Guo H, Li T, Shi Y, Wang X. MTML: An Efficient Multitrait Multilocus GWAS Method Based on the Cauchy Combination Test.
Biom J 2024;
66:e202300130. [PMID:
39076046 DOI:
10.1002/bimj.202300130]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/19/2023] [Accepted: 11/27/2023] [Indexed: 07/31/2024]
Abstract
Genome-wide association study (GWAS) by measuring the joint effect of multiple loci on multiple traits, has recently attracted interest, due to the decreased costs of high-throughput genotyping and phenotyping technologies. Previous studies mainly focused on either multilocus models that identify associations with a single trait or multitrait models that scan a single marker at a time. Since these types of models cannot fully utilize the association information, the powers of the tests are usually low. To potentially address this problem, we present here a multitrait multilocus (MTML) modeling framework that implements in three steps: (1) simplify the complex calculation; (2) reduce the model dimension; (3) integrate the joint contribution of single markers to multiple traits by Cauchy combination. The performances of MTML are evaluated and compared with other three published methods by Monte Carlo simulations. Simulation results show that MTML is more powerful for quantitative trait nucleotide detection and robust for various numbers of traits. In the meanwhile, MTML can effectively control type I error rate at a reasonable level. Real data analysis of Arabidopsis thaliana shows that MTML identifies more pleiotropic genetic associations. Therefore, we conclude that MTML is an efficient GWAS method for joint analysis of multiple quantitative traits. The R package MTML, which facilitates the implementation of the proposed method, is publicly available on GitHub https://github.com/Guohongping/MTML.
Collapse