1
|
Armeli F, Mengoni B, Laskin DL, Businaro R. Interplay among Oxidative Stress, Autophagy, and the Endocannabinoid System in Neurodegenerative Diseases: Role of the Nrf2- p62/SQSTM1 Pathway and Nutraceutical Activation. Curr Issues Mol Biol 2024; 46:6868-6884. [PMID: 39057052 PMCID: PMC11276139 DOI: 10.3390/cimb46070410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
The onset of neurodegenerative diseases involves a complex interplay of pathological mechanisms, including protein aggregation, oxidative stress, and impaired autophagy. This review focuses on the intricate connection between oxidative stress and autophagy in neurodegenerative disorders, highlighting autophagy as pivotal in disease pathogenesis. Reactive oxygen species (ROS) play dual roles in cellular homeostasis and autophagy regulation, with disruptions of redox signaling contributing to neurodegeneration. The activation of the Nrf2 pathway represents a critical antioxidant mechanism, while autophagy maintains cellular homeostasis by degrading altered cell components. The interaction among p62/SQSTM1, Nrf2, and Keap1 forms a regulatory pathway essential for cellular stress response, whose dysregulation leads to impaired autophagy and aggregate accumulation. Targeting the Nrf2-p62/SQSTM1 pathway holds promise for therapeutic intervention, mitigating oxidative stress and preserving cellular functions. Additionally, this review explores the potential synergy between the endocannabinoid system and Nrf2 signaling for neuroprotection. Further research is needed to elucidate the involved molecular mechanisms and develop effective therapeutic strategies against neurodegeneration.
Collapse
Affiliation(s)
- Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (B.M.)
| | - Beatrice Mengoni
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (B.M.)
| | - Debra L. Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (B.M.)
| |
Collapse
|
2
|
Ravizza T, Scheper M, Di Sapia R, Gorter J, Aronica E, Vezzani A. mTOR and neuroinflammation in epilepsy: implications for disease progression and treatment. Nat Rev Neurosci 2024; 25:334-350. [PMID: 38531962 DOI: 10.1038/s41583-024-00805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
Epilepsy remains a major health concern as anti-seizure medications frequently fail, and there is currently no treatment to stop or prevent epileptogenesis, the process underlying the onset and progression of epilepsy. The identification of the pathological processes underlying epileptogenesis is instrumental to the development of drugs that may prevent the generation of seizures or control pharmaco-resistant seizures, which affect about 30% of patients. mTOR signalling and neuroinflammation have been recognized as critical pathways that are activated in brain cells in epilepsy. They represent a potential node of biological convergence in structural epilepsies with either a genetic or an acquired aetiology. Interventional studies in animal models and clinical studies give strong support to the involvement of each pathway in epilepsy. In this Review, we focus on available knowledge about the pathophysiological features of mTOR signalling and the neuroinflammatory brain response, and their interactions, in epilepsy. We discuss mitigation strategies for each pathway that display therapeutic effects in experimental and clinical epilepsy. A deeper understanding of these interconnected molecular cascades could enhance our strategies for managing epilepsy. This could pave the way for new treatments to fill the gaps in the development of preventative or disease-modifying drugs, thus overcoming the limitations of current symptomatic medications.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Mirte Scheper
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rossella Di Sapia
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Jan Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.
| | - Annamaria Vezzani
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy.
| |
Collapse
|
3
|
Talebi Taheri A, Golshadi Z, Zare H, Alinaghipour A, Faghihi Z, Dadgostar E, Tamtaji Z, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. The Potential of Targeting Autophagy-Related Non-coding RNAs in the Treatment of Alzheimer's and Parkinson's Diseases. Cell Mol Neurobiol 2024; 44:28. [PMID: 38461204 PMCID: PMC10924707 DOI: 10.1007/s10571-024-01461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/29/2024] [Indexed: 03/11/2024]
Abstract
Clearance of accumulated protein aggregates is one of the functions of autophagy. Recently, a clearer understanding of non-coding RNAs (ncRNAs) functions documented that ncRNAs have important roles in several biological processes associated with the development and progression of neurodegenerative disorders. Subtypes of ncRNA, including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA), are commonly dysregulated in neurodegenerative disorders such as Alzheimer and Parkinson diseases. Dysregulation of these non-coding RNAs has been associated with inhibition or stimulation of autophagy. Decreased miR-124 led to decreased/increased autophagy in experimental model of Alzheimer and Parkinson diseases. Increased BACE1-AS showed enhanced autophagy in Alzheimer disease by targeting miR-214-3p, Beclin-1, LC3-I/LC3-II, p62, and ATG5. A significant increase in NEAT1led to stimulated autophagy in experimental model of PD by targeting PINK1, LC3-I, LC3-II, p62 and miR-374c-5p. In addition, increased BDNF-AS and SNHG1 decreased autophagy in MPTP-induced PD by targeting miR-125b-5p and miR-221/222, respectively. The upregulation of circNF1-419 and circSAMD4A resulted in an increased autophagy by regulating Dynamin-1 and miR-29c 3p, respectively. A detailed discussion of miRNAs, circRNAs, and lncRNAs in relation to their autophagy-related signaling pathways is presented in this study.
Collapse
Affiliation(s)
- Abdolkarim Talebi Taheri
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zakieh Golshadi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Azam Alinaghipour
- School of Medical Sciences, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Zahra Faghihi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
| | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| | - Omid Reza Tamtaji
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| | - Fatemeh Nabavizadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| |
Collapse
|
4
|
Al-kuraishy HM, Jabir MS, Al-Gareeb AI, Saad HM, Batiha GES, Klionsky DJ. The beneficial role of autophagy in multiple sclerosis: Yes or No? Autophagy 2024; 20:259-274. [PMID: 37712858 PMCID: PMC10813579 DOI: 10.1080/15548627.2023.2259281] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic progressive demyelinating disease of the central nervous system (CNS) due to an increase of abnormal peripherally auto-reactive T lymphocytes which elicit autoimmunity. The main pathophysiology of MS is myelin sheath damage by immune cells and a defect in the generation of myelin by oligodendrocytes. Macroautophagy/autophagy is a critical degradation process that eliminates dysfunctional or superfluous cellular components. Autophagy has the property of a double-edged sword in MS in that it may have both beneficial and detrimental effects on MS neuropathology. Therefore, this review illustrates the protective and harmful effects of autophagy with regard to this disease. Autophagy prevents the progression of MS by reducing oxidative stress and inflammatory disorders. In contrast, over-activated autophagy is associated with the progression of MS neuropathology and in this case the use of autophagy inhibitors may alleviate the pathogenesis of MS. Furthermore, autophagy provokes the activation of different immune and supporting cells that play an intricate role in the pathogenesis of MS. Autophagy functions in the modulation of MS neuropathology by regulating cell proliferation related to demyelination and remyelination. Autophagy enhances remyelination by increasing the activity of oligodendrocytes, and astrocytes. However, autophagy induces demyelination by activating microglia and T cells. In conclusion, specific autophagic activators of oligodendrocytes, and astrocytes, and specific autophagic inhibitors of dendritic cells (DCs), microglia and T cells induce protective effects against the pathogenesis of MS.Abbreviations: ALS: amyotrophic lateral sclerosis; APCs: antigen-presenting cells; BBB: blood-brain barrier; CSF: cerebrospinal fluid; CNS: central nervous system; DCs: dendritic cells; EAE: experimental autoimmune encephalomyelitis; ER: endoplasmic reticulum; LAP: LC3-associated phagocytosis; MS: multiple sclerosis; NCA: non-canonical autophagy; OCBs: oligoclonal bands; PBMCs: peripheral blood mononuclear cells; PD: Parkinson disease; ROS: reactive oxygen species; UPR: unfolded protein response.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Iraq, Baghdad
| | - Majid S. Jabir
- Department of Applied Science, University of Technology, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Iraq, Baghdad
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El Beheira, Egypt
| | | |
Collapse
|
5
|
Gianessi L, Magini A, Dominici R, Giovagnoli S, Dolcetta D. A Stable Micellar Formulation of RAD001 for Intracerebroventricular Delivery and the Treatment of Alzheimer's Disease and Other Neurological Disorders. Int J Mol Sci 2023; 24:17478. [PMID: 38139306 PMCID: PMC10744130 DOI: 10.3390/ijms242417478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
A large body of evidence, replicated in many mouse models of Alzheimer's disease (AD), supports the therapeutic efficacy of the oral mammalian target of rapamycin inhibitors (mTOR-Is). Our preliminary data show that intracerebroventricular (ICV) administration of everolimus (RAD001) soon after clinical onset greatly diminished cognitive impairment and the intracellular beta amyloid and neurofibrillary tangle load. However, RAD001 shows >90% degradation after 7 days in solution at body temperature, thus hampering the development of proper therapeutic regimens for patients. To overcome such a drawback, we developed a stable, liquid formulation of mTOR-Is by loading RAD001 into distearoylphosphatidylethanolamine-polyethylene glycol 2000 (DSPE-PEG2000) micelles using the thin layer evaporation method. The formulation showed efficient encapsulation of RAD001 and a homogeneous colloidal size and stabilised RAD001, with over 95% of activity preserved after 14 days at 37 °C with a total decay only occurring after 98 days. RAD001-loaded DSPE-PEG2000 micelles were unchanged when stored at 4 and 25 °C over the time period investigated. The obtained formulation may represent a suitable platform for expedited clinical translation and effective therapeutic regimens in AD and other neurological diseases.
