1
|
Han Y, Wang X, Cheng X, Zhao M, Zhao T, Guo L, Liu D, Wu K, Fan M, Shi M, Zhu L. Close Homolog of L1 Deficiency Exacerbated Intestinal Epithelial Barrier Function in Mouse Model of Dextran Sulfate Sodium-Induced Colitis. Front Physiol 2020; 11:584508. [PMID: 33240104 PMCID: PMC7677258 DOI: 10.3389/fphys.2020.584508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/12/2020] [Indexed: 12/02/2022] Open
Abstract
The cell adhesion molecule CHL1, which belongs to the immunoglobulin superfamily, functions in a variety of physiological and pathological processes, including neural development, tissue injury, and repair. We previously found that the loss of CHL1 exacerbated the dextran sulfate sodium (DSS)-induced colitis in mice. In the present study, we further addressed the role of CHL1 in mouse model of DSS-induced colitis and its’ potential mechanism. Colon tissues were collected from CHL1+/+, CHL1+/−, and CHL1−/− mice after DSS induction to investigate the effects of CHL1 on the development of colitis. The data showed that CHL1 was expressed in intestine tissue, and expression of CHL1 was increased by DSS-induced inflammation. CHL1 deficiency induced more pronounced colitis features, exacerbated inflammation, and damage to colonic tissues in DSS-induced mice. Moreover, colonic tissues of CHL1−/− mice showed a marked increase in neutrophil and macrophage infiltration, be accompanied by more severe damage to intestinal epithelial cells and higher fluorescein isothiocyanate (FITC) leakage. Our results revealed deficiency of CHL1 exacerbated DSS-induced colitis, and this pathogenesis was potentially mediated by disruption of intestinal barrier integrity, indicating that CHL1 may be an attractive therapeutic target for inflammatory bowel diseases (IBDs) in mice.
Collapse
Affiliation(s)
- Ying Han
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Xiaomeng Wang
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Xiang Cheng
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Ming Zhao
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Tong Zhao
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Liang Guo
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Dan Liu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Kuiwu Wu
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Ming Fan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Ming Shi
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Lingling Zhu
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
2
|
Shakespear N, Ogura M, Yamaki J, Homma Y. Astrocyte-Derived Exosomal microRNA miR-200a-3p Prevents MPP +-Induced Apoptotic Cell Death Through Down-Regulation of MKK4. Neurochem Res 2020; 45:1020-1033. [PMID: 32016794 DOI: 10.1007/s11064-020-02977-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/06/2019] [Accepted: 01/26/2020] [Indexed: 02/07/2023]
Abstract
Astrocytes release exosomes that regulate neuronal cell function. 1-methyl-4-phenylpyridinium (MPP+) is a well-known neurotoxin used to induce cell death in in vitro Parkinson's disease models, and microRNA (miRNA) transferred by released exosomes can regulate its mechanisms. Here, we demonstrated that exosomes released from normal astrocytes (ADEXs), but not exosomes derived from MPP+-stimulated astrocytes (MPP+-ADEXs), significantly attenuate MPP+-induced cell death in SH-SY5Y cells and primary mesencephalic dopaminergic neuron cultures, and reduce expression of mitogen-activated protein kinase kinase 4 (MKK4), an important upstream kinase in the c-Jun N-terminal kinase cell death pathway. Similar neuroprotective results were obtained from primary hippocampal neuron cultures, an in vitro glutamate excitotoxicity model. Through small-RNA sequencing of exosomal miRNA, we identified miR-200a-3p as the most down-regulated miRNA expressed in MPP+-ADEXs. miRNA target analysis and reporter assay confirmed that miR-200a-3p targets MKK4 through binding to two independent sites on the 3'-UTR of Map2k4/MKK4 mRNA. Treatment with miR-200a-3p mimic suppressed both MKK4 mRNA and protein expressions, and attenuated cell death in MPP+-treated SH-SY5Y cells and glutamate-treated hippocampal neuron cultures. Our results suggest that normal astrocytes release miR-200a-3p which exhibits a neuroprotective effect through down-regulation of MKK4.
