1
|
Yang Z, Hu L, Zhen J, Gu Y, Liu Y, Huang S, Wei Y, Zheng H, Guo X, Chen GB, Yang Y, Xiong L, Wei F, Liu S. Genetic basis of pregnancy-associated decreased platelet counts and gestational thrombocytopenia. Blood 2024; 143:1528-1538. [PMID: 38064665 PMCID: PMC11033587 DOI: 10.1182/blood.2023021925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 02/29/2024] Open
Abstract
ABSTRACT Platelet count reduction occurs throughout pregnancy, with 5% to 12% of pregnant women being diagnosed with gestational thrombocytopenia (GT), characterized by a more marked decrease in platelet count during pregnancy. However, the underlying biological mechanism behind these phenomena remains unclear. Here, we used sequencing data from noninvasive prenatal testing of 100 186 Chinese pregnant individuals and conducted, to our knowledge, the hitherto largest-scale genome-wide association studies on platelet counts during 5 periods of pregnancy (the first, second, and third trimesters, delivery, and the postpartum period) as well as 2 GT statuses (GT platelet count < 150 × 109/L and severe GT platelet count < 100 × 109/L). Our analysis revealed 138 genome-wide significant loci, explaining 10.4% to 12.1% of the observed variation. Interestingly, we identified previously unknown changes in genetic effects on platelet counts during pregnancy for variants present in PEAR1 and CBL, with PEAR1 variants specifically associated with a faster decline in platelet counts. Furthermore, we found that variants present in PEAR1 and TUBB1 increased susceptibility to GT and severe GT. Our study provides insight into the genetic basis of platelet counts and GT in pregnancy, highlighting the critical role of PEAR1 in decreasing platelet counts during pregnancy and the occurrence of GT. Those with pregnancies carrying specific variants associated with declining platelet counts may experience a more pronounced decrease, thereby elevating the risk of GT. These findings lay the groundwork for further investigation into the biological mechanisms and causal implications of GT.
Collapse
Affiliation(s)
- Zijing Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City, Shenzhen, Guangdong, China
| | - Liang Hu
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City, Shenzhen, Guangdong, China
| | - Jianxin Zhen
- Central Laboratory, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
| | - Yuqin Gu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yanhong Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Shang Huang
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City, Shenzhen, Guangdong, China
- Shenzhen Children's Hospital of China Medical University, Shenzhen, Guangdong, China
| | - Yuandan Wei
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Central Laboratory, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
| | - Hao Zheng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xinxin Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Guo-Bo Chen
- Department of Genetic and Genomic Medicine, Center for Productive Medicine, Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Likuan Xiong
- Central Laboratory, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Birth Defects Research, Shenzhen, Guangdong, China
| | - Fengxiang Wei
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City, Shenzhen, Guangdong, China
- Longgang Maternity and Child Institute of Shantou University Medical College, Shenzhen, Guangdong, China
| | - Siyang Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Ray D, Vergara C, Taub MA, Wojcik G, Ladd‐Acosta C, Beaty TH, Duggal P. Benchmarking statistical methods for analyzing parent-child dyads in genetic association studies. Genet Epidemiol 2022; 46:266-284. [PMID: 35451532 PMCID: PMC9356976 DOI: 10.1002/gepi.22453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/06/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022]
Abstract
Genetic association studies of child health outcomes often employ family-based study designs. One of the most popular family-based designs is the case-parent trio design that considers the smallest possible nuclear family consisting of two parents and their affected child. This trio design is particularly advantageous for studying relatively rare disorders because it is less prone to type 1 error inflation due to population stratification compared to population-based study designs (e.g., case-control studies). However, obtaining genetic data from both parents is difficult, from a practical perspective, and many large studies predominantly measure genetic variants in mother-child dyads. While some statistical methods for analyzing parent-child dyad data (most commonly involving mother-child pairs) exist, it is not clear if they provide the same advantage as trio methods in protecting against population stratification, or if a specific dyad design (e.g., case-mother dyads vs. case-mother/control-mother dyads) is more advantageous. In this article, we review existing statistical methods for analyzing genome-wide marker data on dyads and perform extensive simulation experiments to benchmark their type I errors and statistical power under different scenarios. We extend our evaluation to existing methods for analyzing a combination of case-parent trios and dyads together. We apply these methods on genotyped and imputed data from multiethnic mother-child pairs only, case-parent trios only or combinations of both dyads and trios from the Gene, Environment Association Studies consortium (GENEVA), where each family was ascertained through a child affected by nonsyndromic cleft lip with or without cleft palate. Results from the GENEVA study corroborate the findings from our simulation experiments. Finally, we provide recommendations for using statistical genetic association methods for dyads.
Collapse
Affiliation(s)
- Debashree Ray
- Department of Epidemiology, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Biostatistics, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Candelaria Vergara
- Department of Epidemiology, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Margaret A. Taub
- Department of Biostatistics, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Genevieve Wojcik
- Department of Epidemiology, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Christine Ladd‐Acosta
- Department of Epidemiology, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Terri H. Beaty
- Department of Epidemiology, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Priya Duggal
- Department of Epidemiology, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|