Collapse
Affiliation(s)
- Laura Gianessi
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy (S.G.)
| | | | - Roberto Dominici
- Department of Biochemistry, Desio Hospital, ASST-Brianza, 20832 Desio, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy (S.G.)
| | | |
Collapse
|
6
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Cohen G, Gover O, Schwartz B. Phytocannabinoids Reduce Inflammation of Primed Macrophages and Enteric Glial Cells: An In Vitro Study. Int J Mol Sci 2023; 24:14628. [PMID: 37834076 PMCID: PMC10572654 DOI: 10.3390/ijms241914628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Intestinal inflammation is mediated by a subset of cells populating the intestine, such as enteric glial cells (EGC) and macrophages. Different studies indicate that phytocannabinoids could play a possible role in the treatment of inflammatory bowel disease (IBD) by relieving the symptoms involved in the disease. Phytocannabinoids act through the endocannabinoid system, which is distributed throughout the mammalian body in the cells of the immune system and in the intestinal cells. Our in vitro study analyzed the putative anti-inflammatory effect of nine selected pure cannabinoids in J774A1 macrophage cells and EGCs triggered to undergo inflammation with lipopolysaccharide (LPS). The anti-inflammatory effect of several phytocannabinoids was measured by their ability to reduce TNFα transcription and translation in J774A1 macrophages and to diminish S100B and GFAP secretion and transcription in EGCs. Our results demonstrate that THC at the lower concentrations tested exerted the most effective anti-inflammatory effect in both J774A1 macrophages and EGCs compared to the other phytocannabinoids tested herein. We then performed RNA-seq analysis of EGCs exposed to LPS in the presence or absence of THC or THC-COOH. Transcriptomic analysis of these EGCs revealed 23 differentially expressed genes (DEG) compared to the treatment with only LPS. Pretreatment with THC resulted in 26 DEG, and pretreatment with THC-COOH resulted in 25 DEG. To evaluate which biological pathways were affected by the different phytocannabinoid treatments, we used the Ingenuity platform. We show that THC treatment affects the mTOR and RAR signaling pathway, while THC-COOH mainly affects the IL6 signaling pathway.
Collapse
|
8
|
Quigley S, Asad M, Doherty C, Byrne D, Cronin S, Kearney H. Concurrent diagnoses of Tuberous sclerosis and multiple sclerosis. Mult Scler Relat Disord 2023; 71:104586. [PMID: 36863086 DOI: 10.1016/j.msard.2023.104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Tuberous sclerosis (TS) is a monogenic disorder which causes disabling neurological symptoms. Similarly, multiple sclerosis (MS) may result in disability, but in contrast, is diagnosed without genetic testing. Clinicians are advised to exercise caution in diagnosing MS in the presence of a pre-existing genetic disorder, as it may be a potential 'red flag'. A dual diagnosis of MS and TS has not previously been reported in the literature. We provide two cases of known cases of TS who presented with new neurological symptoms and associated physical signs compatible with a dual diagnosis of TS/MS.
Collapse
Affiliation(s)
- Suzanne Quigley
- MS Unit, Department of Neurology, St James's Hospital, Ireland.
| | - Murva Asad
- MS Unit, Department of Neurology, St James's Hospital, Ireland
| | - Colin Doherty
- Department of Neurology, St James's Hospital, Ireland
| | | | - Simon Cronin
- Clinical Neuroscience, School of Medicine, University College Cork, Ireland; Department of Neurology, Cork University Hospital, Ireland
| | - Hugh Kearney
- MS Unit, Department of Neurology, St James's Hospital, Ireland
| |
Collapse
|
9
|
Papiri G, D’Andreamatteo G, Cacchiò G, Alia S, Silvestrini M, Paci C, Luzzi S, Vignini A. Multiple Sclerosis: Inflammatory and Neuroglial Aspects. Curr Issues Mol Biol 2023; 45:1443-1470. [PMID: 36826039 PMCID: PMC9954863 DOI: 10.3390/cimb45020094] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Multiple sclerosis (MS) represents the most common acquired demyelinating disorder of the central nervous system (CNS). Its pathogenesis, in parallel with the well-established role of mechanisms pertaining to autoimmunity, involves several key functions of immune, glial and nerve cells. The disease's natural history is complex, heterogeneous and may evolve over a relapsing-remitting (RRMS) or progressive (PPMS/SPMS) course. Acute inflammation, driven by infiltration of peripheral cells in the CNS, is thought to be the most relevant process during the earliest phases and in RRMS, while disruption in glial and neural cells of pathways pertaining to energy metabolism, survival cascades, synaptic and ionic homeostasis are thought to be mostly relevant in long-standing disease, such as in progressive forms. In this complex scenario, many mechanisms originally thought to be distinctive of neurodegenerative disorders are being increasingly recognized as crucial from the beginning of the disease. The present review aims at highlighting mechanisms in common between MS, autoimmune diseases and biology of neurodegenerative disorders. In fact, there is an unmet need to explore new targets that might be involved as master regulators of autoimmunity, inflammation and survival of nerve cells.
Collapse
Affiliation(s)
- Giulio Papiri
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Giordano D’Andreamatteo
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Gabriella Cacchiò
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Sonila Alia
- Section of Biochemistry, Biology and Physics, Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Mauro Silvestrini
- Neurology Unit, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Cristina Paci
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Simona Luzzi
- Neurology Unit, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Arianna Vignini
- Section of Biochemistry, Biology and Physics, Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
- Correspondence:
| |
Collapse
|
10
|
Gastrointestinal Tract, Microbiota and Multiple Sclerosis (MS) and the Link Between Gut Microbiota and CNS. Curr Microbiol 2023; 80:38. [DOI: 10.1007/s00284-022-03150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
|
11
|
Basile MS, Bramanti P, Mazzon E. The Role of Cytotoxic T-Lymphocyte Antigen 4 in the Pathogenesis of Multiple Sclerosis. Genes (Basel) 2022; 13:genes13081319. [PMID: 35893056 PMCID: PMC9394409 DOI: 10.3390/genes13081319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neurodegenerative disorder of the central nervous system that presents heterogeneous clinical manifestations and course. It has been shown that different immune checkpoints, including Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4), can be involved in the pathogenesis of MS. CTLA-4 is a critical regulator of T-cell homeostasis and self-tolerance and represents a key inhibitor of autoimmunity. In this scopingreview, we resume the current preclinical and clinical studies investigating the role of CTLA-4 in MS with different approaches. While some of these studies assessed the expression levels of CTLA-4 on T cells by comparing MS patients with healthy controls, others focused on the evaluation of the effects of common MS therapies on CTLA-4 modulation or on the study of the CTLA-4 blockade or deficiency in experimental autoimmune encephalomyelitis models. Moreover, other studies in this field aimed to discover if the CTLA-4 gene might be involved in the predisposition to MS, whereas others evaluated the effects of treatment with CTLA4-Ig in MS. Although these results are of great interest, they are often conflicting. Therefore, further studies are needed to reveal the exact mechanisms underlying the action of a crucial immune checkpoint such as CTLA-4 in MS to identify novel immunotherapeutic strategies for MS patients.
Collapse
|
12
|
Feng H, Cui Y, Liu J, Liu M, Zhou W, Yan Z, Zhang H, Wang Y, Wang X, Liu X, Chen N. Effects of 3-Methyladenine on Microglia Autophagy and Neuronal Apoptosis After Radiation-Induced Brain Injury. Dose Response 2022; 20:15593258221100593. [PMID: 35615570 PMCID: PMC9125074 DOI: 10.1177/15593258221100593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/20/2022] [Indexed: 12/22/2022] Open
Abstract
Objective To determine the effect of the autophagy inhibitor, 3-methyladenine (3-MA), on cognitive function changes, microglia activity, neuronal apoptosis, and inflammation in rats following radiation-induced brain injury. Methods The following groups were established: control, model, and 3-MA. A rat model of radiation-induced brain injury was generated with a medium dose of X-rays. A Morris water maze was used to observe the cognitive function of the rats. H&E staining was used to observe the pathological changes in the hippocampus. The morphological and quantitative changes of neuronal nuclear (NeuN)-positive neurons and Iba-1-positive microglia in the ipsilateral hippocampus were analyzed by immunohistochemistry. Western blot analysis was done to measure the changes of NeuN ionized calcium binding adapter molecule 1(Iba-1) and apoptosis-related proteins. Immunofluorescence staining of Iba-1 and Microtuble-associated protein light chain 3 (LC3) was done to evaluate the changes in microglia autophagy. TUNEL staining was used to detect apoptosis in the hippocampus. Enzyme-Linked Immunosorbent Assay was used to detect the levels of TNF-α and IL-6 as a measure of the inflammatory response in the hippocampus. Results After irradiation, the nucleus of the neurons in the hippocampus was constricted, the pyramidal tract structure was disordered, neuronal apoptosis was increased (P < .001), the expression of microglia increased (P < .01), autophagy was increased (P < .05), and conversion of microglia to the M2 type increased (P < .05). After 3-MA administration, the level of autophagy decreased (P < .05), the damage to the hippocampal region was reduced, neuronal apoptosis decreased (P < .01), and the activity of the microglia decreased (P < .01). Conclusion Radiation can active the Microglia. 3-MA inhibits autophagy and excessive activity in microglia, and promotes the conversion of microglia from the M1 to the M2 type, thereby promoting the recovery of brain tissue following radiation exposure.
