1
|
Nazir A, Hussain FHN, Raza A. Advancing microbiota therapeutics: the role of synthetic biology in engineering microbial communities for precision medicine. Front Bioeng Biotechnol 2024; 12:1511149. [PMID: 39698189 PMCID: PMC11652149 DOI: 10.3389/fbioe.2024.1511149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Over recent years, studies on microbiota research and synthetic biology have explored novel approaches microbial manipulation for therapeutic purposes. However, fragmented information is available on this aspect with key insights scattered across various disciplines such as molecular biology, genetics, bioengineering, and medicine. This review aims to the transformative potential of synthetic biology in advancing microbiome research and therapies, with significant implications for healthcare, agriculture, and environmental sustainability. By merging computer science, engineering, and biology, synthetic biology allows for precise design and modification of biological systems via cutting edge technologies like CRISPR/Cas9 gene editing, metabolic engineering, and synthetic oligonucleotide synthesis, thus paving the way for targeted treatments such as personalized probiotics and engineered microorganisms. The review will also highlight the vital role of gut microbiota in disorders caused by its dysbiosis and suggesting microbiota-based therapies and innovations such as biosensors for real-time gut health monitoring, non-invasive diagnostic tools, and automated bio foundries for better outcomes. Moreover, challenges including genetic stability, environmental safety, and robust regulatory frameworks will be discussed to understand the importance of ongoing research to ensure safe and effective microbiome interventions.
Collapse
Affiliation(s)
- Asiya Nazir
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | | | | |
Collapse
|
2
|
Harbut E, Makris Y, Pertsemlidis A, Bleris L. The history, landscape, and outlook of human cell line authentication and security. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100194. [PMID: 39522879 DOI: 10.1016/j.slasd.2024.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Elijah Harbut
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA; Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, USA; Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Yiorgos Makris
- Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX, USA
| | - Alexander Pertsemlidis
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Cell Systems & Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Leonidas Bleris
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA; Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, USA; Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
3
|
Kumar SS, Khandekar N, Dani K, Bhatt SR, Duddalwar V, D'Souza A. A Scoping Review of Population Diversity in the Common Genomic Aberrations of Clear Cell Renal Cell Carcinoma. Oncology 2024:1-10. [PMID: 39250899 DOI: 10.1159/000541370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
INTRODUCTION Previous literature has shown that clear cell renal cell carcinoma (ccRCC) is becoming a more prevalent diagnosis and that the incidence and mortality differ both regionally and racially. While the molecular profiles for ccRCC are studied regionally through biopsy and sequencing techniques, the genomic landscape and ccRCC diversity data are not well studied. We conducted a review of the known genomic data on 6 of the most clinically relevant DNA biomarkers in ccRCC: von Hippel-Lindau (vHL), Polybromo-1 (PBRM1), Breast Cancer Gene 1-Associated Protein 1 (BAP1), Histone-Lysine N-Methyltransferase Domain-Containing 2 (SETD2), Mammalian Target of Rapamycin (mTOR), and Lysine-Specific Demethylase 5C (KDM5C). The review compiled genomic diversity data, incidence, and risk factor differences by geographical and racial cohorts. METHODS The review methodology was created using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) principles from articles on PubMed and Embase through July 31, 2023, written and published in English, with diagnoses of primary or metastatic ccRCC via cytology or pathology, recorded the incidence of one or more of the 6 biomarkers, explored gene aberration via sequencing, were epidemiological in nature, and/or discussed basic science research, cohort studies, or retrospective studies. RESULTS Aberrations in vHL, PBRM1, and SETD2 driving ccRCC are studied frequently, but the data are heterogeneous, whereas there is a paucity in the data regarding KDM5C, PBRM1, and mTOR mutations. CONCLUSION Studying the genetic aberrations that frequently occur in different regions gives insight into what current research lacks. When more genomic landscape research arises, precision therapy, risk calculators, and artificial intelligence may help better prognosticate and individualize treatment for those at risk for ccRCC. Provided the scarcity of existing data, and the rising prevalence of ccRCC, more studies must be conducted at the clinical level.