Collapse
Affiliation(s)
| | - Masato Ogura
- Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Junko Yamaki
- Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Yoshimi Homma
- Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| |
Collapse
|
3
|
Zhou T, Zheng Y, Sun L, Badea SR, Jin Y, Liu Y, Rolfe AJ, Sun H, Wang X, Cheng Z, Huang Z, Zhao N, Sun X, Li J, Fan J, Lee C, Megraw TL, Wu W, Wang G, Ren Y. Microvascular endothelial cells engulf myelin debris and promote macrophage recruitment and fibrosis after neural injury. Nat Neurosci 2019; 22:421-435. [PMID: 30664769 DOI: 10.1038/s41593-018-0324-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022]
Abstract
The clearance of damaged myelin sheaths is critical to ensure functional recovery from neural injury. Here we show a previously unidentified role for microvessels and their lining endothelial cells in engulfing myelin debris in spinal cord injury (SCI) and experimental autoimmune encephalomyelitis (EAE). We demonstrate that IgG opsonization of myelin debris is required for its effective engulfment by endothelial cells and that the autophagy-lysosome pathway is crucial for degradation of engulfed myelin debris. We further show that endothelial cells exert critical functions beyond myelin clearance to promote progression of demyelination disorders by regulating macrophage infiltration, pathologic angiogenesis and fibrosis in both SCI and EAE. Unexpectedly, myelin debris engulfment induces endothelial-to-mesenchymal transition, a process that confers upon endothelial cells the ability to stimulate the endothelial-derived production of fibrotic components. Overall, our study demonstrates that the processing of myelin debris through the autophagy-lysosome pathway promotes inflammation and angiogenesis and may contribute to fibrotic scar formation.
Collapse
Affiliation(s)
- Tian Zhou
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China.,Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Yiming Zheng
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA.
| | - Li Sun
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Smaranda Ruxandra Badea
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuanhu Jin
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Yang Liu
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA.,Department of Immunology, Guizhou Medical University, Guiyang, China
| | - Alyssa J Rolfe
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Haitao Sun
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xi Wang
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an, China
| | - Zhijian Cheng
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Zhaoshuai Huang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA.,Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Na Zhao
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA.,Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Sun
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jinhua Li
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Jianqing Fan
- Statistical Laboratory, Princeton University, Princeton, NJ, USA
| | - Choogon Lee
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Wutian Wu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.,Re-Stem Biotechnology Co., Ltd, Suzhou, China.,School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA. .,Department of Immunology, Guizhou Medical University, Guiyang, China. .,Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
4
|
Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 2019; 565:246-250. [PMID: 30602786 DOI: 10.1038/s41586-018-0824-5] [Citation(s) in RCA: 441] [Impact Index Per Article: 88.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 11/05/2018] [Indexed: 11/08/2022]
Abstract
In addition to maintaining immune tolerance, FOXP3+ regulatory T (Treg) cells perform specialized functions in tissue homeostasis and remodelling1,2. However, the characteristics and functions of brain Treg cells are not well understood because there is a low number of Treg cells in the brain under normal conditions. Here we show that there is massive accumulation of Treg cells in the mouse brain after ischaemic stroke, and this potentiates neurological recovery during the chronic phase of ischaemic brain injury. Although brain Treg cells are similar to Treg cells in other tissues such as visceral adipose tissue and muscle3-5, they are apparently distinct and express unique genes related to the nervous system including Htr7, which encodes the serotonin receptor 5-HT7. The amplification of brain Treg cells is dependent on interleukin (IL)-2, IL-33, serotonin and T cell receptor recognition, and infiltration into the brain is driven by the chemokines CCL1 and CCL20. Brain Treg cells suppress neurotoxic astrogliosis by producing amphiregulin, a low-affinity epidermal growth factor receptor (EGFR) ligand. Stroke is a leading cause of neurological disability, and there are currently few effective recovery methods other than rehabilitation during the chronic phase. Our findings suggest that Treg cells and their products may provide therapeutic opportunities for neuronal protection against stroke and neuroinflammatory diseases.