Collapse
Affiliation(s)
- Huichao Feng
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Yahuan Cui
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Jing Liu
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Meiyi Liu
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Wei Zhou
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Zhenyu Yan
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Haixia Zhang
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Yingman Wang
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Xueming Wang
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Xiaomin Liu
- Gamma Knife Center, Department of Neurological Surgery, Tianjin University, Tianjin, China
| | - Naiyao Chen
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| |
Collapse
|
13
|
Brocchi A, Rebelos E, Dardano A, Mantuano M, Daniele G. Effects of Intermittent Fasting on Brain Metabolism. Nutrients 2022; 14:nu14061275. [PMID: 35334932 PMCID: PMC8954770 DOI: 10.3390/nu14061275] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
We are facing an obesity epidemic, and obesity itself and its close companion, type 2 diabetes, are independent risk factors for neurodegeneration. While most medical treatments fail to induce a clinically meaningful improvement in neurodegenerative disorders, lifestyle interventions have emerged in the spotlight. A recently rediscovered approach is intermittent fasting (IF), which, compared to the classic caloric restriction regimens, limits only the time of eating, rather than the number of calories allowed per day. There is already a large amount of evidence from preclinical and clinical studies showing the beneficial effects of IF. In this review, we specifically focus on the effects of IF on brain metabolism. Key molecular players modified during IF and involved in its beneficial central effects (ketone bodies, BDNF, GABA, GH/IGF-1, FGF2, sirtuin-3, mTOR, and gut microbiota) are identified and discussed. Studies suggest that IF induces several molecular and cellular adaptations in neurons, which, overall, enhance cellular stress resistance, synaptic plasticity, and neurogenesis. Still, the absence of guidelines regarding the application of IF to patients hampers its broad utilization in clinical practice, and further studies are needed to improve our knowledge on the different IF protocols and long-term effects of IF on brain metabolism before it can be widely prescribed.
Collapse
Affiliation(s)
- Alex Brocchi
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (A.B.); (A.D.); (M.M.)
| | - Eleni Rebelos
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy;
| | - Angela Dardano
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (A.B.); (A.D.); (M.M.)
| | - Michele Mantuano
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (A.B.); (A.D.); (M.M.)
| | - Giuseppe Daniele
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (A.B.); (A.D.); (M.M.)
- Correspondence: ; Tel.: +39-3404618257
| |
Collapse
|
14
|
Shen D, Liu K, Wang H, Wang H. Autophagy modulation in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 2022; 209:140-150. [PMID: 35641229 PMCID: PMC9390842 DOI: 10.1093/cei/uxac017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 11/14/2022] Open
Abstract
Multiple sclerosis (MS), a white matter demyelinating disease of the central nervous system (CNS), is characterized by neuroinflammatory and neurodegenerative. Experimental autoimmune encephalomyelitis (EAE) is a commonly used animal model for investigating pathogenic mechanisms of MS, representing the destruction of the blood-brain barrier (BBB), the activation of T cells, and the infiltration of myeloid cells. An increasing number of studies have documented that autophagy plays a critical role in the pathogenesis of both MS and EAE. Autophagy maintains CNS homeostasis by degrading the damaged organelles and abnormal proteins. Furthermore, autophagy is involved in inflammatory responses by regulating the activation of immune cells and the secretion of inflammatory factors. However, the specific mechanisms of autophagy involved in MS and EAE are not completely understood. In this review, we will summarize the complex mechanisms of autophagy in MS and EAE, providing potential therapeutic approaches for the management of MS.
Collapse
Affiliation(s)
- Donghui Shen
- Department of Neurology, Qingdao Municipal Hospital, Qingdao 266000, Shan Dong Province, China
| | - Kang Liu
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao 266000, Shan Dong Province, China
| | - Hongyan Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao 266000, Shan Dong Province, China
| | - Haifeng Wang
- Correspondence: Haifeng Wang, Department of Neurology, Qingdao Municipal Hospital, Qingdao, Shan Dong Province, China.
| |
Collapse
|
15
|
Wang C, Huang W, Lu J, Chen H, Yu Z. TRPV1-Mediated Microglial Autophagy Attenuates Alzheimer’s Disease-Associated Pathology and Cognitive Decline. Front Pharmacol 2022; 12:763866. [PMID: 35115924 PMCID: PMC8804218 DOI: 10.3389/fphar.2021.763866] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023] Open
Abstract
Autophagy is a major regulator of the ageing process of the central nervous system and neurodegeneration. Autophagy dysfunction has been implicated in the pathogenesis of Alzheimer’s disease (AD). TRPV1 was reported to regulate autophagy to protect against foam cell formation and reduce the release of inflammatory factors in atherosclerosis. In this study, pharmacological activation of TRPV1 with the TRPV1 agonist capsaicin induced autophagy in a TRPV1-dependent manner in both primary microglia and BV2 cells. TRPV1-mediated autophagy regulated glycolysis and oxidative phosphorylation by controlling the expression of genes required for aerobic glycolysis and mitochondrial respiration in primary microglia. TRPV1 agonist capsaicin decreased amyloid and phosphorylated tau pathology and reversed memory deficits by promoting microglia activation, metabolism, and autophagy in 3xTg mice. These results indicate that TRPV1 was a potential therapeutic target for AD, which suggests that capsaicin should be further assessed as a possible treatment for AD.
Collapse
Affiliation(s)
- Chenfei Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Huang
- Cardiology Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Lu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Zhihua Yu, ; Hongzhuan Chen,
| | - Zhihua Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhihua Yu, ; Hongzhuan Chen,
| |
Collapse
|
16
|
Ko A, Sim NS, Choi HS, Yang D, Kim SH, Lee JS, Kim DS, Lee JH, Kim HD, Kang HC. Efficacy of the Ketogenic Diet for Pediatric Epilepsy According to the Presence of Detectable Somatic mTOR Pathway Mutations in the Brain. J Clin Neurol 2022; 18:71-78. [PMID: 35021279 PMCID: PMC8762511 DOI: 10.3988/jcn.2022.18.1.71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
Background and Purpose A multifactorial antiepileptic mechanism underlies the ketogenic diet (KD), and one of the proposed mechanisms of action is that the KD inhibits the mammalian target of rapamycin (mTOR) pathway. To test this clinically, this study aimed to determine the efficacy of the KD in patients with pathologically confirmed focal cortical dysplasia (FCD) due to genetically identifiable mTOR pathway dysregulation. Methods A cohort of patients with pathologically confirmed FCD after epilepsy surgery and who were screened for the presence of germline and somatic mutations related to the mTOR pathway in peripheral blood and resected brain tissue was constructed prospectively. A retrospective review of the efficacy of the prior KD in these patients was performed. Results Twenty-five patients with pathologically confirmed FCD and who were screened for the presence of detectable somatic mTOR pathway mutations had received a sufficient KD. Twelve of these patients (48.0%) had germline or somatic detectable mTOR pathway mutations. A response was defined as a ≥50% reduction in seizure frequency. The efficacy of the KD after 3 months of dietary therapy was superior in patients with detectable mTOR pathway mutations than in patients without detectable mTOR pathway mutations, although the difference was not statistically significant (responder rates of 58.3% vs. 38.5%, p=0.434). Conclusions A greater proportion of patients with mTOR pathway responded to the KD, but there was no statistically significant difference in efficacy of the KD between patients with and without detectable mTOR pathway mutations. Further study is warranted due to the smallness of the sample and the limited number of mTOR pathway genes tested in this study.
Collapse
Affiliation(s)
- Ara Ko
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Nam Suk Sim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Han Som Choi
- Department of Pediatrics, Ewha Womans University Seoul Hospital, Ewha Womans University School of Medicine, Seoul, Korea.,Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Donghwa Yang
- Department of Pediatrics, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Se Hee Kim
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Soo Lee
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Seok Kim
- Department of Neurosurgery, Pediatric Neurosurgery, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Heung Dong Kim
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
17
|
Lin CM, Yang JH, Lee HJ, Lin YP, Tsai LP, Hsu CS, Luxton GWG, Hu CF. Whole Exome Sequencing Identifies a Novel Homozygous Missense Mutation in the CSB Protein-Encoding ERCC6 Gene in a Taiwanese Boy with Cockayne Syndrome. Life (Basel) 2021; 11:life11111230. [PMID: 34833108 PMCID: PMC8618937 DOI: 10.3390/life11111230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Cockayne syndrome (CS) is a rare form of dwarfism that is characterized by progressive premature aging. CS is typically caused by mutations in the excision repair cross-complementing protein group 6 (ERCC6) gene that encodes the CS group B (CSB) protein. Using whole exome sequencing, we recently identified a novel homozygous missense mutation (Leu536Trp) in CSB in a Taiwanese boy with CS. Since the current database (Varsome) interprets this variant as likely pathogenic, we utilized a bioinformatic tool to investigate the impact of Leu536Trp as well as two other variants (Arg453Ter, Asp532Gly) in similar articles on the CSB protein structure stability. Methods: We used iterative threading assembly refinement (I-TASSER) to generate a predictive 3D structure of CSB. We calculated the change of mutation energy after residues substitution on the protein stability using I-TASSER as well as the artificial intelligence program Alphafold. Results: The Asp532Gly variant destabilized both modeled structures, while the Leu536Trp variant showed no effect on I-TASSER’s model but destabilized the Alphafold’s modeled structure. Conclusions: We propose here the first case of CS associated with a novel homozygous missense mutation (Leu536Trp) in CSB. Furthermore, we suggest that the Asp532Gly and Leu536Trp variants are both pathogenic after bioinformatic analysis of protein stability.