Collapse
Affiliation(s)
- Sean S Kumar
- Macon and Joan Brock Virginia Health Sciences Eastern Virginia Medical School at Old Dominion University, Norfolk, Virginia, USA
- Children's Hospital Los Angeles, Los Angeles, California, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Ninad Khandekar
- Radiomics Lab, University of Southern California, Los Angeles, California, USA
| | - Komal Dani
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Saina R Bhatt
- Radiomics Lab, University of Southern California, Los Angeles, California, USA
| | - Vinay Duddalwar
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Institute of Urology, University of Southern California, Los Angeles, California, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Anishka D'Souza
- Department of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Watkins A, McCarthy A, Holland C, Shapira P. Public biofoundries as innovation intermediaries: the integration of translation, sustainability, and responsibility. JOURNAL OF TECHNOLOGY TRANSFER 2023; 49:1259-1286. [PMID: 39183938 PMCID: PMC11341651 DOI: 10.1007/s10961-023-10039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 08/27/2024]
Abstract
The emergence and evolution of engineering biology, and its potential to address multiple global challenges is associated with the rise of biofoundries. These innovation intermediaries are facilities that employ advanced automation and computational analytics to accelerate engineering biology applications. Yet, for biofoundries to fully achieve their promise of generating applications that address grand societal challenges, they need to meet three key challenges: translation of research technology and its commercialization, attention to sustainability, and responsible innovation. Using web content analysis and interviews, this paper explores the functions and capabilities undertaken by existing public biofoundries, the extent to which they address these three challenges, and opportunities and models for enhancement. We also probe the roles undertaken by three other contrasting types of innovation intermediaries to identify practices and opportunities for integration and partnering with public biofoundries. We find that public biofoundries exhibit relatively strong capabilities for research translation, whereas efforts toward sustainability and responsibility are generally less prominent. For biofoundry enhancement, we propose an organisational model based on external partnering where public biofoundries are positioned as intermediaries within regional innovation systems. The framework put forward is reproducible and could be used in other contexts for assessing innovation intermediary organisational functions and capabilities toward meeting societal challenges.
Collapse
Affiliation(s)
- Andrew Watkins
- Manchester Institute of Innovation Research, Alliance Manchester Business School, The University of Manchester, Manchester, M13 9PL UK
- Institute for Manufacturing, University of Cambridge, Cambridge, CB3 0FS UK
| | - Adam McCarthy
- Manchester Institute of Innovation Research, Alliance Manchester Business School, The University of Manchester, Manchester, M13 9PL UK
| | - Claire Holland
- Manchester Institute of Innovation Research, Alliance Manchester Business School, The University of Manchester, Manchester, M13 9PL UK
| | - Philip Shapira
- Manchester Institute of Innovation Research, Alliance Manchester Business School, The University of Manchester, Manchester, M13 9PL UK
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA 30332-0345 USA
| |
Collapse
|
5
|
Trump BD, Cummings CL, Loschin N, Keisler JM, Wells EM, Linkov I. The worsening divergence of biotechnology: the importance of risk culture. Front Bioeng Biotechnol 2023; 11:1250298. [PMID: 37711457 PMCID: PMC10499176 DOI: 10.3389/fbioe.2023.1250298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
In the last 20 years, the field of biotechnology has made significant progress and attracted substantial investments, leading to different paths of technological modernization among nations. As a result, there is now an international divide in the commercial and intellectual capabilities of biotechnology, and the implications of this divergence are not well understood. This raises important questions about why global actors are motivated to participate in biotechnology modernization, the challenges they face in achieving their goals, and the possible future direction of global biotechnology development. Using the framework of prospect theory, this paper explores the role of risk culture as a fundamental factor contributing to this divergence. It aims to assess the risks and benefits associated with the early adoption of biotechnology and the regulatory frameworks that shape the development and acceptance of biotechnological innovations. By doing so, it provides valuable insights into the future of biotechnology development and its potential impact on the global landscape.
Collapse
Affiliation(s)
- Benjamin D. Trump
- United States Army Corps of Engineers, Washington, DC, United States
| | - Christopher L. Cummings
- United States Army Corps of Engineers, Washington, DC, United States
- Department of Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- Department of Sociology, Iowa State University, Ames, IA, United States
| | - Nicholas Loschin
- Department of Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
| | - Jeffrey M. Keisler
- Department of Management Science & Info Sys, University of Massachusetts Boston, Boston, MA, United States
| | - Emily M. Wells
- United States Army Corps of Engineers, Washington, DC, United States
| | - Igor Linkov
- United States Army Corps of Engineers, Washington, DC, United States
| |
Collapse
|
6
|
Sanka I, Kusuma AB, Martha F, Hendrawan A, Pramanda IT, Wicaksono A, Jati AP, Mazaya M, Dwijayanti A, Izzati N, Maulana MF, Widyaningrum AR. Synthetic biology in Indonesia: Potential and projection in a country with mega biodiversity. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2023; 4:41-48. [PMID: 39416916 PMCID: PMC11446346 DOI: 10.1016/j.biotno.2023.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 10/19/2024]
Abstract
Synthetic biology has gained many interest around the globe in the last two decades, not only due to its rapid development but also the potential to provide addressable solutions using standardized design of biological systems. Considering its huge population, biodiversity, and natural resources, Indonesia could play an important role in shaping the future of synthetic biology towards a sustainable bio-circular economy. Here, we provide an overview of synthetic biology development in Indonesia, especially on exploring the potential of our biodiversity. We also discuss some potentials of synthetic biology in solving national issues. Furthermore, we also provide the projection and future landscape of synthetic biology development in Indonesia. In addition, we briefly explain the potential challenges that may arise during the development.