Collapse
|
5
|
Jaber SM, Bordt EA, Bhatt NM, Lewis DM, Gerecht S, Fiskum G, Polster BM. Sex differences in the mitochondrial bioenergetics of astrocytes but not microglia at a physiologically relevant brain oxygen tension. Neurochem Int 2018; 117:82-90. [PMID: 28888963 PMCID: PMC5839942 DOI: 10.1016/j.neuint.2017.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/14/2017] [Accepted: 09/05/2017] [Indexed: 11/22/2022]
Abstract
Biological sex is thought to influence mitochondrial bioenergetic function. Previous respiration measurements examining brain mitochondrial sex differences were made at atmospheric oxygen using isolated brain mitochondria. Oxygen is 160 mm Hg (21%) in the atmosphere, while the oxygen tension in the brain generally ranges from ∼5 to 45 mm Hg (∼1-6% O2). This study tested the hypothesis that sex and/or brain physiological oxygen tension influence the mitochondrial bioenergetic properties of primary rat cortical astrocytes and microglia. Oxygen consumption was measured with a Seahorse XF24 cell respirometer in an oxygen-controlled environmental chamber. Strikingly, male astrocytes had a higher maximal respiration than female astrocytes when cultured and assayed at 3% O2. Three percent O2 yielded a low physiological dissolved O2 level of ∼1.2% (9.1 mm Hg) at the cell monolayer during culture and 1.2-3.0% O2 during assays. No differences in bioenergetic parameters were observed between male and female astrocytes at 21% O2 (dissolved O2 of ∼19.7%, 150 mm Hg during culture) or between either of these cell populations and female astrocytes at 3% O2. In contrast to astrocytes, microglia showed no sex differences in mitochondrial bioenergetic parameters at either oxygen level, regardless of whether they were non-stimulated or activated to a proinflammatory state. There were also no O2- or sex-dependent differences in proinflammatory TNF-α or IL-1β cytokine secretion measured at 18 h activation. Overall, results reveal an intriguing sex variance in astrocytic maximal respiration that requires additional investigation. Findings also demonstrate that sex differences can be masked by conducting experiments at non-physiological O2.
Collapse
Affiliation(s)
- Sausan M Jaber
- Department of Anesthesiology, and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA
| | - Evan A Bordt
- Department of Anesthesiology, and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA
| | - Niraj M Bhatt
- Department of Anesthesiology, and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA
| | - Daniel M Lewis
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Shaffer Hall 200C, Baltimore, MD 21218, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Shaffer Hall 200C, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Shaffer Hall 200C, Baltimore, MD 21218, USA
| | - Gary Fiskum
- Department of Anesthesiology, and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA
| | - Brian M Polster
- Department of Anesthesiology, and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Guseva D, Jakovcevski I, Irintchev A, Leshchyns’ka I, Sytnyk V, Ponimaskin E, Schachner M. Cell Adhesion Molecule Close Homolog of L1 (CHL1) Guides the Regrowth of Regenerating Motor Axons and Regulates Synaptic Coverage of Motor Neurons. Front Mol Neurosci 2018; 11:174. [PMID: 29881335 PMCID: PMC5976800 DOI: 10.3389/fnmol.2018.00174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/08/2018] [Indexed: 02/05/2023] Open
Abstract
The close homolog of L1 (CHL1) is a cell adhesion molecule involved in regulation of neuronal differentiation and survival, neurite outgrowth and axon guidance during development. In the mature nervous system, CHL1 regulates synaptic activity and plasticity. The aim of the present study was to evaluate the influence of CHL1 on peripheral nerve regeneration after trauma. Using the established model of mouse femoral nerve regeneration, CHL1 knock-out mice were investigated in comparison to the wild type littermates. First, non-injured mice of both genotypes were compared regarding the synaptic phenotypes in the corresponding spinal cord segment. While no differences in phenotypes were detectable in the femoral nerve, corresponding segments in the spinal cord were observed to differ in that inhibitory perisomatic innervation of motor neurons was increased in CHL1-deficient mice, and numbers of perisomatic cholinergic synapses on motor neuronal somata were reduced. Regarding the femoral nerve after injury, CHL1-deficient mice demonstrated preferential motor axon regrowth into the saphenous vs. quadriceps branch after nerve transection upstream of the nerve bifurcation by 8 weeks after transection, indicating decreased preferential motor re-innervation. Furthermore, in injured wild-type mice, enhanced CHL1 expression was observed in regenerating axons in the proximal nerve stump upstream of the bifurcation at days 1, 3, 5, 7 and 14, and in the distal stump at days 7 and 14 after injury, when compared to non-injured mice. Injury-related upregulation of CHL1 expression was more pronounced in axons than in Schwann cells. Despite a more pronounced capacity for preferential motor axon regrowth in wild-type vs. mutant mice, only a tendency for difference in recovery of motor functions was observed between genotypes, without statistical significance Taken together, these results indicate that CHL1 is involved in peripheral nerve regeneration, because it guides regrowing axons into the appropriate nerve branch and regulates synaptic coverage in the spinal cord.