Collapse
Affiliation(s)
- Ching-Ming Lin
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Pediatrics, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Jay-How Yang
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA;
| | - Hwei-Jen Lee
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yu-Pang Lin
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Li-Ping Tsai
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan;
| | - Chih-Sin Hsu
- Genomics Center for Clinical and Biotechnological Applications of Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - G. W. Gant Luxton
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA 95616, USA
- Correspondence: (G.W.G.L.); (C.-F.H.); Tel.: +1-530-754-6083 (G.W.G.L.); +886-2-8792-7293 (C.-F.H.)
| | - Chih-Fen Hu
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
- Correspondence: (G.W.G.L.); (C.-F.H.); Tel.: +1-530-754-6083 (G.W.G.L.); +886-2-8792-7293 (C.-F.H.)
| |
Collapse
|
18
|
Rayatpour A, Farhangi S, Verdaguer E, Olloquequi J, Ureña J, Auladell C, Javan M. The Cross Talk between Underlying Mechanisms of Multiple Sclerosis and Epilepsy May Provide New Insights for More Efficient Therapies. Pharmaceuticals (Basel) 2021; 14:ph14101031. [PMID: 34681255 PMCID: PMC8541630 DOI: 10.3390/ph14101031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/17/2022] Open
Abstract
Despite the significant differences in pathological background of neurodegenerative diseases, epileptic seizures are a comorbidity in many disorders such as Huntington disease (HD), Alzheimer's disease (AD), and multiple sclerosis (MS). Regarding the last one, specifically, it has been shown that the risk of developing epilepsy is three to six times higher in patients with MS compared to the general population. In this context, understanding the pathological processes underlying this connection will allow for the targeting of the common and shared pathological pathways involved in both conditions, which may provide a new avenue in the management of neurological disorders. This review provides an outlook of what is known so far about the bidirectional association between epilepsy and MS.
Collapse
Affiliation(s)
- Atefeh Rayatpour
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Sahar Farhangi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Ester Verdaguer
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Biomedical Sciences Institute, Health Sciences Faculty, Universidad Autónoma de Chile, Talca 3460000, Chile;
| | - Jesus Ureña
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Carme Auladell
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
- Correspondence: (C.A.); (M.J.)
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
- Cell Science Research Center, Department of Brain and Cognitive Sciences, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 14117-13116, Iran
- Correspondence: (C.A.); (M.J.)
| |
Collapse
|
19
|
Ki SM, Jeong HS, Lee JE. Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases. Front Neurosci 2021; 15:736888. [PMID: 34658775 PMCID: PMC8514955 DOI: 10.3389/fnins.2021.736888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases have been associated with defects in primary cilia, which are cellular organelles involved in diverse cellular processes and homeostasis. Several types of glial cells in both the central and peripheral nervous systems not only support the development and function of neurons but also play significant roles in the mechanisms of neurological disease. Nevertheless, most studies have focused on investigating the role of primary cilia in neurons. Accordingly, the interest of recent studies has expanded to elucidate the role of primary cilia in glial cells. Correspondingly, several reports have added to the growing evidence that most glial cells have primary cilia and that impairment of cilia leads to neurodegenerative diseases. In this review, we aimed to understand the regulatory mechanisms of cilia formation and the disease-related functions of cilia, which are common or specific to each glial cell. Moreover, we have paid close attention to the signal transduction and pathological mechanisms mediated by glia cilia in representative neurodegenerative diseases. Finally, we expect that this field of research will clarify the mechanisms involved in the formation and function of glial cilia to provide novel insights and ideas for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Soo Mi Ki
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
20
|
Chua JP, De Calbiac H, Kabashi E, Barmada SJ. Autophagy and ALS: mechanistic insights and therapeutic implications. Autophagy 2021; 18:254-282. [PMID: 34057020 PMCID: PMC8942428 DOI: 10.1080/15548627.2021.1926656] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mechanisms of protein homeostasis are crucial for overseeing the clearance of misfolded and toxic proteins over the lifetime of an organism, thereby ensuring the health of neurons and other cells of the central nervous system. The highly conserved pathway of autophagy is particularly necessary for preventing and counteracting pathogenic insults that may lead to neurodegeneration. In line with this, mutations in genes that encode essential autophagy factors result in impaired autophagy and lead to neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS). However, the mechanistic details underlying the neuroprotective role of autophagy, neuronal resistance to autophagy induction, and the neuron-specific effects of autophagy-impairing mutations remain incompletely defined. Further, the manner and extent to which non-cell autonomous effects of autophagy dysfunction contribute to ALS pathogenesis are not fully understood. Here, we review the current understanding of the interplay between autophagy and ALS pathogenesis by providing an overview of critical steps in the autophagy pathway, with special focus on pivotal factors impaired by ALS-causing mutations, their physiologic effects on autophagy in disease models, and the cell type-specific mechanisms regulating autophagy in non-neuronal cells which, when impaired, can contribute to neurodegeneration. This review thereby provides a framework not only to guide further investigations of neuronal autophagy but also to refine therapeutic strategies for ALS and related neurodegenerative diseases.Abbreviations: ALS: amyotrophic lateral sclerosis; Atg: autophagy-related; CHMP2B: charged multivesicular body protein 2B; DPR: dipeptide repeat; FTD: frontotemporal dementia; iPSC: induced pluripotent stem cell; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PINK1: PTEN induced kinase 1; RNP: ribonuclear protein; sALS: sporadic ALS; SPHK1: sphingosine kinase 1; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK-binding kinase 1; TFEB: transcription factor EB; ULK: unc-51 like autophagy activating kinase; UPR: unfolded protein response; UPS: ubiquitin-proteasome system; VCP: valosin containing protein.
Collapse
Affiliation(s)
- Jason P Chua
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Hortense De Calbiac
- Recherche translationnelle sur les maladies neurologiques, Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Edor Kabashi
- Recherche translationnelle sur les maladies neurologiques, Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
21
|
Zhang N, Yao L, Wang P, Liu Z. Immunoregulation and antidepressant effect of ketamine. Transl Neurosci 2021; 12:218-236. [PMID: 34079622 PMCID: PMC8155793 DOI: 10.1515/tnsci-2020-0167] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Major depressive disorder (MDD) is a common mental health disorder that brings severe disease burden worldwide. Traditional antidepressants are mainly targeted at monoamine neurotransmitters, with low remission rates and high recurrence rates. Ketamine is a noncompetitive glutamate N-methyl-d-aspartate receptor (NMDAR) antagonist, and its rapid and powerful antidepressant effects have come to light. Its antidepressant mechanism is still unclarified. Research found that ketamine had not only antagonistic effect on NMDAR but also strong immunomodulatory effect, both of which were closely related to the pathophysiology of MDD. Although there are many related studies, they are relatively heterogeneous. Therefore, this review mainly describes the immune mechanisms involved in MDD and how ketamine plays an antidepressant role by regulating peripheral and central immune system, including peripheral inflammatory cytokines, central microglia, and astrocytes. This review summarizes the related research, finds out the deficiencies of current research, and provides ideas for future research and the development of novel antidepressants.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Rd. 238, 430060, Wuhan, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Rd. 238, 430060, Wuhan, China
| | - Peilin Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Rd. 238, 430060, Wuhan, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Rd. 238, 430060, Wuhan, China
| |
Collapse
|
22
|
Lu J, Zhou W, Dou F, Wang C, Yu Z. TRPV1 sustains microglial metabolic reprogramming in Alzheimer's disease. EMBO Rep 2021; 22:e52013. [PMID: 33998138 DOI: 10.15252/embr.202052013] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/19/2021] [Accepted: 04/01/2021] [Indexed: 12/31/2022] Open
Abstract
As the brain-resident innate immune cells, reactive microglia are a major pathological feature of Alzheimer's disease (AD). However, the exact role of microglia is still unclear in AD pathogenesis. Here, using metabolic profiling, we show that microglia energy metabolism is significantly suppressed during chronic Aβ-tolerant processes including oxidative phosphorylation and aerobic glycolysis via the mTOR-AKT-HIF-1α pathway. Pharmacological activation of TRPV1 rescues Aβ-tolerant microglial dysfunction, the AKT/mTOR pathway activity, and metabolic impairments and restores the immune responses including phagocytic activity and autophagy function. Amyloid pathology and memory impairment are accelerated in microglia-specific TRPV1-knockout APP/PS1 mice. Finally, we showed that metabolic boosting with TRPV1 agonist decreases amyloid pathology and reverses memory deficits in AD mice model. These results indicate that TRPV1 is an important target regulating metabolic reprogramming for microglial functions in AD treatment.
