for designing and generating complex constructs for transgenesis, named pTransgenesis, based on the Multisite Gateway(®) cloning, which include I-SceI sites and Tol2 elements to facilitate genome integration.
Collapse
Affiliation(s)
- Shoko Ishibashi
- The Healing Foundation Centre, The Faculty of Life Sciences, University of Manchester, Manchester, England, UK
| | | | | |
Collapse
|
12
|
Abstract
The study of cis-regulatory DNAs that control developmental gene expression is integral to the modeling of comprehensive genomic regulatory networks for embryogenesis. Ascidian embryos provide a unique opportunity for the analysis of cis-regulatory DNAs with cellular resolution in the context of a simple but typical chordate body plan. Here, we review landmark studies that have laid the foundations for the study of transcriptional enhancers, among other cis-regulatory DNAs, and their roles in ascidian development. The studies using ascidians of the Ciona genus have capitalized on a unique electroporation technique that permits the simultaneous transfection of hundreds of fertilized eggs, which develop rapidly and express transgenes with little mosaicism. Current studies using the ascidian embryo benefit from extensively annotated genomic resources to characterize transcript models in silico. The search for functional noncoding sequences can be guided by bioinformatic analyses combining evolutionary conservation, gene coexpression, and combinations of overrepresented short-sequence motifs. The power of the transient transfection assays has allowed thorough dissection of numerous cis-regulatory modules, which provided insights into the functional constraints that shape enhancer architecture and diversification. Future studies will benefit from pioneering stable transgenic lines and the analysis of chromatin states. Whole genome expression, functional and DNA binding data are being integrated into comprehensive genomic regulatory network models of early ascidian cell specification with a single-cell resolution that is unique among chordate model systems.
Collapse
|
13
|
Casco-Robles MM, Yamada S, Miura T, Nakamura K, Haynes T, Maki N, Del Rio-Tsonis K, Tsonis PA, Chiba C. Expressing exogenous genes in newts by transgenesis. Nat Protoc 2011; 6:600-8. [PMID: 21527918 DOI: 10.1038/nprot.2011.334] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The great regenerative abilities of newts provide the impetus for studies at the molecular level. However, efficient methods for gene regulation have historically been quite limited. Here we describe a protocol for transgenically expressing exogenous genes in the newt Cynops pyrrhogaster. This method is simple: a reaction mixture of I-SceI meganuclease and a plasmid DNA carrying a transgene cassette flanked by the enzyme recognition sites is directly injected into fertilized eggs. The protocol achieves a high efficiency of transgenesis, comparable to protocols used in other animal systems, and it provides a practical number of transgenic newts (∼20% of injected embryos) that survive beyond metamorphosis and that can be applied to regenerative studies. The entire protocol for obtaining transgenic adult newts takes 4-5 months.
Collapse
|
14
|
Kugler JE, Kerner P, Bouquet JM, Jiang D, Di Gregorio A. Evolutionary changes in the notochord genetic toolkit: a comparative analysis of notochord genes in the ascidian Ciona and the larvacean Oikopleura. BMC Evol Biol 2011; 11:21. [PMID: 21251251 PMCID: PMC3034685 DOI: 10.1186/1471-2148-11-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 01/20/2011] [Indexed: 11/12/2022] Open
Abstract
Background The notochord is a defining feature of the chordate clade, and invertebrate chordates, such as tunicates, are uniquely suited for studies of this structure. Here we used a well-characterized set of 50 notochord genes known to be targets of the notochord-specific Brachyury transcription factor in one tunicate, Ciona intestinalis (Class Ascidiacea), to begin determining whether the same genetic toolkit is employed to build the notochord in another tunicate, Oikopleura dioica (Class Larvacea). We identified Oikopleura orthologs of the Ciona notochord genes, as well as lineage-specific duplicates for which we determined the phylogenetic relationships with related genes from other chordates, and we analyzed their expression patterns in Oikopleura embryos. Results Of the 50 Ciona notochord genes that were used as a reference, only 26 had clearly identifiable orthologs in Oikopleura. Two of these conserved genes appeared to have undergone Oikopleura- and/or tunicate-specific duplications, and one was present in three copies in Oikopleura, thus bringing the number of genes to test to 30. We were able to clone and test 28 of these genes. Thirteen of the 28 Oikopleura orthologs of Ciona notochord genes showed clear expression in all or in part of the Oikopleura notochord, seven were diffusely expressed throughout the tail, six were expressed in tissues other than the notochord, while two probes did not provide a detectable signal at any of the stages analyzed. One of the notochord genes identified, Oikopleura netrin, was found to be unevenly expressed in notochord cells, in a pattern reminiscent of that previously observed for one of the Oikopleura Hox genes. Conclusions A surprisingly high number of Ciona notochord genes do not have apparent counterparts in Oikopleura, and only a fraction of the evolutionarily conserved genes show clear notochord expression. This suggests that Ciona and Oikopleura, despite the morphological similarities of their notochords, have developed rather divergent sets of notochord genes after their split from a common tunicate ancestor. This study demonstrates that comparisons between divergent tunicates can lead to insights into the basic complement of genes sufficient for notochord development, and elucidate the constraints that control its composition.
Collapse
Affiliation(s)
- Jamie E Kugler
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
Ascidians, such as Ciona, are invertebrate chordates with simple embryonic body plans and small, relatively non-redundant genomes. Ciona genetics is in its infancy compared to many other model systems, but it provides a powerful method for studying this important vertebrate outgroup. Here we give basic methods for genetic analysis of Ciona, including protocols for controlled crosses both by natural spawning and by the surgical isolation of gametes; the identification and propagation of mutant lines; and strategies for positional cloning.