Collapse
Affiliation(s)
- Immanuel Sanka
- Synthetic Biology Indonesia (Synbio.id), Jl. Raya Lintas Sumbawa-Bima, Block AA No. 1, Boak Village, Subdistrict Unter Iwes, 84316, Sumbawa, Indonesia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Ali Budhi Kusuma
- Synthetic Biology Indonesia (Synbio.id), Jl. Raya Lintas Sumbawa-Bima, Block AA No. 1, Boak Village, Subdistrict Unter Iwes, 84316, Sumbawa, Indonesia
- Indonesian Centre for Extremophile Bioresources and Biotechnology (ICEBB), Faculty of Life Sciences and Technology, Sumbawa University of Technology, Jl. Raya Olat Maras Sumbawa, 84371, Indonesia
| | - Faustina Martha
- Synthetic Biology Indonesia (Synbio.id), Jl. Raya Lintas Sumbawa-Bima, Block AA No. 1, Boak Village, Subdistrict Unter Iwes, 84316, Sumbawa, Indonesia
- Science Communication Steering Committee, iGEM Foundation, 45 Prospect St, Cambridge, MA, 02139, United States
| | - Andre Hendrawan
- Synthetic Biology Indonesia (Synbio.id), Jl. Raya Lintas Sumbawa-Bima, Block AA No. 1, Boak Village, Subdistrict Unter Iwes, 84316, Sumbawa, Indonesia
| | - Ihsan Tria Pramanda
- Synthetic Biology Indonesia (Synbio.id), Jl. Raya Lintas Sumbawa-Bima, Block AA No. 1, Boak Village, Subdistrict Unter Iwes, 84316, Sumbawa, Indonesia
- Department of Bio Technology, Indonesia International Institute for Life Sciences (i3L), Jl. Pulomas Barat Kav. 88, Pulomas, Jakarta, 13210, Indonesia
| | - Adhityo Wicaksono
- Synthetic Biology Indonesia (Synbio.id), Jl. Raya Lintas Sumbawa-Bima, Block AA No. 1, Boak Village, Subdistrict Unter Iwes, 84316, Sumbawa, Indonesia
- Division of Biotechnology, Genbinesia Foundation, Jalan Swadaya Barat no. 4, Gresik, 61171, Indonesia
| | - Afif Pranaya Jati
- Synthetic Biology Indonesia (Synbio.id), Jl. Raya Lintas Sumbawa-Bima, Block AA No. 1, Boak Village, Subdistrict Unter Iwes, 84316, Sumbawa, Indonesia
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Maulida Mazaya
- Research Center for Computing, Research Organization for Electronics and Informatics, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor KM 46, Cibinong, 16911, West Java, Indonesia
| | - Ari Dwijayanti
- Synthetic Biology Indonesia (Synbio.id), Jl. Raya Lintas Sumbawa-Bima, Block AA No. 1, Boak Village, Subdistrict Unter Iwes, 84316, Sumbawa, Indonesia
| | - Nurul Izzati
- Synthetic Biology Indonesia (Synbio.id), Jl. Raya Lintas Sumbawa-Bima, Block AA No. 1, Boak Village, Subdistrict Unter Iwes, 84316, Sumbawa, Indonesia
- Indonesian Centre for Extremophile Bioresources and Biotechnology (ICEBB), Faculty of Life Sciences and Technology, Sumbawa University of Technology, Jl. Raya Olat Maras Sumbawa, 84371, Indonesia
| | - Muhammad Farhan Maulana
- Synthetic Biology Indonesia (Synbio.id), Jl. Raya Lintas Sumbawa-Bima, Block AA No. 1, Boak Village, Subdistrict Unter Iwes, 84316, Sumbawa, Indonesia
| | - Aulia Reski Widyaningrum
- Synthetic Biology Indonesia (Synbio.id), Jl. Raya Lintas Sumbawa-Bima, Block AA No. 1, Boak Village, Subdistrict Unter Iwes, 84316, Sumbawa, Indonesia
| |
Collapse
|
7
|
Holub M, Agena E. Biofoundries and citizen science can accelerate disease surveillance and environmental monitoring. Front Bioeng Biotechnol 2023; 10:1110376. [PMID: 36714630 PMCID: PMC9877229 DOI: 10.3389/fbioe.2022.1110376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
A biofoundry is a highly automated facility for processing of biological samples. In that capacity it has a major role in accelerating innovation and product development in engineering biology by implementing design, build, test and learn (DBTL) cycles. Biofoundries bring public and private stakeholders together to share resources, develop standards and forge collaborations on national and international levels. In this paper we argue for expanding the scope of applications for biofoundries towards roles in biosurveillance and biosecurity. Reviewing literature on these topics, we conclude that this could be achieved in multiple ways including developing measurement standards and protocols, engaging citizens in data collection, closer collaborations with biorefineries, and processing of samples. Here we provide an overview of these roles that despite their potential utility have not yet been commonly considered by policymakers and funding agencies and identify roadblocks to their realization. This document should prove useful to policymakers and other stakeholders who wish to strengthen biosecurity programs in ways that synergize with bioeconomy.