Collapse
Affiliation(s)
- Jia Lu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Fangfang Dou
- Basic Research Department, Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenfei Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihua Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Guden DS, Temiz-Resitoglu M, Senol SP, Kibar D, Yilmaz SN, Tunctan B, Malik KU, Sahan-Firat S. mTOR inhibition as a possible pharmacological target in the management of systemic inflammatory response and associated neuroinflammation by lipopolysaccharide challenge in rats. Can J Physiol Pharmacol 2021; 99:921-934. [PMID: 33641344 DOI: 10.1139/cjpp-2020-0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuroinflammation plays a critical role during sepsis triggered by microglial activation. Mammalian target of rapamycin (mTOR) has gained attraction in neuroinflammation, however, the mechanism remains unclear. Our goal was to assess the effects of mTOR inhibition by rapamycin on inflammation, microglial activation, oxidative stress, and apoptosis associated with the changes in the inhibitor-κB (IκB)-α/nuclear factor-κB (NF-κB)/hypoxia-inducible factor-1α (HIF-1α) pathway activity following a systemic challenge with lipopolysaccharide (LPS). Rats received saline (10 mL/kg), LPS (10 mg/kg), and (or) rapamycin (1 mg/kg) intraperitoneally. Inhibition of mTOR by rapamycin blocked phosphorylated form of ribosomal protein S6, NF-κB p65 activity by increasing degradation of IκB-α in parallel with HIF-1α expression increased by LPS in the kidney, heart, lung, and brain tissues. Rapamycin attenuated the increment in the expression of tumor necrosis factor-α and interleukin-1β, the inducible nitric oxide synthase, gp91phox, and p47phox in addition to nitrite levels elicited by LPS in tissues or sera. Concomitantly, rapamycin treatment reduced microglial activation, brain expression of caspase-3, and Bcl-2-associated X protein while it increased expression of B cell lymphoma 2 induced by LPS. Overall, this study supports the hypothesis that mTOR contributes to the detrimental effect of LPS-induced systemic inflammatory response associated with neuroinflammation via IκB-α/NF-κB/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Demet Sinem Guden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | | | - Sefika Pinar Senol
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Deniz Kibar
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Sakir Necat Yilmaz
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, University of Tennessee, Department of Pharmacology, College of Medicine, Memphis, TN, USA
| | - Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| |
Collapse
|
24
|
The AP-1 Transcription Factor Fosl-2 Regulates Autophagy in Cardiac Fibroblasts during Myocardial Fibrogenesis. Int J Mol Sci 2021; 22:ijms22041861. [PMID: 33668422 PMCID: PMC7917643 DOI: 10.3390/ijms22041861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 01/16/2023] Open
Abstract
Background: Pathological activation of cardiac fibroblasts is a key step in development and progression of cardiac fibrosis and heart failure. This process has been associated with enhanced autophagocytosis, but molecular mechanisms remain largely unknown. Methods and Results: Immunohistochemical analysis of endomyocardial biopsies showed increased activation of autophagy in fibrotic hearts of patients with inflammatory cardiomyopathy. In vitro experiments using mouse and human cardiac fibroblasts confirmed that blockade of autophagy with Bafilomycin A1 inhibited fibroblast-to-myofibroblast transition induced by transforming growth factor (TGF)-β. Next, we observed that cardiac fibroblasts obtained from mice overexpressing transcription factor Fos-related antigen 2 (Fosl-2tg) expressed elevated protein levels of autophagy markers: the lipid modified form of microtubule-associated protein 1A/1B-light chain 3B (LC3BII), Beclin-1 and autophagy related 5 (Atg5). In complementary experiments, silencing of Fosl-2 with antisense GapmeR oligonucleotides suppressed production of type I collagen, myofibroblast marker alpha smooth muscle actin and autophagy marker Beclin-1 in cardiac fibroblasts. On the other hand, silencing of either LC3B or Beclin-1 reduced Fosl-2 levels in TGF-β-activated, but not in unstimulated cells. Using a cardiac hypertrophy model induced by continuous infusion of angiotensin II with osmotic minipumps, we confirmed that mice lacking either Fosl-2 (Ccl19CreFosl2flox/flox) or Atg5 (Ccl19CreAtg5flox/flox) in stromal cells were protected from cardiac fibrosis. Conclusion: Our findings demonstrate that Fosl-2 regulates autophagocytosis and the TGF-β-Fosl-2-autophagy axis controls differentiation of cardiac fibroblasts. These data provide a new insight for the development of pharmaceutical targets in cardiac fibrosis.
Collapse
|
25
|
Nutma E, Marzin MC, Cillessen SA, Amor S. Autophagy in white matter disorders of the CNS: mechanisms and therapeutic opportunities. J Pathol 2020; 253:133-147. [PMID: 33135781 PMCID: PMC7839724 DOI: 10.1002/path.5576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/21/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Autophagy is a constitutive process that degrades, recycles and clears damaged proteins or organelles, yet, despite activation of this pathway, abnormal proteins accumulate in neurons in neurodegenerative diseases and in oligodendrocytes in white matter disorders. Here, we discuss the role of autophagy in white matter disorders, including neurotropic infections, inflammatory diseases such as multiple sclerosis, and in hereditary metabolic disorders and acquired toxic‐metabolic disorders. Once triggered due to cell stress, autophagy can enhance cell survival or cell death that may contribute to oligodendrocyte damage and myelin loss in white matter diseases. For some disorders, the mechanisms leading to myelin loss are clear, whereas the aetiological agent and pathological mechanisms are unknown for other myelin disorders, although emerging studies indicate that a common mechanism underlying these disorders is dysregulation of autophagic pathways. In this review we discuss the alterations in the autophagic process in white matter disorders and the potential use of autophagy‐modulating agents as therapeutic approaches in these pathological conditions. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Erik Nutma
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Manuel C Marzin
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Saskia Agm Cillessen
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
26
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
27
|
Xu B, Liu SS, Wei J, Jiao ZY, Mo C, Lv CM, Huang AL, Chen QB, Ma L, Guan XH. Role of Spinal Cord Akt-mTOR Signaling Pathways in Postoperative Hyperalgesia Induced by Plantar Incision in Mice. Front Neurosci 2020; 14:766. [PMID: 32848550 PMCID: PMC7396510 DOI: 10.3389/fnins.2020.00766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022] Open
Abstract
Poor postoperative pain (POP) control increases perioperative morbidity, prolongs hospitalization days, and causes chronic pain. However, the specific mechanism(s) underlying POP is unclear and the identification of optimal perioperative treatment remains elusive. Akt and mammalian target of rapamycin (mTOR) are expressed in the spinal cord, dorsal root ganglion, and sensory axons. In this study, we explored the role of Akt and mTOR in pain-related behaviors induced by plantar incision in mice. Plantar incision activated spinal Akt and mTOR in a dose-dependent manner. Pre-treatment with Akt inhibitors intrathecally prevented the activation of mTOR dose-dependently. In addition, blocking the Akt-mTOR signaling cascade attenuated pain-related behaviors and spinal Fos protein expression induced by plantar incision. Our observations demonstrate that Akt-mTOR might be a potential therapeutic target for the treatment of POP.
Collapse
Affiliation(s)
- Bing Xu
- Department of Rehabilitation, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Su-Su Liu
- Department of Anesthesiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jin Wei
- Department of Anesthesiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zi-Yin Jiao
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cheng Mo
- Department of Anesthesiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Cheng-Mei Lv
- Department of Anesthesiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ai-Lan Huang
- Department of Anesthesiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qi-Bo Chen
- Department of Rehabilitation, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Li Ma
- Department of Anesthesiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xue-Hai Guan
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
28
|
Tyagi A, Kamal MA, Poddar NK. Integrated Pathways of COX-2 and mTOR: Roles in Cell Sensing and Alzheimer's Disease. Front Neurosci 2020; 14:693. [PMID: 32742252 PMCID: PMC7364283 DOI: 10.3389/fnins.2020.00693] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclooxygenases (COX) are enzymes catalyzing arachidonic acid into prostanoids. COX exists in three isoforms: COX-1, 2, and 3. COX-1 and COX-2 have been widely studied in order to explore and understand their involvement in Alzheimer’s disease (AD), a progressive neuroinflammatory dementia. COX-2 was traditionally viewed to be expressed only under pathological conditions and to have detrimental effects in AD pathophysiology and neurodegeneration. However, an increasing number of reports point to much more complex roles of COX-2 in AD. Mammalian/mechanistic target of rapamycin (mTOR) has been considered as a hub which integrates multiple signaling cascades, some of which are also involved in AD progression. COX-2 and mTOR are both involved in environmental sensing, growth, and metabolic processes of the cell. They are also known to act in cooperation in many different cancers and thus, their role together in normal cellular functions as well as AD has been explored in this review. Some of the therapeutic approaches targeting COX-2 and mTOR in AD and cancer are also discussed.
Collapse
Affiliation(s)
- Arti Tyagi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Mohammad A Kamal
- King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Enzymoics, Hebersham, NSW, Australia
| | | |
Collapse
|
29
|
Hsieh CCJ, Lo YC, Li SJ, Lin TC, Chang CW, Chen TC, Yang SH, Lee YC, Chen YY. Detection of endophenotypes associated with neuropsychiatric deficiencies in a mouse model of tuberous sclerosis complex using diffusion tensor imaging. Brain Pathol 2020; 31:4-19. [PMID: 32530070 PMCID: PMC8018051 DOI: 10.1111/bpa.12870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/09/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare hereditary disease, which results from the mutation of either TSC1 or TSC2, and its clinical features include benign tumors and dysfunctions in numerous organs, including the brain. Many individuals with TSC manifest neuropsychiatric symptoms, such as learning impairments, cognitive deficits and anxiety. Current pharmacological treatment for TSC is the use of mTOR inhibitors. However, they are not effective in treating neuropsychiatric symptoms. We previously used curcumin, a diet-derived mTOR inhibitor, which possesses both anti-inflammatory and antiproliferative properties, to improve learning and memory deficits in Tsc2+/- mice. Diffusion tensor imaging (DTI) provides microstructural information in brain tissue and has been used to study the neuropathological changes in TSC. In this study, we confirmed that the impaired recognition memory and increased anxiety-like behavior in Tsc2+/- mice can be reversed by curcumin treatment. Second, we found altered fractional anisotropy and mean diffusivity in the anterior cingulate cortex and the hippocampus of the Tsc2+/- mice, which may indicate altered circuitry. Finally, the mTOR complex 1 hyperactivity was found in the cortex and hippocampus, coinciding with abnormal cortical myelination and increased glial fibrillary acidic protein expression in the hippocampal CA1 of Tsc2+/- mice, both of which can be rescued with curcumin treatment. Overall, DTI is sensitive to the subtle alterations that cannot be detected by conventional imaging, suggesting that noninvasive DTI may be suitable for longitudinally monitoring the in vivo neuropathology associated with the neuropsychiatric symptoms in TSC, thereby facilitating future clinical trials of pharmacological treatments.