Collapse
Affiliation(s)
- Michael T Veeman
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| | | | | |
Collapse
|
16
|
Casco-Robles MM, Yamada S, Miura T, Chiba C. Simple and efficient transgenesis with I-SceI meganuclease in the newt, Cynops pyrrhogaster. Dev Dyn 2010; 239:3275-84. [DOI: 10.1002/dvdy.22463] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
17
|
Veeman MT, Newman-Smith E, El-Nachef D, Smith WC. The ascidian mouth opening is derived from the anterior neuropore: reassessing the mouth/neural tube relationship in chordate evolution. Dev Biol 2010; 344:138-49. [PMID: 20438724 DOI: 10.1016/j.ydbio.2010.04.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/22/2010] [Accepted: 04/23/2010] [Indexed: 11/15/2022]
Abstract
The relative positions of the brain and mouth are of central importance for models of chordate evolution. The dorsal hollow neural tube and the mouth have often been thought of as developmentally distinct structures that may have followed independent evolutionary paths. In most chordates however, including vertebrates and ascidians, the mouth primordia have been shown to fate to the anterior neural boundary. In ascidians such as Ciona there is a particularly intimate relationship between brain and mouth development, with a thin canal connecting the neural tube lumen to the mouth primordium at larval stages. This so-called neurohypophyseal canal was previously thought to be a secondary connection that formed relatively late, after the independent formation of the mouth primordium and the neural tube. Here we show that the Ciona neurohypophyseal canal is present from the end of neurulation and represents the anteriormost neural tube, and that the future mouth opening is actually derived from the anterior neuropore. The mouth thus forms at the anterior midline transition between neural tube and surface ectoderm. In the vertebrate Xenopus, we find that although the mouth primordium is not topologically continuous with the neural tube lumen, it nonetheless forms at this same transition point. This close association between the mouth primordium and the anterior neural tube in both ascidians and amphibians suggests that the evolution of these two structures may be more closely linked than previously appreciated.
Collapse
Affiliation(s)
- Michael T Veeman
- Department of Molecular, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|
18
|
A muscle-specific transgenic reporter line of the sea anemone, Nematostella vectensis. Proc Natl Acad Sci U S A 2009; 107:104-8. [PMID: 20018670 DOI: 10.1073/pnas.0909148107] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sea anemone, Nematostella vectensis, has become an attractive new model organism for comparative genomics and evolutionary developmental biology. Over the last few years, many genes have been isolated and their expression patterns studied to gain insight into their function. More recently, functional tools have been developed to manipulate gene function; however, most of these approaches rely on microinjection and are limited to early stages of development. Transgenic lines would significantly enhance the tractability of the system. In particular, the study of gene- or tissue-specific promoters would be most useful. Here we report the stable establishment of a transgenic line using the I-SceI meganuclease system to facilitate integration into the genome. We isolated a 1.6-kb fragment of the regulatory upstream region of the Myosin Heavy Chain1 (MyHC1) gene and found that the transgene is specifically expressed in the retractor and tentacle muscles of Nematostella polyps, faithfully reproducing the expression of the endogenous MyHC1 gene. This demonstrates that the 1.6-kb fragment contains all of the regulatory elements necessary to drive correct expression and suggests that retractor and tentacle muscles in Nematostella are distinct from other myoepithelial cells. The transgene is transmitted through the germline at high frequency, and G(1) transgenic polyps have only one integration site. The relatively high frequency of transgenesis, in combination with gene- or tissue-specific promoters, will foster experimental possibilities for studying in vivo gene functions in gene regulatory networks and developmental processes in the nonbilaterian sea anemone, Nematostella vectensis.
Collapse
|
19
|
Christiaen L, Wagner E, Shi W, Levine M. The sea squirt Ciona intestinalis. Cold Spring Harb Protoc 2009; 2009:pdb.emo138. [PMID: 20150076 DOI: 10.1101/pdb.emo138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
INTRODUCTIONSea squirts (Ciona intestinalis) are tunicates (or urochordates), the closest living relatives of the vertebrates. Although the adults are simple, sessile filter feeders, the embryos and larvae possess clear chordate features including a prominent notochord and dorsal, hollow neural tube. Tail-bud-stage embryos and mature swimming tadpoles are composed of approximately 1000 and 2600 cells, respectively, with complete lineage information. This cellular simplicity is coupled with a streamlined genome that has not undergone the duplications seen in vertebrates. A variety of molecular tools have been applied to understanding Ciona embryogenesis. Comparisons of the C. intestinalis genome and the related but divergent Ciona savignyi genome have facilitated the identification of conserved non-coding DNAs, including regulatory DNAs such as tissue-specific enhancers. Systematic in situ hybridization assays and gene-disruption experiments using specific morpholino antisense oligonucleotides have led to the elaboration of provisional gene regulatory networks underlying the specification of key chordate tissues, including the notochord, neural tube, and beating heart. These networks provide a foundation for understanding the mechanistic basis of more complex cell-specification processes in vertebrates, and for understanding the evolutionary origins of distinctive vertebrate characteristics such as the neural crest. Because tunicates and vertebrates are sister groups, there is every indication that the developmental mechanisms revealed in the simple Ciona model will be applicable to comparable processes in vertebrates.
Collapse
Affiliation(s)
- Lionel Christiaen
- Molecular and Cell Biology Department, University of California, Berkeley, California 94720, USA.
| | | | | | | |
Collapse
|
20
|
Horie T, Nakagawa M, Sasakura Y, Kusakabe TG. Cell type and function of neurons in the ascidian nervous system. Dev Growth Differ 2009; 51:207-20. [PMID: 19379276 DOI: 10.1111/j.1440-169x.2009.01105.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ascidians, or sea squirts, are primitive chordates, and their tadpole larvae share a basic body plan with vertebrates, including a notochord and a dorsal tubular central nervous system (CNS). The CNS of the ascidian larva is formed through a process similar to vertebrate neurulation, while the ascidian CNS is remarkably simple, consisting of about 100 neurons. Recent identification of genes that are specifically expressed in a particular subtype of neurons has enabled us to reveal neuronal networks at single-cell resolution. Based on the information on neuron subtype-specific genes, different populations of neurons have been visualized by whole-mount in situ hybridization, immunohistochemical staining using specific antibodies, and fluorescence labeling of cell bodies and neurites by a fluorescence protein reporter driven by neuron-specific promoters. Neuronal populations that have been successfully visualized include glutamatergic, cholinergic, gamma-aminobutyric acid/glycinergic, and dopaminergic neurons, which have allowed us to propose functional regionalization of the CNS and a neural circuit for locomotion. Thus, the simple nervous system of the ascidian larva can serve as an attractive model system for studying the development, function, and evolution of the chordate nervous system.
