1
|
Yan W, Tan L, Mengshan L, Weihong Z, Sheng S, Jun W, Fu-An W. Time series-based hybrid ensemble learning model with multivariate multidimensional feature coding for DNA methylation prediction. BMC Genomics 2023; 24:758. [PMID: 38082253 PMCID: PMC10712061 DOI: 10.1186/s12864-023-09866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND DNA methylation is a form of epigenetic modification that impacts gene expression without modifying the DNA sequence, thereby exerting control over gene function and cellular development. The prediction of DNA methylation is vital for understanding and exploring gene regulatory mechanisms. Currently, machine learning algorithms are primarily used for model construction. However, several challenges remain to be addressed, including limited prediction accuracy, constrained generalization capability, and insufficient learning capacity. RESULTS In response to the aforementioned challenges, this paper leverages the similarities between DNA sequences and time series to introduce a time series-based hybrid ensemble learning model, called Multi2-Con-CAPSO-LSTM. The model utilizes multivariate and multidimensional encoding approach, combining three types of time series encodings with three kinds of genetic feature encodings, resulting in a total of nine types of feature encoding matrices. Convolutional Neural Networks are utilized to extract features from DNA sequences, including temporal, positional, physicochemical, and genetic information, thereby creating a comprehensive feature matrix. The Long Short-Term Memory model is then optimized using the Chaotic Accelerated Particle Swarm Optimization algorithm for predicting DNA methylation. CONCLUSIONS Through cross-validation experiments conducted on 17 species involving three types of DNA methylation (6 mA, 5hmC, and 4mC), the results demonstrate the robust predictive capabilities of the Multi2-Con-CAPSO-LSTM model in DNA methylation prediction across various types and species. Compared with other benchmark models, the Multi2-Con-CAPSO-LSTM model demonstrates significant advantages in sensitivity, specificity, accuracy, and correlation. The model proposed in this paper provides valuable insights and inspiration across various disciplines, including sequence alignment, genetic evolution, time series analysis, and structure-activity relationships.
Collapse
Affiliation(s)
- Wu Yan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China.
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, Jiangxi, 341000, China.
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China.
| | - Li Tan
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Li Mengshan
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China.
| | - Zhou Weihong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Sheng Sheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Wang Jun
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Wu Fu-An
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China.
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China.
| |
Collapse
|