Collapse
Affiliation(s)
- Daria Guseva
- Zentrum für Molekulare Neurobiologie Hamburg, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Igor Jakovcevski
- Zentrum für Molekulare Neurobiologie Hamburg, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Department of Experimental Neurophysiology, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Andrey Irintchev
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Iryna Leshchyns’ka
- School of Biotechnology and Biomolecular Sciences, South Western Sydney Clinical School, The University of New South Wales, Sydney, NSW, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, South Western Sydney Clinical School, The University of New South Wales, Sydney, NSW, Australia
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, United States
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- *Correspondence: Melitta Schachner
| |
Collapse
|
7
|
Truncated TrkB.T1-Mediated Astrocyte Dysfunction Contributes to Impaired Motor Function and Neuropathic Pain after Spinal Cord Injury. J Neurosci 2017; 37:3956-3971. [PMID: 28270575 DOI: 10.1523/jneurosci.3353-16.2017] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 12/30/2022] Open
Abstract
Following spinal cord injury (SCI), astrocytes demonstrate long-lasting reactive changes, which are associated with the persistence of neuropathic pain and motor dysfunction. We previously demonstrated that upregulation of trkB.T1, a truncated isoform of the brain-derived neurotrophic factor receptor (BDNF), contributes to gliosis after SCI, but little is known about the effects of trkB.T1 on the function of astrocytes. As trkB.T1 is the sole isoform of trkB receptors expressed on astrocytes, we examined the function of trkB.T1-driven astrocytes in vitro and in vivo Immunohistochemistry showed that trkB.T1+ cells were significantly upregulated 7 d after injury, with sustained elevation in white matter through 8 weeks. The latter increase was predominantly found in astrocytes. TrkB.T1 was also highly expressed by neurons and microglia/macrophages at 7 d after injury and declined by 8 weeks. RNA sequencing of cultured astrocytes derived from trkB.T1+/+ (WT) and trkB.T1-/- (KO) mice revealed downregulation of migration and proliferation pathways in KO astrocytes. KO astrocytes also exhibited slower migration/proliferation in vitro in response to FBS or BDNF compared with WT astrocytes. Reduced proliferation of astrocytes was also confirmed after SCI in astrocyte-specific trkB.T1 KO mice; using mechanical allodynia and pain-related measurements on the CatWalk, these animals also showed reduced hyperpathic responses, along with improved motor coordination. Together, our data indicate that trkB.T1 in astrocytes contributes to neuropathic pain and neurological dysfunction following SCI, suggesting that trkB.T1 may provide a novel therapeutic target for SCI.SIGNIFICANCE STATEMENT Neuropathic pain after spinal cord injury (SCI) may in part be caused by upregulation of the brain-derived neurotrophic factor (BDNF) receptor trkB.T1, a truncated isoform of BDNF. TrkB.T1 is the only isoform of tropomyosin-related receptor kinase type B (trkB) receptors expressed on astrocytes. Here, we showed that trkB.T1 is significantly increased in the injured mouse spinal cord, where it is predominantly found in astrocytes. RNA sequencing of cultured astrocytes demonstrated downregulation of migration and proliferation pathways in trkB.T1 KO astrocytes. This was validated in vivo, where deletion of trkB.T1 in astrocytes reduced cell proliferation and migration. After SCI, astrocyte-specific trkB.T1 KO mice showed reduced hyperpathic responses and improved motor coordination. Therefore, the trkB.T1 receptor plays a significant pathophysiological role after SCI, and may provide a novel therapeutic target for SCI.