Collapse
Affiliation(s)
- Takeo Horie
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan.
| | | | | | | |
Collapse
|
21
|
Generation of stable Xenopus laevis transgenic lines expressing a transgene controlled by weak promoters. Transgenic Res 2009; 18:815-27. [DOI: 10.1007/s11248-009-9273-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
|
22
|
Dong B, Horie T, Denker E, Kusakabe T, Tsuda M, Smith WC, Jiang D. Tube formation by complex cellular processes in Ciona intestinalis notochord. Dev Biol 2009; 330:237-49. [PMID: 19324030 DOI: 10.1016/j.ydbio.2009.03.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/02/2009] [Accepted: 03/14/2009] [Indexed: 10/21/2022]
Abstract
In the course of embryogenesis multicellular structures and organs are assembled from constituent cells. One structural component common to many organs is the tube, which consists most simply of a luminal space surrounded by a single layer of epithelial cells. The notochord of ascidian Ciona forms a tube consisting of only 40 cells, and serves as a hydrostatic "skeleton" essential for swimming. While the early processes of convergent extension in ascidian notochord development have been extensively studied, the later phases of development, which include lumen formation, have not been well characterized. Here we used molecular markers and confocal imaging to describe tubulogenesis in the developing Ciona notochord. We found that during tubulogenesis each notochord cell established de novo apical domains, and underwent a mesenchymal-epithelial transition to become an unusual epithelial cell with two opposing apical domains. Concomitantly, extracellular luminal matrix was produced and deposited between notochord cells. Subsequently, each notochord cell simultaneously executed two types of crawling movements bi-directionally along the anterior/posterior axis on the inner surface of notochordal sheath. Lamellipodia-like protrusions resulted in cell lengthening along the anterior/posterior axis, while the retraction of trailing edges of the same cell led to the merging of the two apical domains. As a result, the notochord cells acquired endothelial-like shape and formed the wall of the central lumen. Inhibition of actin polymerization prevented the cell movement and tube formation. Ciona notochord tube formation utilized an assortment of common and fundamental cellular processes including cell shape change, apical membrane biogenesis, cell/cell adhesion remodeling, dynamic cell crawling, and lumen matrix secretion.
Collapse
Affiliation(s)
- Bo Dong
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
23
|
Chiba S, Jiang D, Satoh N, Smith WC. Brachyury null mutant-induced defects in juvenile ascidian endodermal organs. Development 2009; 136:35-9. [PMID: 19019990 PMCID: PMC2685961 DOI: 10.1242/dev.030981] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2008] [Indexed: 11/20/2022]
Abstract
We report the isolation of a recessive ENU-induced short-tailed mutant in the ascidian Ciona intestinalis that is the product of a premature stop in the brachyury gene. Notochord differentiation and morphogenesis are severely disrupted in the mutant line. At the larval stage, variable degrees of ectopic endoderm staining were observed in the homozygous mutants, indicating that loss of brachyury results in stochastic fate transformation. In post-metamorphosis mutants, a uniform defect in tail resorption was observed, together with variable defects in digestive tract development. Some cells misdirected from the notochord lineage were found to be incorporated into definitive endodermal structures, such as stomach and intestine.
Collapse
Affiliation(s)
- Shota Chiba
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|
24
|
Ochiai H, Sakamoto N, Suzuki K, Akasaka K, Yamamoto T. TheArsinsulator facilitatesI-SceImeganuclease-mediated transgenesis in the sea urchin embryo. Dev Dyn 2008; 237:2475-82. [DOI: 10.1002/dvdy.21690] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
25
|
Sordino P, Andreakis N, Brown ER, Leccia NI, Squarzoni P, Tarallo R, Alfano C, Caputi L, D'Ambrosio P, Daniele P, D'Aniello E, D'Aniello S, Maiella S, Miraglia V, Russo MT, Sorrenti G, Branno M, Cariello L, Cirino P, Locascio A, Spagnuolo A, Zanetti L, Ristoratore F. Natural variation of model mutant phenotypes in Ciona intestinalis. PLoS One 2008; 3:e2344. [PMID: 18523552 PMCID: PMC2391289 DOI: 10.1371/journal.pone.0002344] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 04/17/2008] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The study of ascidians (Chordata, Tunicata) has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology. METHODOLOGY/PRINCIPAL FINDINGS Here, we report a preliminary survey for naturally occurring mutations in three geographically interconnected populations of C. intestinalis. The influence of historical, geographical and environmental factors on the distribution of abnormal phenotypes was assessed by means of 12 microsatellites. We identified 37 possible mutant loci with stereotyped defects in embryonic development that segregate in a way typical of recessive alleles. Local populations were found to differ in genetic organization and frequency distribution of phenotypic classes. CONCLUSIONS/SIGNIFICANCE Natural genetic polymorphism of C. intestinalis constitutes a valuable source of phenotypes for studying embryonic development in ascidians. Correlating genetic structure and the occurrence of abnormal phenotypes is a crucial focus for understanding the selective forces that shape natural finite populations, and may provide insights of great importance into the evolutionary mechanisms that generate animal diversity.