Collapse
Affiliation(s)
- Martin Holub
- Department of Bionanoscience, Delft University of Technology, Delft, Netherlands,*Correspondence: Martin Holub,
| | - Ethan Agena
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Donati S, Barbier I, García-Soriano DA, Grasso S, Handal-Marquez P, Malcı K, Marlow L, Westmann C, Amara A. Synthetic biology in Europe: current community landscape and future perspectives. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 3:54-61. [PMID: 39416454 PMCID: PMC11446344 DOI: 10.1016/j.biotno.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 10/19/2024]
Abstract
Synthetic biology has captivated scientists' imagination. It promises answers to some of the grand challenges society is facing: worsening climate crisis, insufficient food supplies for ever growing populations, and many persisting infectious and genetic diseases. While many challenges remain unaddressed, after almost two decades since its inception a number of products created by engineered biology are starting to reach the public. European scientists and entrepreneurs have been participating in delivering on the promises of synthetic biology. Associations like the European Synthetic Biology Society (EUSynBioS) play a key role in disseminating advances in the field, connecting like-minded people and promoting scientific development. In this perspective article, we review the current landscape of the synthetic biology community in Europe, discussing the state of related academic research and industry. We also discuss how EUSynBioS has helped to build bridges between professionals across the continent.
Collapse
Affiliation(s)
- Stefano Donati
- The European Synthetic Biology Society, Paris, France
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Içvara Barbier
- The European Synthetic Biology Society, Paris, France
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Daniela A. García-Soriano
- The European Synthetic Biology Society, Paris, France
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Stefano Grasso
- The European Synthetic Biology Society, Paris, France
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Paola Handal-Marquez
- The European Synthetic Biology Society, Paris, France
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Koray Malcı
- The European Synthetic Biology Society, Paris, France
- Institute for Bioengineering and SynthSys, University of Edinburgh, Edinburgh, UK
| | - Louis Marlow
- The European Synthetic Biology Society, Paris, France
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Cauã Westmann
- The European Synthetic Biology Society, Paris, France
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Adam Amara
- The European Synthetic Biology Society, Paris, France
| |
Collapse
|
9
|
Wang H, Wang L, Zhong B, Dai Z. Protein Splicing of Inteins: A Powerful Tool in Synthetic Biology. Front Bioeng Biotechnol 2022; 10:810180. [PMID: 35265596 PMCID: PMC8899391 DOI: 10.3389/fbioe.2022.810180] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
Inteins are protein segments that are capable of enabling the ligation of flanking extein into a new protein, a process known as protein splicing. Since its discovery, inteins have become powerful biotechnological tools for applications such as protein engineering. In the last 10 years, the development in synthetic biology has further endowed inteins with enhanced functions and diverse utilizations. Here we review these efforts and discuss the future directions.
Collapse
Affiliation(s)
- Hao Wang
- Materials Synthetic Biology Center, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lin Wang
- Materials Synthetic Biology Center, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Baihua Zhong
- Materials Interfaces Center, Institute of Advanced Materials Science and Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhuojun Dai
- Materials Synthetic Biology Center, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|