6
|
Lin YC, Hsieh AR, Hsiao CL, Wu SJ, Wang HM, Lian IB, Fann CSJ. Identifying rare and common disease associated variants in genomic data using Parkinson's disease as a model. J Biomed Sci 2014; 21:88. [PMID: 25175702 PMCID: PMC4428531 DOI: 10.1186/s12929-014-0088-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/21/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Genome-wide association studies have been successful in identifying common genetic variants for human diseases. However, much of the heritable variation associated with diseases such as Parkinson's disease remains unknown suggesting that many more risk loci are yet to be identified. Rare variants have become important in disease association studies for explaining missing heritability. Methods for detecting this type of association require prior knowledge on candidate genes and combining variants within the region. These methods may suffer from power loss in situations with many neutral variants or causal variants with opposite effects. RESULTS We propose a method capable of scanning genetic variants to identify the region most likely harbouring disease gene with rare and/or common causal variants. Our method assigns a score at each individual variant based on our scoring system. It uses aggregate scores to identify the region with disease association. We evaluate performance by simulation based on 1000 Genomes sequencing data and compare with three commonly used methods. We use a Parkinson's disease case-control dataset as a model to demonstrate the application of our method. Our method has better power than CMC and WSS and similar power to SKAT-O with well-controlled type I error under simulation based on 1000 Genomes sequencing data. In real data analysis, we confirm the association of α-synuclein gene (SNCA) with Parkinson's disease (p = 0.005). We further identify association with hyaluronan synthase 2 (HAS2, p = 0.028) and kringle containing transmembrane protein 1 (KREMEN1, p = 0.006). KREMEN1 is associated with Wnt signalling pathway which has been shown to play an important role for neurodegeneration in Parkinson's disease. CONCLUSIONS Our method is time efficient and less sensitive to inclusion of neutral variants and direction effect of causal variants. It can narrow down a genomic region or a chromosome to a disease associated region. Using Parkinson's disease as a model, our method not only confirms association for a known gene but also identifies two genes previously found by other studies. In spite of many existing methods, we conclude that our method serves as an efficient alternative for exploring genomic data containing both rare and common variants.
Collapse
Affiliation(s)
- Ying-Chao Lin
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan. .,Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Ai-Ru Hsieh
- Graduate Institute of Biostatistics, China Medical University, Taichung, Taiwan.
| | - Ching-Lin Hsiao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Shang-Jung Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Hui-Min Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Ie-Bin Lian
- Graduate Institute of Statistics and Information Science, National Changhua University of Education, Changhua, Taiwan.
| | - Cathy S J Fann
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. .,Institute of Public Health, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
8
|
Saunders EJ, Dadaev T, Leongamornlert DA, Jugurnauth-Little S, Tymrakiewicz M, Wiklund F, Al Olama AA, Benlloch S, Neal DE, Hamdy FC, Donovan JL, Giles GG, Severi G, Gronberg H, Aly M, Haiman CA, Schumacher F, Henderson BE, Lindstrom S, Kraft P, Hunter DJ, Gapstur S, Chanock S, Berndt SI, Albanes D, Andriole G, Schleutker J, Weischer M, Nordestgaard BG, Canzian F, Campa D, Riboli E, Key TJ, Travis RC, Ingles SA, John EM, Hayes RB, Pharoah P, Khaw KT, Stanford JL, Ostrander EA, Signorello LB, Thibodeau SN, Schaid D, Maier C, Kibel AS, Cybulski C, Cannon-Albright L, Brenner H, Park JY, Kaneva R, Batra J, Clements JA, Teixeira MR, Xu J, Mikropoulos C, Goh C, Govindasami K, Guy M, Wilkinson RA, Sawyer EJ, Morgan A, Easton DF, Muir K, Eeles RA, Kote-Jarai Z. Fine-mapping the HOXB region detects common variants tagging a rare coding allele: evidence for synthetic association in prostate cancer. PLoS Genet 2014; 10:e1004129. [PMID: 24550738 PMCID: PMC3923678 DOI: 10.1371/journal.pgen.1004129] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/06/2013] [Indexed: 02/02/2023] Open
Abstract
The HOXB13 gene has been implicated in prostate cancer (PrCa) susceptibility. We performed a high resolution fine-mapping analysis to comprehensively evaluate the association between common genetic variation across the HOXB genetic locus at 17q21 and PrCa risk. This involved genotyping 700 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of 3195 SNPs in 20,440 PrCa cases and 21,469 controls in The PRACTICAL consortium. We identified a cluster of highly correlated common variants situated within or closely upstream of HOXB13 that were significantly associated with PrCa risk, described by rs117576373 (OR 1.30, P = 2.62×10(-14)). Additional genotyping, conditional regression and haplotype analyses indicated that the newly identified common variants tag a rare, partially correlated coding variant in the HOXB13 gene (G84E, rs138213197), which has been identified recently as a moderate penetrance PrCa susceptibility allele. The potential for GWAS associations detected through common SNPs to be driven by rare causal variants with higher relative risks has long been proposed; however, to our knowledge this is the first experimental evidence for this phenomenon of synthetic association contributing to cancer susceptibility.