Collapse
Affiliation(s)
- Paolo Sordino
- Laboratory of Biochemistry and Molecular Biology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
From among a plethora of various gene delivery methods, the researcher must choose the right one according to availability for a given species and the precise application the transgenic animal is intended for. Here we review the progress in meganuclease and Sleeping Beauty transposon mediated transgenesis over recent years with a focus on medaka and zebrafish. We present a side-by-side comparison of these two approaches based on their biologic properties and provide interesting perspectives for future experiments and applications, which are different for the two techniques because of their distinct modes of action.
Collapse
Affiliation(s)
- Clemens Grabher
- Pediatric Oncology, Dana-Farber Cancer Institute, Binney St, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
27
|
Veeman MT, Nakatani Y, Hendrickson C, Ericson V, Lin C, Smith WC. Chongmague reveals an essential role for laminin-mediated boundary formation in chordate convergence and extension movements. Development 2007; 135:33-41. [PMID: 18032448 DOI: 10.1242/dev.010892] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although cell intercalation driven by non-canonical Wnt/planar cell polarity (PCP) pathway-dependent mediolateral cell polarity is important for notochord morphogenesis, it is likely that multiple mechanisms shape the notochord as it converges and extends. Here we show that the recessive short-tailed Ciona savignyi mutation chongmague (chm) has a novel defect in the formation of a morphological boundary around the developing notochord. chm notochord cells initiate intercalation normally, but then fail to maintain their polarized cell morphology and migrate inappropriately to become dispersed in the larval tail. This is unlike aimless (aim), a mutation in the PCP pathway component Prickle, which has a severe defect in early mediolateral intercalation but forms a robust notochord boundary. Positional cloning identifies chm as a mutation in the C. savignyi ortholog of the vertebrate alpha 3/4/5 family of laminins. Cs-lamalpha3/4/5 is highly expressed in the developing notochord, and Cs-lamalpha3/4/5 protein is specifically localized to the outer border of the notochord. Notochord convergence and extension, reduced but not absent in both chm and aim, are essentially abolished in the aim/aim; chm/chm double mutant, indicating that laminin-mediated boundary formation and PCP-dependent mediolateral intercalation are each able to drive a remarkable degree of tail morphogenesis in the absence of the other. These mechanisms therefore initially act in parallel, but we also find that PCP signaling has an important later role in maintaining the perinotochordal/intranotochordal polarity of Cs-lamalpha3/4/5 localization.
Collapse
Affiliation(s)
- Michael T Veeman
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara CA, 93106, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
The development of the notochord involves a complex set of cellular behaviors. While these morphogenic behaviors are common to all chordates, the ascidian provides a particularly attractive experimental model because of its relative simplicity. In particular, all notochord morphogenesis in ascidians takes place with only 40 cells, as opposed to the hundreds of cells in vertebrate model systems. Initial steps in ascidian notochord development convert a monolayer of epithelial-like cells in the pregastrula embryo to a cylindrical rod of single-cell diameter. Convergent extension is responsible for the intercalation of notochord cells and some degree of notochord elongation, while a second phase of elongation is observed as the notochord narrows medially and increases in volume. The mechanism by which the volume of the notochord increases differs between ascidian species. Some ascidians produce extracellular pockets that will eventually coalesce to form a lumen running the length of the notochord; whereas others do not. By either mechanism, the resulting notochord serves as a hydrostatic skeleton allowing for the locomotion of the swimming larva. Several basic cell behaviors, such as cell shape changes, cell rearrangement, establishment of cell polarity, and alteration of extracellular environment, are displayed in the process of notochord morphogenesis. Modern analysis of ascidian notochord morphogenesis promises to contribute to our understanding of these fundamental biological processes.
Collapse
Affiliation(s)
- Di Jiang
- Sars International Centre for Marine Molecular Biology, Thormøhlensgt. 55 N-5008 Bergen, Norway
| | - William C. Smith
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
- author for correspondence:
| |
Collapse
|
29
|
Joly JS, Kano S, Matsuoka T, Auger H, Hirayama K, Satoh N, Awazu S, Legendre L, Sasakura Y. Culture ofCiona intestinalisin closed systems. Dev Dyn 2007; 236:1832-40. [PMID: 17394236 DOI: 10.1002/dvdy.21124] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Improvements in closed-system culturing methods for marine invertebrates are important prerequisites for the generalized use of transgenic lines. We discuss here the effects of several closed-system conditions on the growth and survival of the solitary ascidian, Ciona intestinalis. In Shimoda, close to the sea, a small-tank system was used to ensure that tanks and systems were reasonably equipped, water exchange was rapid, and animals separated to minimize the risk of infection. In Gif-sur-Yvette, an inland site, we tried to determine the optimal conditions to limit handling operations, and to save artificial seawater by avoiding water pollution. A mixture of at least two types of live algae was better than any single-organism diet. With these maintenance protocols, we were able to obtain several generations of Ciona intestinalis, including several transgenic lines. Because these systems make it easier to rear Ciona intestinalis in laboratories, they increase the potentialities of this model organism for research.
Collapse
Affiliation(s)
- Jean-Stéphane Joly
- INRA MSNC group, DEPSN, UPR2197, Institut Fessard, CNRS, Gif-sur-Yvette, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The use of classic genetics is emerging in the ascidian Ciona intestinalis; recent advances in genomics and high-quality developmental and evolutionary studies have made this animal an attractive model for research purposes. Genetic mapping in Ciona will likely make a major contribution to ascidian genomics and developmental biology by providing support for genome assembly and annotation and for the isolation of genes with particular mutations, while construction of genetic maps advances classic genetics in this species. Two major issues must be overcome before fine genetic maps can be constructed: the choice of proper genetic backgrounds and the establishment of laboratory strains. A high degree of polymorphism is useful for genetic mapping if we consider particular combinations of genetic backgrounds and techniques, although it is necessary to pay attention to the confused classification of C. intestinalis. Thus, it is preferred to establish laboratory strains instead of using samples with various genetic backgrounds. As these issues are unresolved, only amplified fragment length polymorphism-based maps have been created, while bulk segregant analysis is expected to isolate markers flanking mutant loci. However, rich genomic resources should facilitate the next stage of genetic map construction based on type I markers using coding sequences. The meiotic events that occur in crossing experiments for mapping purposes should shed light on population genetics and speciation issues. The results of such investigations may provide feedback for comparative genomics and developmental genetics in the near future.