Collapse
|
8
|
Yang Z, Xie Q, Hu CL, Jiang Q, Shen HF, Schachner M, Zhao WJ. CHL1 Is Expressed and Functions as a Malignancy Promoter in Glioma Cells. Front Mol Neurosci 2017; 10:324. [PMID: 29089868 PMCID: PMC5650976 DOI: 10.3389/fnmol.2017.00324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/25/2017] [Indexed: 02/06/2023] Open
Abstract
The cell adhesion molecule with homology to L1CAM (close homolog of L1) (CHL1) is a member of the cell adhesion molecule L1 (L1CAM) gene family. Although CHL1 expression and function have been reported in several tumors, the roles of CHL1 in the development of glioma remain unclear. In the present study, we investigated the effects of CHL1 on proliferation indexes and activation of Akt1 and Erk signaling by siRNA in U-87 MG human glioblastoma and human U251 and SHG-44 glioma cells. We found that siRNA targeting CHL1 significantly down-regulated the expression of CHL1 mRNA and protein accompanied by reduced cell proliferation and transmigration invasion in all three cell lines. Down-regulating CHL1 expression also reduced cell survival, as measured by the Bax/Bcl-2 ratio, and increased activation of caspase-3. In subcutaneous U-87 MG cell xenograft tumors in nude mice, intratumoral administration of siRNA targeting CHL1 treatment significantly down-regulated CHL1 expression in vivo, accompanied by increased levels of activated caspase-3. Our combined results confirmed for the first time that in contrast to findings about CHL1 in most other cancer types, CHL1 functions in promoting cell proliferation, metastasis and migration in human glioma cells both in vitro and in vivo. These results indicate that CHL1 is a therapeutic target in the clinical management of glioma/glioblastoma.
Collapse
Affiliation(s)
- Zhai Yang
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Qing Xie
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Cheng-Liang Hu
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Qiong Jiang
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Hui-Fan Shen
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Melitta Schachner Wei-Jiang Zhao
| | - Wei-Jiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- *Correspondence: Melitta Schachner Wei-Jiang Zhao
| |
Collapse
|
9
|
Guo L, Rolfe AJ, Wang X, Tai W, Cheng Z, Cao K, Chen X, Xu Y, Sun D, Li J, He X, Young W, Fan J, Ren Y. Rescuing macrophage normal function in spinal cord injury with embryonic stem cell conditioned media. Mol Brain 2016; 9:48. [PMID: 27153974 PMCID: PMC4858887 DOI: 10.1186/s13041-016-0233-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/01/2016] [Indexed: 12/14/2022] Open
Abstract
Background Macrophages play an important role in the inflammatory responses involved with spinal cord injury (SCI). We have previously demonstrated that infiltrated bone marrow-derived macrophages (BMDMs) engulf myelin debris, forming myelin-laden macrophages (mye-Mϕ). These mye-Mϕ promote disease progression through their pro-inflammatory phenotype, enhanced neurotoxicity, and impaired phagocytic capacity for apoptotic cells. We thus hypothesize that the excessive accumulation of mye-Mϕ is the root of secondary injury, and that targeting mye-Mϕ represents an efficient strategy to improve the local inflammatory microenvironment in injured spinal cords and to further motor neuron function recovery. In this study, we administer murine embryonic stem cell conditioned media (ESC-M) as a cell-free stem cell based therapy to treat a mouse model of SCI. Results We showed that BMDMs, but not microglial cells, engulf myelin debris generated at the injury site. Phagocytosis of myelin debris leads to the formation of mye-Mϕ in the injured spinal cord, which are surrounded by activated microglia cells. These mye-Mϕ are pro-inflammatory and lose the normal macrophage phagocytic capacity for apoptotic cells. We therefore focus on how to trigger lipid efflux from mye-Mϕ and thus restore their function. Using ESC-M as an immune modulating treatment for inflammatory damage after SCI, we rescued mye-Mϕ function and improved functional locomotor recovery. ESC-M treatment on mye-Mϕ resulted in improved exocytosis of internalized lipids and a normal capacity for apoptotic cell phagocytosis. Furthermore, when ESC-M was administered intraperitoneally after SCI, animals exhibited significant improvements in locomotor recovery. Examination of spinal cords of the ESC-M treated mice revealed similar improvements in macrophage function as well as a shift towards a more anti-inflammatory environment at the lesion and parenchyma. Conclusions The embryonic stem cell conditioned media can be used as an effective treatment for SCI to resolve inflammation and improve functional recovery while circumventing the complications involved in whole cell transplantation.