Collapse
Affiliation(s)
- Christine Chin-Jung Hsieh
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, 11574, Taiwan.,Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Yu-Chun Lo
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Ting-Chun Lin
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Ting-Chieh Chen
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Shih-Hung Yang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Chao Lee
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - You-Yin Chen
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, 11574, Taiwan.,Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan.,PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
30
|
Hassanpour M, Hajihassani F, Hiradfar A, Aghamohammadzadeh N, Rahbarghazi R, Safaie N, Nouri M, Panahi Y. Real-state of autophagy signaling pathway in neurodegenerative disease; focus on multiple sclerosis. JOURNAL OF INFLAMMATION-LONDON 2020; 17:6. [PMID: 32082082 PMCID: PMC7014934 DOI: 10.1186/s12950-020-0237-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
Abstract
The occurrence of neurodegenerative disease is increasingly raised. From physiopathological aspect, the emergence of auto-reactive antibodies against the nervous system antigens contributes to de-myelination in Multiple sclerosis (MS). These features cause the nervous system dysfunction. The follow-up of molecular alterations could give us a real-state vision about intracellular status during pathological circumstances. In this review, we focus on the autophagic response during MS progression and further understand the relationship between autophagy and MS and its modulatory effect on the MS evolution. The authors reviewed studies published on the autophagy status in neurodegenerative disease and on the autophagy modulation in MS prognosis, diagnosis, and possible therapies. The inevitable role of autophagy was shown in the early-stage progression of MS. Due to critical role of autophagy in different stage of cell activity in nervous system, the distinct role of autophagy should not be neglected in the development, pathogenesis, and treatment of MS.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- 1Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, 5166614756, Imam Reza St., Golgasht St, Tabriz, Iran.,2Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,3Clinical Pharmacy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, 1435916471 Iran
| | - Fateme Hajihassani
- 4Department of Health Management, School of Management and Medical informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirataollah Hiradfar
- 5Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- 7Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,8Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Safaie
- 9Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- 1Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, 5166614756, Imam Reza St., Golgasht St, Tabriz, Iran.,2Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yunes Panahi
- 3Clinical Pharmacy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, 1435916471 Iran
| |
Collapse
|
31
|
Belgrad J, De Pace R, Fields RD. Autophagy in Myelinating Glia. J Neurosci 2020; 40:256-266. [PMID: 31744863 PMCID: PMC6948934 DOI: 10.1523/jneurosci.1066-19.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/17/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
Autophagy is the cellular process involved in transportation and degradation of membrane, proteins, pathogens, and organelles. This fundamental cellular process is vital in development, plasticity, and response to disease and injury. Compared with neurons, little information is available on autophagy in glia, but it is paramount for glia to perform their critical responses to nervous system disease and injury, including active tissue remodeling and phagocytosis. In myelinating glia, autophagy has expanded roles, particularly in phagocytosis of mature myelin and in generating the vast amounts of membrane proteins and lipids that must be transported to form new myelin. Notably, autophagy plays important roles in removing excess cytoplasm to promote myelin compaction and development of oligodendrocytes, as well as in remyelination by Schwann cells after nerve trauma. This review summarizes the cell biology of autophagy, detailing the major pathways and proteins involved, as well as the roles of autophagy in Schwann cells and oligodendrocytes in development, plasticity, and diseases in which myelin is affected. This includes traumatic brain injury, Alexander's disease, Alzheimer's disease, hypoxia, multiple sclerosis, hereditary spastic paraplegia, and others. Promising areas for future research are highlighted.
Collapse
Affiliation(s)
| | - Raffaella De Pace
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
32
|
Tang RH, Qi RQ, Liu HY. Interleukin-4 affects microglial autophagic flux. Neural Regen Res 2019; 14:1594-1602. [PMID: 31089059 PMCID: PMC6557092 DOI: 10.4103/1673-5374.255975] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/24/2019] [Indexed: 12/15/2022] Open
Abstract
Interleukin-4 plays an important protective role in Alzheimer's disease by regulating microglial phenotype, phagocytosis of amyloid-β, and secretion of anti-inflammatory and neurotrophic cytokines. Recently, increasing evidence has suggested that autophagy regulates innate immunity by affecting M1/M2 polarization of microglia/macrophages. However, the role of interleukin-4 in microglial autophagy is unknown. In view of this, BV2 microglia were treated with 0, 10, 20 or 50 ng/mL interleukin-4 for 24, 48, or 72 hours. Subsequently, light chain 3-II and p62 protein expression levels were detected by western blot assay. BV2 microglia were incubated with interleukin-4 (20 ng/mL, experimental group), 3-methyladenine (500 μM, autophagy inhibitor, negative control group), rapamycin (100 nM, autophagy inductor, positive control group), 3-methyladenine + interleukin-4 (rescue group), or without treatment for 24 hours, and then exposed to amyloid-β (1 μM, model group) or vehicle control (control) for 24 hours. LC3-II and p62 protein expression levels were again detected by western blot assay. In addition, expression levels of multiple markers of M1 and M2 phenotype were assessed by real-time fluorescence quantitative polymerase chain reaction, while intracellular and supernatant amyloid-β protein levels were measured by enzyme-linked immunosorbent assay. Our results showed that interleukin-4 induced microglial autophagic flux, most significantly at 20 ng/mL for 48 hours. Interleukin-4 pretreated microglia inhibited blockade of amyloid-β-induced autophagic flux, and promoted amyloid-β uptake and degradation partly through autophagic flux, but inhibited switching of amyloid-β-induced M1 phenotype independent on autophagic flux. These results indicate that interleukin-4 pretreated microglia increases uptake and degradation of amyloid-β in a process partly mediated by autophagy, which may play a protective role against Alzheimer's disease.
Collapse
Affiliation(s)
- Run-Hong Tang
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Rui-Qun Qi
- Department of Dermatology, Key Laboratory of Immunodermatology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hua-Yan Liu
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
33
|
Li Z, Nie L, Chen L, Sun Y, Guo L. [Rapamycin alleviates inflammation by up-regulating TGF-β/Smad signaling in a mouse model of autoimmune encephalomyelitis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:35-42. [PMID: 30692064 DOI: 10.12122/j.issn.1673-4254.2019.01.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To evaluate the efficacy of rapmycin for treatment of experimental autoimmune encephalomyelitis (EAE) in mice and explore the underlying mechanism. METHODS An EAE model was established in C57BL/6 mice. After immunization, the mice were divided into model group and rapamycin groups treated daily with low-dose (0.3 mg/kg) or high-dose (1 mg/kg) rapamycin. The clinical scores of the mice were observed using Knoz score, the infiltration of IL-17 cells in the central nervous system (CNS) was determined using immunohistochemistry; the differentiation of peripheral Treg cells was analyzed using flow cytometry, and the changes in the levels of cytokines were detected with ELISA; the changes in the expressions of p-Smad2 and p- smad3 were investigated using Western blotting. RESULTS High-dose rapamycin significantly improved the neurological deficits scores of EAE mice. In high-dose rapamycin group, the scores in the onset stage, peak stage and remission stage were 0.14±0.38, 0.43±1.13 and 0.14±0.37, respectively, as compared with 1.14±0.69, 2.14±1.06 and 2.2±0.75 in the model group. The infiltration of inflammatory IL-17 cells was significantly lower in high-dose rapamycin group than in the model group (43±1.83 vs 153.5±7.02). High-dose rapamycin obviously inhibited the production of IL-12, IFN-γ, IL-17 and IL-23 and induced the anti-inflammatory cytokines IL-10 and TGF-β. The percentage of Treg in CD4+ T cells was significantly higher in high- dose rapamycin group than in the model group (10.17 ± 0.68 vs 3.52 ± 0.32). In the in vitro experiment, combined treatments of the lymphocytes isolated from the mice with rapamycin and TGF-β induced a significant increase in the number of Treg cells (13.66±1.89) compared with the treatment with rapamycin (6.23±0.80) or TGF-β (4.87±0.85) alone. Rapamycin also obviously up-regulated the expression of p-Smad2 and p-Smad3 in the lymphocytes. CONCLUSIONS Rapamycin can promote the differentiation of Treg cells by up-regulating the expression of p-Smad2 and p-smad3 to improve neurological deficits in mice with EAE.