Collapse
Affiliation(s)
- Shungo Kano
- DEPSN, CNRS, Institute de Nerurobiologie A. Fessard, Gif-sur-Yvette, France.
| |
Collapse
|
31
|
Baghdiguian S, Martinand-Mari C, Mangeat P. Using Ciona to study developmental programmed cell death. Semin Cancer Biol 2007; 17:147-53. [PMID: 17197195 DOI: 10.1016/j.semcancer.2006.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 11/25/2006] [Indexed: 11/22/2022]
Abstract
Ciona intestinalis, a member of Tunicates, the closest group to vertebrates, has emerged as an appropriate organism for the study of developmentally regulated programmed cell death. First, because massive phases of apoptosis occur all along embryogenesis. Second, because the lecithotrophic mode of development is associated with autophagic process occurring during juvenile formation. Third, because the biochemical cell death machinery is close to that found in mammals. Altogether, the Ciona system contributes to identify new specific regulatory pathways and to explain how molecular mechanisms of programmed cell death evolved from invertebrates to vertebrates.
Collapse
Affiliation(s)
- Stephen Baghdiguian
- UMR CNRS 5554, Institut des Sciences de l'Evolution, Case Courrier No. 065, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier, Cedex 05, France.
| | | | | |
Collapse
|
32
|
Awazu S, Matsuoka T, Inaba K, Satoh N, Sasakura Y. High-throughput enhancer trap by remobilization of transposonMinos inCiona intestinalis. Genesis 2007; 45:307-17. [PMID: 17464954 DOI: 10.1002/dvg.20290] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The enhancer trap approach utilizing transposons yields us information about gene functions and gene expression patterns. In the ascidian Ciona intestinalis, transposon-based transgenesis and insertional mutagenesis were achieved with a Tc1/mariner transposon Minos. We report development of a novel technique for enhancer trap in C. intestinalis. This technique uses remobilization of Minos in the Ciona genome. A Minos vector for enhancer trap was constructed and a tandem array insertion of the vector was introduced into the Ciona genome to create a mutator line. Minos was remobilized in Ciona chromosomes to create new insertions by providing transposases. These transposase-introduced animals were crossed with wild-type animals. Nearly 80% of F1 families showed novel GFP expression patterns. This high-throughput enhancer trap screen will be useful to create new marker transgenic lines showing reporter gene expression in specific tissues and to identify novel patterns of gene expression.
Collapse
Affiliation(s)
- Satoko Awazu
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan.
| | | | | | | | | |
Collapse
|
33
|
Sasakura Y. Germline transgenesis and insertional mutagenesis in the ascidianCiona intestinalis. Dev Dyn 2007; 236:1758-67. [PMID: 17342755 DOI: 10.1002/dvdy.21111] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stable transgenesis is a splendid technique that is applicable to the creation of useful marker lines, enhancer/gene traps, and insertional mutagenesis. Recently, transposon-mediated transformation using a Tc1/mariner transposable element Minos has been reported in two ascidians: Ciona intestinalis and C. savignyi. The transposon derived from an insect, Drosophila hydei, has high activity for excision in Ciona embryos and transposition in their genome. As much as 37% of Minos-injected C. intestinalis transmitted transposon insertions to the subsequent generation. Minos-mediated germline transgenesis has also been achieved by means of electroporation method. Minos techniques have been applied to enhancer traps and insertional mutagenesis in Ciona. For those reasons, Minos offers the high potential for use as a powerful tool for future genetic studies. This review specifically addresses recent achievements of transformation techniques in Ciona, as exemplified using the Minos system.
Collapse
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan.
| |
Collapse
|
34
|
Sasakura Y, Konno A, Mizuno K, Satoh N, Inaba K. Enhancer detection in the ascidianCiona intestinalis with transposase-expressing lines ofMinos. Dev Dyn 2007; 237:39-50. [DOI: 10.1002/dvdy.21333] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
35
|
Abstract
For whole-genome analysis in a basal chordate (protochordate), we used F1 pseudo-testcross mapping strategy and amplified fragment length polymorphism (AFLP) markers to construct primary linkage maps of the ascidian tunicate Ciona intestinalis. Two genetic maps consisted of 14 linkage groups, in agreement with the haploid chromosome number, and contained 276 and 125 AFLP loci derived from crosses between British and Neapolitan individuals. The two maps covered 4218.9 and 2086.9 cM, respectively, with an average marker interval of 16.1 and 18.9 cM. We observed a high recombinant ratio, ranging from 25 to 49 kb/cM, which can explain the high degree of polymorphism in this species. Some AFLP markers were converted to sequence tagged sites (STSs) by sequence determination, in order to create anchor markers for the fragmental physical map. Our recombination tools provide basic knowledge of genetic status and whole genome organization, and genetic markers to assist positional cloning in C. intestinalis.