Collapse
Affiliation(s)
- Lei Guo
- Department of Orthopedics, The Second Affiliated Hospital of Xian Jiaotong University, Xian, 710004, China.,Department of Biomedical Sciences, Florida State University, College of Medicine, 1115 West Street, Tallahassee, FL, 32306, USA
| | - Alyssa J Rolfe
- Department of Biomedical Sciences, Florida State University, College of Medicine, 1115 West Street, Tallahassee, FL, 32306, USA
| | - Xi Wang
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08854, USA
| | - Wenjiao Tai
- Department of Biomedical Sciences, Florida State University, College of Medicine, 1115 West Street, Tallahassee, FL, 32306, USA
| | - Zhijian Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Xian Jiaotong University, Xian, 710004, China.,Department of Biomedical Sciences, Florida State University, College of Medicine, 1115 West Street, Tallahassee, FL, 32306, USA
| | - Kai Cao
- Department of Orthopedics, The Second Affiliated Hospital of Xian Jiaotong University, Xian, 710004, China
| | - Xiaoming Chen
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunsheng Xu
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dongming Sun
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08854, USA
| | - Jinhua Li
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xian Jiaotong University, Xian, 710004, China
| | - Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08854, USA
| | - Jianqing Fan
- Statistical Laboratory, Princeton University, Princeton, NJ, 08540, USA
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University, College of Medicine, 1115 West Street, Tallahassee, FL, 32306, USA. .,Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
10
|
TrkB.T1 contributes to neuropathic pain after spinal cord injury through regulation of cell cycle pathways. J Neurosci 2013; 33:12447-63. [PMID: 23884949 DOI: 10.1523/jneurosci.0846-13.2013] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Spinal cord injury (SCI) frequently causes severe, persistent central neuropathic pain that responds poorly to conventional pain treatments. Brain-derived neurotrophic factor (BDNF) signaling appears to contribute to central sensitization and nocifensive behaviors in certain animal models of chronic pain through effects mediated in part by the alternatively spliced truncated isoform of the BDNF receptor tropomyosin-related kinase B.T1 (trkB.T1). Mechanisms linking trkB.T1 to SCI-induced chronic central pain are unknown. Here, we examined the role of trkB.T1 in central neuropathic pain after spinal cord contusion. Genetic deletion of trkB.T1 in mice significantly reduced post-SCI mechanical hyperesthesia, locomotor dysfunction, lesion volumes, and white matter loss. Whole genome analysis, confirmed at the protein level, revealed that cell cycle genes were upregulated in trkB.T1(+/+) but not trkB.T1(-/-) spinal cord after SCI. TGFβ-induced reactive astrocytes from WT mice showed increased cell cycle protein expression that was significantly reduced in astrocytes from trkB.T1(-/-) mice that express neither full-length trkB nor trkB.T1. Administration of CR8, which selectively inhibits cyclin-dependent kinases, reduced hyperesthesia, locomotor deficits, and dorsal horn (SDH) glial changes after SCI, similar to trkB.T1 deletion, without altering trkB.T1 protein expression. In trkB.T1(-/-) mice, CR8 had no effect. These data indicate that trkB.T1 contributes to the pathobiology of SCI and SCI pain through modulation of cell cycle pathways and suggest new therapeutic targets.
Collapse
|
11
|
Wu J, Raver C, Piao C, Keller A, Faden AI. Cell cycle activation contributes to increased neuronal activity in the posterior thalamic nucleus and associated chronic hyperesthesia after rat spinal cord contusion. Neurotherapeutics 2013; 10:520-38. [PMID: 23775067 PMCID: PMC3701760 DOI: 10.1007/s13311-013-0198-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury (SCI) causes not only sensorimotor and cognitive deficits, but frequently also severe chronic pain that is difficult to treat (SCI pain). We previously showed that hyperesthesia, as well as spontaneous pain induced by electrolytic lesions in the rat spinothalamic tract, is associated with increased spontaneous and sensory-evoked activity in the posterior thalamic nucleus (PO). We have also demonstrated that rodent impact SCI increases cell cycle activation (CCA) in the injury region and that post-traumatic treatment with cyclin dependent kinase inhibitors reduces lesion volume and motor dysfunction. Here we examined whether CCA contributes to neuronal hyperexcitability of PO and hyperpathia after rat contusion SCI, as well as to microglial and astroglial activation (gliopathy) that has been implicated in delayed SCI pain. Trauma caused enhanced pain sensitivity, which developed weeks after injury and was correlated with increased PO neuronal activity. Increased CCA was found at the thoracic spinal lesion site, the lumbar dorsal horn, and the PO. Increased microglial activation and cysteine-cysteine chemokine ligand 21 expression was also observed in the PO after SCI. In vitro, neurons co-cultured with activated microglia showed up-regulation of cyclin D1 and cysteine-cysteine chemokine ligand 21 expression. In vivo, post-injury treatment with a selective cyclin dependent kinase inhibitor (CR8) significantly reduced cell cycle protein induction, microglial activation, and neuronal activity in the PO nucleus, as well as limiting chronic SCI-induced hyperpathia. These results suggest a mechanistic role for CCA in the development of SCI pain, through effects mediated in part by the PO nucleus. Moreover, cell cycle modulation may provide an effective therapeutic strategy to improve reduce both hyperpathia and motor dysfunction after SCI.