Collapse
Affiliation(s)
- Zhenfei Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Lingling Nie
- Shijiazhuang Circulating Chemical Park Hospital, Shijiazhuang 050000, China
| | - Liping Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yafei Sun
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Li Guo
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
34
|
Abeti R, Zeitlberger A, Peelo C, Fassihi H, Sarkany RPE, Lehmann AR, Giunti P. Xeroderma pigmentosum: overview of pharmacology and novel therapeutic strategies for neurological symptoms. Br J Pharmacol 2019; 176:4293-4301. [PMID: 30499105 DOI: 10.1111/bph.14557] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/06/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022] Open
Abstract
Xeroderma pigmentosum (XP) encompasses a group of rare diseases characterized in most cases by malfunction of nucleotide excision repair (NER), which results in an increased sensitivity to UV radiation in affected individuals. Approximately 25-30% of XP patients present with neurological symptoms, such as sensorineural deafness, mental deterioration and ataxia. Although it is known that dysfunctional DNA repair is the primary pathogenesis in XP, growing evidence suggests that mitochondrial pathophysiology may also occur. This appears to be secondary to dysfunctional NER but may contribute to the neurodegenerative process in these patients. The available pharmacological treatments in XP mostly target the dermal manifestations of the disease. In the present review, we outline how current understanding of the pathophysiology of XP could be used to develop novel therapies to counteract the neurological symptoms. Moreover, the coexistence of cancer and neurodegeneration present in XP led us to focus on possible new avenues targeting mitochondrial pathophysiology. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Rosella Abeti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, University College London, Institute of Neurology London, London, UK
| | - Anna Zeitlberger
- Ataxia Centre, Department of Clinical and Movement Neurosciences, University College London, Institute of Neurology London, London, UK
| | - Colm Peelo
- Ataxia Centre, Department of Clinical and Movement Neurosciences, University College London, Institute of Neurology London, London, UK
| | - Hiva Fassihi
- National Xeroderma Pigmentosum Service, St John's Institute of Dermatology Guy's and St Thomas' Foundation Trust, London, UK
| | - Robert P E Sarkany
- National Xeroderma Pigmentosum Service, St John's Institute of Dermatology Guy's and St Thomas' Foundation Trust, London, UK
| | - Alan R Lehmann
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, University College London, Institute of Neurology London, London, UK.,National Xeroderma Pigmentosum Service, St John's Institute of Dermatology Guy's and St Thomas' Foundation Trust, London, UK
| |
Collapse
|
35
|
Zhang L, Liu B. Targeting Autophagy with Small-Molecule Modulators in Immune-Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1209:181-203. [PMID: 31728871 DOI: 10.1007/978-981-15-0606-2_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy, a highly conserved and multistep lysosomal degradation process, plays a pivotal role in maintaining cellular and physiological homeostasis. Of note, autophagy controls intracellular homeostasis and cell responses to stresses by regulating the self-renewal, maturation, and survival of immune cells. And dysregulation of autophagy in immune cells may contribute to the inflammatory disorders and defect in immune responses against invasive pathogens. Accumulating evidence have indicated that dysregulated autophagy participates in the pathology of immune-related diseases. Therefore, targeting autophagy might represent a promising therapeutic strategy for treatment of immune-related diseases. In this chapter, we focus on discussing the link between autophagy and pathogenesis of immune-related diseases, as well as the dysregulation of autophagy-related signaling pathways, in different diseases. Moreover, we highlight the therapeutic potential of currently used small-molecule modulators of autophagy for treatment of immune-related diseases and illustrate the mechanisms of these small-molecule modulators.
Collapse
Affiliation(s)
- Lan Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
36
|
Qin C, Liu Q, Hu ZW, Zhou LQ, Shang K, Bosco DB, Wu LJ, Tian DS, Wang W. Microglial TLR4-dependent autophagy induces ischemic white matter damage via STAT1/6 pathway. Theranostics 2018; 8:5434-5451. [PMID: 30555556 PMCID: PMC6276098 DOI: 10.7150/thno.27882] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/03/2018] [Indexed: 12/28/2022] Open
Abstract
Rationale: Ischemic white matter damage frequently results in myelin loss, accompanied with microglial activation. We previously found that directing microglia towards an anti-inflammatory phenotype provided a beneficial microenvironment and helped maintain white matter integrity during chronic cerebral hypoperfusion. However, the molecular mechanisms underlying microglial polarization remain elusive. Methods: Hypoperfusion induced white matter damage mice model and lipopolysaccharide (LPS) induced primary cultured microglia were established. Autophagy activation in microglia was detected both in vivo and in vitro by immunofluorescence, Western blot and electron microscopy. Autophagy inhibitors/agonist were administrated to investigate the role of autophagic process in modulating microglial phenotypes. Quantitative real time-polymerase chain reaction and Western blot were carried out to investigate the possible pathway. Results: We identified rapid accumulation of autophagosomes in primary cultured microglia exposed to LPS and within activated microglia during white matter ischemic damage. Autophagy inhibitors switched microglial function from pro-inflammatory to anti-inflammatory phenotype. Furthermore, we found TLR4, one of the major receptors binding LPS, was most highly expressed on microglia in corpus callosum during white matter ischemic damage, and TLR4 deficiency could mimic the phenomenon in microglial functional transformation, and exhibit a protective activity in chronic cerebral hypoperfusion. Whereas, the anti-inflammatory phenotype of microglia in TLR4 deficiency group was largely abolished by the activation of autophagic process. Finally, our transcriptional analysis confirmed that the up-regulation of STAT1 and down-regulation of STAT6 in microglia exposure to LPS could be reversed by autophagy inhibition. Conclusion: These results indicated that TLR4-dependent autophagy regulates microglial polarization and induces ischemic white matter damage via STAT1/6 pathway.
Collapse
|
37
|
He M, Shi X, Yang M, Yang T, Li T, Chen J. Mesenchymal stem cells-derived IL-6 activates AMPK/mTOR signaling to inhibit the proliferation of reactive astrocytes induced by hypoxic-ischemic brain damage. Exp Neurol 2018; 311:15-32. [PMID: 30213506 DOI: 10.1016/j.expneurol.2018.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/10/2018] [Accepted: 09/07/2018] [Indexed: 01/08/2023]
Abstract
Mesenchymal stem cells (MSCs) treatment is an effective strategy for the functional repair of central nervous system (CNS) insults through the production of bioactive molecules. We have previously demonstrated that the interleukin-6 (IL-6) secreted by MSCs plays an anti-apoptotic role in injured astrocytes and partly promotes functional recovery in neonatal rats with hypoxic-ischemic brain damage (HIBD). However, the mechanisms of IL-6 underlying the proliferation of injured astrocytes have not been fully elucidated. In this study, we investigated the therapeutic effects of MSCs on astrocyte proliferation in neonatal rats subjected to HIBD. A HIBD model was established in Sprague Dawley (SD) rats, and MSCs were administered by intracerebroventricular injection 5 days after HIBD. Rat primary astrocytes were cultured, subjected to oxygen glucose deprivation (OGD) injury and then immediately co-cultured with MSCs in vitro. Immunofluorescence staining, Cell Counting Kit (CCK)-8, flow cytometry, Ca2+ imaging, enzyme-linked immunosorbent assay (ELISA), western blotting, and co-immunoprecipitation (Co-IP) were performed. We found that MSCs transplantation not only promoted the recovery of learning and memory function in HIBD rats but also significantly reduced the number of Ki67+/glial fibrillary acidic protein (GFAP)+ cells in the hippocampi 7-14 days after HIBD. In addition to increasing IL-6 expression in both the hippocampi of HIBD rats and astrocyte culture medium, MSCs treatment in vitro significantly increased the expression levels of glycoprotein (gp) 130 and phosphorylated AMP-activated protein kinase α (p-AMPKα) and decreased the expression levels of p-mammalian target of rapamycin (mTOR) and its downstream targets. Furthermore, MSCs treatment induced a protein-protein interaction between gp130 and p-AMPKα. Suppression of IL-6 expression in MSCs reversed the above regulatory functions of MSCs in hippocampal astrocytes. The utilization of rapamycin further confirmed that mTOR participated in the proliferation of reactive astrocytes. These findings suggest that endogenous IL-6 produced by MSCs in the HIBD microenvironment provides therapeutic advantages by activating AMPK/mTOR signaling, thus reducing the proliferation of reactive astrocytes.
Collapse
Affiliation(s)
- Mulan He
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China; Chongqing Stem Cell Therapy Engineering Technical Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xia Shi
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China; Chongqing Stem Cell Therapy Engineering Technical Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Miao Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China; Chongqing Stem Cell Therapy Engineering Technical Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China; Chongqing Stem Cell Therapy Engineering Technical Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| |
Collapse
|
38
|
Li H, Gong M, Zhao M, Wang X, Cheng W, Xia Y. LncRNAs KB-1836B5, LINC00566 and FAM27L are associated with the survival time of patients with ovarian cancer. Oncol Lett 2018; 16:3735-3745. [PMID: 30127984 PMCID: PMC6096172 DOI: 10.3892/ol.2018.9143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/09/2018] [Indexed: 12/23/2022] Open
Abstract
Ovarian cancer (OvCa) is the most common gynecological malignancy type in the United States in 2014. Functions of long non-coding RNAs (lncRNAs) in OvCa have attracted increasing attention from researchers. The present study aimed to identify an lncRNA-based signature for survival prediction in patients with OvCa. On the basis of lncRNA expression profiles from The Cancer Genome Atlas data portal, differentially expressed lncRNAs (DELs) were selected from patients with good prognosis and poor prognosis in the training set, from which the prognostic lncRNAs were identified using univariate and multivariate Cox regression analyses and used to construct a risk scoring system. The prognostic power of this lncRNA signature was tested in the training set and validated in validation dataset and entire dataset. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the genes significantly associated with ≥1 prognostic lncRNA, and a total of 112 DELs were identified. LncRNAs KB-1836B5, long intergenic non-protein coding RNA 566 (LINC00566) and family with sequence similarity E5 (FAM27L) were determined to be prognostic lncRNAs. A three-lncRNAs signature-based risk scoring system was developed, which classified the patients from the training set into high-risk and low-risk groups with significantly different overall survival time. Risk stratification capability of the three-lncRNAs signature was validated in the validation and entire set. Multivariate Cox regression and data stratification analyses determined that the three-lncRNAs signature was independent of other clinical variables. GO and KEGG pathway enrichment analyses determined that the three prognostic lncRNAs may be involved in a number of metabolic processes and signaling pathways, including the mechanistic target of rapamycin signaling pathway, ubiquitin-mediated proteolysis, and complement and coagulation cascades pathways. In conclusion, the results of the present study demonstrated that the three-lncRNAs signature may be an independent biomarker for predicting prognosis in patients with OvCa.