Collapse
Affiliation(s)
- Shungo Kano
- Laboratory of Biochemistry and Molecular Biology, Stazione Zoologica A. Dohrn, Naples 80121, Italy.
| | | | | |
Collapse
|
36
|
Rembold M, Lahiri K, Foulkes NS, Wittbrodt J. Transgenesis in fish: efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nat Protoc 2006; 1:1133-9. [PMID: 17406394 DOI: 10.1038/nprot.2006.165] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Small fish are a popular laboratory model for studying gene expression and function by transgenesis. If, however, the transgenes are not readily detectable by visual inspection, a large number of embryos must be injected, raised and screened to identify positive founder fish. Here, we describe a strategy to efficiently generate and preselect transgenic lines harbouring any transgene of interest. Co-injection of a selectable reporter construct (e.g., GFP), together with the transgene of interest on a separate plasmid using the I-SceI meganuclease approach, results in co-distribution of the two plasmids. The quality of GFP expression within the F0 generation therefore reflects the quality of injection and allows efficient and reliable selection of founder fish that are also positive for the second transgene of interest. In our experience, a large fraction (up to 50%) of GFP-positive fish will also be transgenic for the second transgene, thus providing a rapid (within 3-4 months) and efficient way to establish transgenic lines for any gene of interest in medaka and zebrafish.
Collapse
Affiliation(s)
- Martina Rembold
- Developmental Biology Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
37
|
Sherwood NM, Tello JA, Roch GJ. Neuroendocrinology of protochordates: Insights from Ciona genomics. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:254-71. [PMID: 16413805 DOI: 10.1016/j.cbpa.2005.11.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 11/07/2005] [Accepted: 11/10/2005] [Indexed: 11/17/2022]
Abstract
The genome for two species of Ciona is available making these tunicates excellent models for studies on the evolution of the chordates. In this review most of the data is from Ciona intestinalis, as the annotation of the C. savignyi genome is not yet available. The phylogenetic position of tunicates at the origin of the chordates and the nature of the genome before expansion in vertebrates allows tunicates to be used as a touchstone for understanding genes that either preceded or arose in vertebrates. A comparison of Ciona, a sea squirt, to other model organisms such as a nematode, fruit fly, zebrafish, frog, chicken and mouse shows that Ciona has many useful traits including accessibility for embryological, lineage tracing, forward genetics, and loss- or gain-of-function experiments. For neuroendocrine studies, these traits are important for determining gene function, whereas the availability of the genome is critical for identification of ligands, receptors, transcription factors and signaling pathways. Four major neurohormones and their receptors have been identified by cloning and to some extent by function in Ciona: gonadotropin-releasing hormone, insulin, insulin-like growth factor, and cionin, a member of the CCK/gastrin family. The simplicity of tunicates should be an advantage in searching for novel functions for these hormones. Other neuroendocrine components that have been annotated in the genome are a multitude of receptors, which are available for cloning, expression and functional studies.
Collapse
Affiliation(s)
- Nancy M Sherwood
- Department of Biology, University of Victoria, Victoria, B.C., Canada V8W 3N5.
| | | | | |
Collapse
|
38
|
Prodon F, Chenevert J, Sardet C. Establishment of animal–vegetal polarity during maturation in ascidian oocytes. Dev Biol 2006; 290:297-311. [PMID: 16405883 DOI: 10.1016/j.ydbio.2005.11.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 10/21/2005] [Accepted: 11/09/2005] [Indexed: 11/20/2022]
Abstract
Mature ascidian oocytes are arrested in metaphase of meiosis I (Met I) and display a pronounced animal-vegetal polarity: a small meiotic spindle lies beneath the animal pole, and two adjacent cortical and subcortical domains respectively rich in cortical endoplasmic reticulum and postplasmic/PEM RNAs (cER/mRNA domain) and mitochondria (myoplasm domain) line the equatorial and vegetal regions. Symmetry-breaking events triggered by the fertilizing sperm remodel this primary animal-vegetal (a-v) axis to establish the embryonic (D-V, A-P) axes. To understand how this radial a-v polarity of eggs is established, we have analyzed the distribution of mitochondria, mRNAs, microtubules and chromosomes in pre-vitellogenic, vitellogenic and post-vitellogenic Germinal Vesicle (GV) stage oocytes and in spontaneously maturing oocytes of the ascidian Ciona intestinalis. We show that myoplasm and postplasmic/PEM RNAs move into the oocyte periphery at the end of oogenesis and that polarization along the a-v axis occurs after maturation in several steps which take 3-4 h to be completed. First, the Germinal Vesicle breaks down, and a meiotic spindle forms in the center of the oocyte. Second, the meiotic spindle moves in an apparently random direction towards the cortex. Third, when the microtubular spindle and chromosomes arrive and rotate in the cortex (defining the animal pole), the subcortical myoplasm domain and cortical postplasmic/PEM RNAs are excluded from the animal pole region, thus concentrating in the vegetal hemisphere. The actin cytoskeleton is required for migration of the spindle and subsequent polarization, whereas these events occur normally in the absence of microtubules. Our observations set the stage for understanding the mechanisms governing primary axis establishment and meiotic maturation in ascidians.
Collapse
Affiliation(s)
- François Prodon
- BioMarCell, UMR7009, CNRS/UPMC, Station Zoologique, Observatoire Océanologique, Villefranche sur Mer 06230, France.
| | | | | |
Collapse
|
39
|
Zeller RW, Virata MJ, Cone AC. Predictable mosaic transgene expression in ascidian embryos produced with a simple electroporation device. Dev Dyn 2006; 235:1921-32. [PMID: 16607640 DOI: 10.1002/dvdy.20815] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Two customized electroporators were specifically designed for creating transgenic ascidian embryos. These electroporators were simple to build, inexpensive, and produced transgenic embryos with efficiencies that equaled or rivaled commercially available machines. A key design feature of these machines resulted in the generation of consistent electroporation pulses providing repeatability between experiments. These devices were used to optimize experimental parameters allowing for the creation of transient transgenic embryos with predictable patterns of mosaic transgene expression. We used these new electroporators to examine the expression of two different fluorescent protein reporter genes with regard to embryonic cell lineage. In general, transgene expression followed the embryonic cell lineage and coelectroporated transgenes were always expressed in the same embryonic cells. Our analysis also indicated that, during development, transgenes could be lost from embryonic cells, suggesting that transgenes may be present in extrachromosomal arrays, as has been observed in other organisms. Our new electroporator designs will allow ascidian researchers to inexpensively produce transgenic ascidians and should prove useful for adapting the electroporation technique to other marine embryo systems.