Collapse
Affiliation(s)
- Junfang Wu
- Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research, National Study Center for Trauma and EMS, University of Maryland, School of Medicine, Bressler Research Building, 655 W. Baltimore Street, Room #6-009, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
12
|
Fitzgerald DM, Charness ME, Leite-Morris KA, Chen S. Effects of ethanol and NAP on cerebellar expression of the neural cell adhesion molecule L1. PLoS One 2011; 6:e24364. [PMID: 21931691 PMCID: PMC3169602 DOI: 10.1371/journal.pone.0024364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/08/2011] [Indexed: 01/16/2023] Open
Abstract
The neural cell adhesion molecule L1 is critical for brain development and plays a role in learning and memory in the adult. Ethanol inhibits L1-mediated cell adhesion and neurite outgrowth in cerebellar granule neurons (CGNs), and these actions might underlie the cerebellar dysmorphology of fetal alcohol spectrum disorders. The peptide NAP potently blocks ethanol inhibition of L1 adhesion and prevents ethanol teratogenesis. We used quantitative RT-PCR and Western blotting of extracts of cerebellar slices, CGNs, and astrocytes from postnatal day 7 (PD7) rats to investigate whether ethanol and NAP act in part by regulating the expression of L1. Treatment of cerebellar slices with 20 mM ethanol, 10−12 M NAP, or both for 4 hours, 24 hours, and 10 days did not significantly affect L1 mRNA and protein levels. Similar treatment for 4 or 24 hours did not regulate L1 expression in primary cultures of CGNs and astrocytes, the predominant cerebellar cell types. Because ethanol also damages the adult cerebellum, we studied the effects of chronic ethanol exposure in adult rats. One year of binge drinking did not alter L1 gene and protein expression in extracts from whole cerebellum. Thus, ethanol does not alter L1 expression in the developing or adult cerebellum; more likely, ethanol disrupts L1 function by modifying its conformation and signaling. Likewise, NAP antagonizes the actions of ethanol without altering L1 expression.
Collapse
Affiliation(s)
- Devon M. Fitzgerald
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States of America
| | - Michael E. Charness
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States of America
- Department of Neurology, Harvard Medical School, West Roxbury, Massachusetts, United States of America
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Kimberly A. Leite-Morris
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States of America
- Departments of Psychiatry, Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Suzhen Chen
- Department of Neurology, Harvard Medical School, West Roxbury, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Sorci G, Bianchi R, Riuzzi F, Tubaro C, Arcuri C, Giambanco I, Donato R. S100B Protein, A Damage-Associated Molecular Pattern Protein in the Brain and Heart, and Beyond. Cardiovasc Psychiatry Neurol 2010; 2010:656481. [PMID: 20827421 PMCID: PMC2933911 DOI: 10.1155/2010/656481] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 06/08/2010] [Indexed: 12/15/2022] Open
Abstract
S100B belongs to a multigenic family of Ca(2+)-binding proteins of the EF-hand type and is expressed in high abundance in the brain. S100B interacts with target proteins within cells thereby altering their functions once secreted/released with the multiligand receptor RAGE. As an intracellular regulator, S100B affects protein phosphorylation, energy metabolism, the dynamics of cytoskeleton constituents (and hence, of cell shape and migration), Ca(2+) homeostasis, and cell proliferation and differentiation. As an extracellular signal, at low, physiological concentrations, S100B protects neurons against apoptosis, stimulates neurite outgrowth and astrocyte proliferation, and negatively regulates astrocytic and microglial responses to neurotoxic agents, while at high doses S100B causes neuronal death and exhibits properties of a damage-associated molecular pattern protein. S100B also exerts effects outside the brain; as an intracellular regulator, S100B inhibits the postinfarction hypertrophic response in cardiomyocytes, while as an extracellular signal, (high) S100B causes cardiomyocyte death, activates endothelial cells, and stimulates vascular smooth muscle cell proliferation.
Collapse
Affiliation(s)
- Guglielmo Sorci
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Roberta Bianchi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Claudia Tubaro
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Cataldo Arcuri
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| |
Collapse
|