Collapse
Affiliation(s)
| | - Tokhir Dadaev
- The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | | | | | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Ali Amin Al Olama
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Laboratory, Cambridge, United Kingdom
| | - Sara Benlloch
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Laboratory, Cambridge, United Kingdom
| | - David E. Neal
- Surgical Oncology (Uro-Oncology: S4), University of Cambridge, Addenbrooke's Hospital, Cambridge and Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Freddie C. Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, and Faculty of Medical Science, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jenny L. Donovan
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Graham G. Giles
- Cancer Epidemiology Centre, The Cancer Council Victoria, Carlton, Victoria, Australia and Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gianluca Severi
- Cancer Epidemiology Centre, The Cancer Council Victoria, Carlton, Victoria, Australia and Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Henrik Gronberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Markus Aly
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, United States of America
| | - Fredrick Schumacher
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, United States of America
| | - Brian E. Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, United States of America
| | - Sara Lindstrom
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - David J. Hunter
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Susan Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, United States of America
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Demetrius Albanes
- Nutritional Epidemiology Branch, National Cancer Institute, NIH, EPS-3044, Bethesda, Maryland, United States of America
| | - Gerald Andriole
- Division of Urologic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Johanna Schleutker
- Department of Medic Biochemistry and Genetics, University of Turku, Turku and Institute of Biomedical Technology and BioMediTech, University of Tampere and FimLab Laboratories, Tampere, Finland
| | - Maren Weischer
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Børge G. Nordestgaard
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniele Campa
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elio Riboli
- Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Tim J. Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Sue A. Ingles
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, United States of America
| | - Esther M. John
- Cancer Prevention Institute of California, Fremont, California, United States of America, and Stanford University School of Medicine, Stanford, California, United States of America
| | - Richard B. Hayes
- Division of Epidemiology, Department of Population Health, NYU Langone Medical Center, NYU Cancer Institute, New York, New York, United States of America
| | - Paul Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Laboratory, Cambridge, United Kingdom
| | - Kay-Tee Khaw
- Clinical Gerontology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Janet L. Stanford
- Department of Epidemiology, School of Public Health, University of Washington and Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Elaine A. Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lisa B. Signorello
- International Epidemiology Institute, Rockville, Maryland, and Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | | | - Daniel Schaid
- Mayo Clinic, Rochester, Minnesota, United States of America
| | - Christiane Maier
- Department of Urology, University Hospital Ulm and Institute of Human Genetics University Hospital Ulm, Ulm, Germany
| | - Adam S. Kibel
- Division of Urologic Surgery, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Lisa Cannon-Albright
- Division of Genetic Epidemiology, Department of Medicine, University of Utah School of Medicine and George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jong Y. Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Radka Kaneva
- Molecular Medicine Center and Department of Medical Chemistry and Biochemistry, Medical University - Sofia, Sofia, Bulgaria
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Judith A. Clements
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Manuel R. Teixeira
- Biomedical Sciences Institute (ICBAS), Porto University, Porto, and Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Jianfeng Xu
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | | | - Chee Goh
- The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | - Michelle Guy
- The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | - Emma J. Sawyer
- The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Angela Morgan
- The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | | | | | | | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Laboratory, Cambridge, United Kingdom
| | - Ken Muir
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | | |
Collapse
|