Collapse
Affiliation(s)
- Robert W Zeller
- Molecular Biology Institute and Coastal and Marine Institute, San Diego State University, San Diego, California 92182-4614, USA.
| | | | | |
Collapse
|
40
|
Jiang D, Smith WC. Self- and cross-fertilization in the solitary ascidian Ciona savignyi. THE BIOLOGICAL BULLETIN 2005; 209:107-12. [PMID: 16260770 DOI: 10.2307/3593128] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Solitary ascidians are hermaphrodites that release sperm and eggs simultaneously. However, many species are self-sterile, owing to a self/non-self recognition system operating at the outer surface of the chorion during sperm-egg interaction. In Ciona intestinalis, self-incompatibility is thought to have a genetic basis. Here, we report a survey of the self-fertilization potential of a Santa Barbara, California, population of Ciona savignyi, a close relative of C. intestinalis. We found that, in contrast to reports on C. intestinalis, C. savignyi is highly self-fertile. However, using two nonlethal recessive mutant strains, aimless (aim) and immaculate (imc), and a stable transgenic strain that expresses green fluorescent protein (GFP) in the notochord to follow offspring genotype, we demonstrate that non-self sperm outcompete self-sperm in fertilization competition assays. When the chorion was removed, both self- and non-self sperm performed equally well in the competition assay. Thus the non-self/self gamete recognition in C. savignyi is not absolute but relative, and is mediated by one or more components in the chorion. We discuss the significance of this finding in the context of natural populations in the wild, where individuals of C. savignyi are typically found growing in large groups that spawn in unison and where self-fertilization would be expected to be very rare.
Collapse
Affiliation(s)
- Di Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| | | |
Collapse
|
41
|
Abstract
Thanks to their transparent and rapidly developing mosaic embryos, ascidians (or sea squirts) have been a model system for embryological studies for over a century. Recently, ascidians have entered the postgenomic era, with the sequencing of the Ciona intestinalis genome and the accumulation of molecular resources that rival those available for fruit flies and mice. One strength of ascidians as a model system is their close similarity to vertebrates. Literature reporting molecular homologies between vertebrate and ascidian tissues has flourished over the past 15 years, since the first ascidian genes were cloned. However, it should not be forgotten that ascidians diverged from the lineage leading to vertebrates over 500 million years ago. Here, we review the main similarities and differences so far identified, at the molecular level, between ascidian and vertebrate tissues and discuss the evolution of the compact ascidian genome.
Collapse
Affiliation(s)
- Yale J Passamaneck
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
42
|
Abstract
Ascidians, or sea squirts, are lower chordates, and share basic gene repertoires and many characteristics, both developmental and physiological, with vertebrates. Therefore, decoding cis-regulatory systems in ascidians will contribute toward elucidating the genetic regulatory systems underlying the developmental and physiological processes of vertebrates. cis-Regulatory DNAs can also be used for tissue-specific genetic manipulation, a powerful tool for studying ascidian development and physiology. Because the ascidian genome is compact compared with vertebrate genomes, both intergenic regions and introns are relatively small in ascidians. Short upstream intergenic regions contain a complete set of cis-regulatory elements for spatially regulated expression of a majority of ascidian genes. These features of the ascidian genome are a great advantage in identifying cis-regulatory sequences and in analyzing their functions. Function of cis-regulatory DNAs has been analyzed for a number of tissue-specific and developmentally regulated genes of ascidians by introducing promoter-reporter fusion constructs into ascidian embryos. The availability of the whole genome sequences of the two Ciona species, Ciona intestinalis and Ciona savignyi, facilitates comparative genomics approaches to identify cis-regulatory DNAs. Recent studies demonstrate that computational methods can help identify cis-regulatory elements in the ascidian genome. This review presents a comprehensive list of ascidian genes whose cis-regulatory regions have been subjected to functional analysis, and highlights the recent advances in bioinformatics and comparative genomics approaches to cis-regulatory systems in ascidians.
Collapse
Affiliation(s)
- Takehiro Kusakabe
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Japan.
| |
Collapse
|
43
|
Jiang D, Munro EM, Smith WC. Ascidian prickle regulates both mediolateral and anterior-posterior cell polarity of notochord cells. Curr Biol 2005; 15:79-85. [PMID: 15700379 DOI: 10.1016/j.cub.2004.12.041] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ascidian notochord follows a morphogenetic program that includes convergent extension (C/E), followed by anterior-posterior (A/P) elongation [1-4]. As described here, developing notochord cells show polarity first in the mediolateral (M/L) axis during C/E, and subsequently in the A/P axis during elongation. Previous embryological studies [3] have shown that contact with neighboring tissues is essential for directing M/L polarity of ascidian notochord cells. During C/E, the planar cell polarity (PCP) gene products prickle (pk) and dishevelled (dsh) show M/L polarization. pk and dsh colocalize at the notochord cell membranes, with the exception of those in contact with neighboring muscle cells. In the mutant aimless (aim), which carries a deletion in pk, notochord morphogenesis is disrupted, and cell polarization is lost. After C/E, there is a dynamic relocalization of PCP proteins in the notochord cells with dsh localized to the lateral edges of the membrane, and pk and strabismus (stbm) at the anterior edges. An A/P polarity is present in the extending notochord cells and is evident by the position of the nuclei, which in normal embryos are invariably found at the posterior edge of each cell. In the aim mutant, all appearances of A/P polarity in the notochord are lost.
Collapse
Affiliation(s)
- Di Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of California-Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
44
|
Cone AC, Zeller RW. Using ascidian embryos to study the evolution of developmental gene regulatory networks. CAN J ZOOL 2005. [DOI: 10.1139/z04-165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ascidians are ideally positioned taxonomically at the base of the chordate tree to provide a point of comparison for developmental regulatory mechanisms that operate among protostomes, non-chordate deuterostomes, invertebrate chordates, and vertebrates. In this review, we propose a model for the gene regulatory network that gives rise to the ascidian notochord. The purpose of this model is not to clarify all of the interactions between molecules of this network, but to provide a working schematic of the regulatory architecture that leads to the specification of endoderm and the patterning of mesoderm in ascidian embryos. We describe a series of approaches, both computational and biological, that are currently being used, or are in development, for the study of ascidian embryo gene regulatory networks. It is our belief that the tools now available to ascidian biologists, in combination with a streamlined mode of development and small genome size, will allow for more rapid dissection of developmental gene regulatory networks than in more complex organisms such as vertebrates. It is our hope that the analysis of gene regulatory networks in ascidians can provide a basic template which will allow developmental biologists to superimpose the modifications and novelties that have arisen during deuterostome evolution.
Collapse
|
45
|
Matsuoka T, Awazu S, Shoguchi E, Satoh N, Sasakura Y. Germline transgenesis of the ascidianCiona intestinalis by electroporation. Genesis 2005; 41:67-72. [PMID: 15682387 DOI: 10.1002/gene.20096] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microinjection of the Minos transposon is the only reported technique for generating stable transgenic lines in the cosmopolitan ascidian, Ciona intestinalis. To establish a more amenable method for generating stable transgenic Ciona, we examined the possibility of using electroporation of DNA into eggs. From 0-44.4% of electroporated individuals transmitted transgenes to the next generation. The transgene was integrated into one chromosome and multiple copies of the transgene were inserted into one site of the chromosome, indicating that electroporation is an easy and powerful technique for achieving stable transgenesis in C. intestinalis. Together with possible inland culture of this ascidian, this technique will be useful for generating stable lines which have reporter gene expression in a specific tissue or organ and the generation of transposase-expressing stable transgenic (jump-starter) lines and mutator lines which contain a lot of Minos transposons in an insertion position.
Collapse
Affiliation(s)
- Terumi Matsuoka
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|
46
|
Awazu S, Sasaki A, Matsuoka T, Satoh N, Sasakura Y. An enhancer trap in the ascidian Ciona intestinalis identifies enhancers of its Musashi orthologous gene. Dev Biol 2004; 275:459-72. [PMID: 15501231 DOI: 10.1016/j.ydbio.2004.08.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 08/06/2004] [Accepted: 08/13/2004] [Indexed: 11/23/2022]
Abstract
The enhancer trap technique, established in Drosophila melanogaster, is a very sophisticated tool. Despite its usefulness, however, there have been very few reports on enhancer traps in other animals. The ascidian Ciona intestinalis, a splendid experimental system for developmental biology, provides good material for developmental genetics. Recently, germline transgenesis of C. intestinalis has been achieved using the Tc1/mariner superfamily transposon Minos. During the course of that study, one Minos insertion line that showed a different GFP expression pattern from other lines was isolated. One fascinating possibility is that an enhancer trap event occurred in this line. Here we show that a Minos insertion in the Ci-Musashi gene was responsible for the altered GFP expression. Ci-Musashi showed a similar expression pattern to GFP. In addition, introns of Ci-Musashi have enhancer activity that can alter the expression pattern of nearby genes to resemble that of GFP in this line. These results clearly demonstrate that an enhancer trap event that entrapped enhancers of Ci-Musashi occurred in C. intestinalis.
Collapse
Affiliation(s)
- Satoko Awazu
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
47
|
Matsuoka T, Awazu S, Satoh N, Sasakura Y. Minos transposon causes germline transgenesis of the ascidian Ciona savignyi. Dev Growth Differ 2004; 46:249-55. [PMID: 15206956 DOI: 10.1111/j.1440-169x.2004.00742.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An ascidian, Ciona savignyi, is regarded as a good experimental animal for genetics because of its small and compact genome for which a draft sequence is available, its short generation time and its interesting phylogenic position. ENU-based mutagenesis has been carried out using this animal. However, insertional mutagenesis using transposable elements (transposons) has not yet been introduced. Recently, one of the Tc1/mariner superfamily transposons, Minos, was demonstrated to cause germline transgenesis in the related species Ciona intestinalis. In this report, we show that Minos has the ability to transpose from DNA to DNA in Ciona savignyi in transposition assays. Although the activity was slightly weaker than in Ciona intestinalis, Minos still caused germline transgenesis in Ciona savignyi. In addition, one insertion seemed to have caused an enhancer trapping. These results indicate that Minos provides a potential tool for transgenic techniques such as insertional mutagenesis in Ciona savignyi.
Collapse
Affiliation(s)
- Terumi Matsuoka
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
48
|
Grabher C, Joly JS, Wittbrodt J. Highly Efficient Zebrafish Transgenesis Mediated by the Meganuclease I-SceI. Methods Cell Biol 2004; 77:381-401. [PMID: 15602923 DOI: 10.1016/s0091-679x(04)77021-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Clemens Grabher
- Developmental Biology Program, European Molecular Biology Laboratory (EMBL), 69117-Heidelberg, Germany
| | | | | |
Collapse
|
49
|
Hendrickson C, Christiaen L, Deschet K, Jiang D, Joly JS, Legendre L, Nakatani Y, Tresser J, Smith WC. Culture of adult ascidians and ascidian genetics. Methods Cell Biol 2004; 74:143-70. [PMID: 15575606 DOI: 10.1016/s0091-679x(04)74007-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Carolyn Hendrickson
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|