Collapse
Affiliation(s)
- Huijian Li
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Department of Gynecology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Mi Gong
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Min Zhao
- Department of Gynecology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
39
|
Camara-Lemarroy CR, Metz L, Smith EE, Dunn JF, Yong VW. Expanding the Potential Therapeutic Options for Remote Ischemic Preconditioning: Use in Multiple Sclerosis. Front Neurol 2018; 9:475. [PMID: 29971043 PMCID: PMC6018107 DOI: 10.3389/fneur.2018.00475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Carlos R Camara-Lemarroy
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,UANL School of Medicine and University Hospital, Monterrey, Mexico
| | - Luanne Metz
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Eric E Smith
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff F Dunn
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
40
|
Cho C, Michailidis V, Martin LJ. Revealing brain mechanisms of mTOR-mediated translational regulation: Implications for chronic pain. NEUROBIOLOGY OF PAIN 2018; 4:27-34. [PMID: 31194026 PMCID: PMC6550104 DOI: 10.1016/j.ynpai.2018.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/27/2022]
Abstract
mTOR is a major regulator of protein translation. mTOR serves an important role in neural plasticity. mTOR signalling in the brain as a pathology for neurological disorder is known. mTOR signalling in the brain as a chronic pain mechanism is understudied.
In the spinal cord, altered protein transcription and translation have received a lot of recent attention for their role in neural plasticity, a major mechanism leading to the development of chronic pain. However, changes in brain plasticity are also associated with the maintenance of pain symptoms, but these cellular mechanisms remain less clear. The mechanistic/mammalian target of rapamycin (mTOR) is a master regulator of protein synthesis, and controls several neuronal functions, including neural plasticity. While aberrant changes in mTOR signaling are associated with sensitization of the pain pathway (sensory neurons and spinal cord), there are various nervous system diseases that have pain as a comorbidity and altered mTOR activity in the brain. Here, we provide a brief review of mTOR changes in the brain that are associated with some neurological disorders and focus on how these changes may be relevant to the pain of the underlying condition and chronic pain itself.
Collapse
Affiliation(s)
- Chulmin Cho
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Vassilia Michailidis
- Deptartment of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Loren J. Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Deptartment of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Corresponding author at: Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
41
|
Rapamycin Ameliorates Experimental Autoimmune Encephalomyelitis by Suppressing the mTOR-STAT3 Pathway. Neurochem Res 2017; 42:2831-2840. [DOI: 10.1007/s11064-017-2296-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/15/2016] [Indexed: 10/19/2022]
|
42
|
Shao BZ, Ke P, Xu ZQ, Wei W, Cheng MH, Han BZ, Chen XW, Su DF, Liu C. Autophagy Plays an Important Role in Anti-inflammatory Mechanisms Stimulated by Alpha7 Nicotinic Acetylcholine Receptor. Front Immunol 2017; 8:553. [PMID: 28559895 PMCID: PMC5432615 DOI: 10.3389/fimmu.2017.00553] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
Alpha7 nicotinic acetylcholine receptor (α7nAChR) has been reported to alleviate neuroinflammation. Here, we aimed to determine the role of autophagy in α7nAChR-mediated inhibition of neuroinflammation and its underlying mechanism. Experimental autoimmune encephalomyelitis (EAE) mice and lipopolysaccharide-stimulated BV2 microglia were used as in vivo and in vitro models of neuroinflammation, respectively. The severity of EAE was evaluated with neurological scoring. Autophagy-related proteins (Beclin 1, LC3-II/I, p62/SQSTM1) were detected by immunoblot. Autophagosomes were observed using transmission electron microscopy and tandem fluorescent mRFP-GFP-LC3 plasmid was applied to test autophagy flux. The mRNA levels of interleukin-6 (IL-6), IL-1β, IL-18, and tumor necrosis factor-α (TNF-α) were detected by real-time PCR. We used 3-methyladenine (3-MA) and autophagy-related gene 5 small interfering RNA (Atg5 siRNA) to block autophagy in vivo and in vitro, respectively. Activating α7nAChR with PNU282987 ameliorates EAE severity and spinal inflammatory infiltration in EAE mice. PNU282987 treatment also enhanced monocyte/microglia autophagy (Beclin 1, LC3-II/I ratio, p62/SQSTM1, colocalization of CD45- or CD68-positive cells with LC3) both in spinal cord and spleen from EAE mice. The beneficial effects of PNU282987 on EAE mice were partly abolished by 3-MA, an autophagy inhibitor. In vitro, PNU282987 treatment increased autophagy and promoted autophagy flux. Blockade of autophagy by Atg5 siRNA or bafilomycin A1 attenuated the inhibitory effect of PNU282987 on IL-6, IL-1β, IL-18, and TNF-α mRNA. Our results demonstrate for the first time that activating α7nAChR enhances monocyte/microglia autophagy, which suppresses neuroinflammation and thus plays an alleviative role in EAE.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Ping Ke
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Zhe-Qi Xu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Wei Wei
- Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ming-He Cheng
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Bin-Ze Han
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Xiong-Wen Chen
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ding-Feng Su
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Chong Liu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| |
Collapse
|
43
|
Plaza-Zabala A, Sierra-Torre V, Sierra A. Autophagy and Microglia: Novel Partners in Neurodegeneration and Aging. Int J Mol Sci 2017; 18:E598. [PMID: 28282924 PMCID: PMC5372614 DOI: 10.3390/ijms18030598] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/28/2017] [Accepted: 03/05/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is emerging as a core regulator of Central Nervous System (CNS) aging and neurodegeneration. In the brain, it has mostly been studied in neurons, where the delivery of toxic molecules and organelles to the lysosome by autophagy is crucial for neuronal health and survival. However, we propose that the (dys)regulation of autophagy in microglia also affects innate immune functions such as phagocytosis and inflammation, which in turn contribute to the pathophysiology of aging and neurodegenerative diseases. Herein, we first describe the basic concepts of autophagy and its regulation, discuss key aspects for its accurate monitoring at the experimental level, and summarize the evidence linking autophagy impairment to CNS senescence and disease. We focus on acute, chronic, and autoimmunity-mediated neurodegeneration, including ischemia/stroke, Alzheimer's, Parkinson's, and Huntington's diseases, and multiple sclerosis. Next, we describe the actual and potential impact of autophagy on microglial phagocytic and inflammatory function. Thus, we provide evidence of how autophagy may affect microglial phagocytosis of apoptotic cells, amyloid-β, synaptic material, and myelin debris, and regulate the progression of age-associated neurodegenerative diseases. We also discuss data linking autophagy to the regulation of the microglial inflammatory phenotype, which is known to contribute to age-related brain dysfunction. Overall, we update the current knowledge of autophagy and microglia, and highlight as yet unexplored mechanisms whereby autophagy in microglia may contribute to CNS disease and senescence.
Collapse
Affiliation(s)
| | | | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, 48170 Zamudio, Spain.
- Department of Neurosciences, University of the Basque Country EHU/UPV, 48940 Leioa, Spain.
- Ikerbasque Foundation, 48013 Bilbao, Spain.
| |
Collapse
|
44
|
Saliba SW, Vieira ELM, Santos RPDM, Candelario-Jalil E, Fiebich BL, Vieira LB, Teixeira AL, de Oliveira ACP. Neuroprotective effects of intrastriatal injection of rapamycin in a mouse model of excitotoxicity induced by quinolinic acid. J Neuroinflammation 2017; 14:25. [PMID: 28143498 PMCID: PMC5282622 DOI: 10.1186/s12974-017-0793-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 01/06/2017] [Indexed: 12/19/2022] Open
Abstract
Background The mammalian target of rapamycin (mTOR) is a kinase involved in a variety of physiological and pathological functions. However, the exact role of mTOR in excitotoxicity is poorly understood. Here, we investigated the effects of mTOR inhibition with rapamycin against neurodegeneration, and motor impairment, as well as inflammatory profile caused by an excitotoxic stimulus. Methods A single and unilateral striatal injection of quinolinic acid (QA) was used to induce excitotoxicity in mice. Rapamycin (250 nL of 0.2, 2, or 20 μM; intrastriatal route) was administered 15 min before QA injection. Forty-eight hours after QA administration, rotarod test was performed to evaluate motor coordination and balance. Fluoro-Jade C, Iba-1, and GFAP staining were used to evaluate neuronal cell death, microglia morphology, and astrocytes density, respectively, at this time point. Levels of cytokines and neurotrophic factors were measured by ELISA and Cytometric Bead Array 8 h after QA injection. Striatal synaptosomes were used to evaluate the release of glutamate. Results We first demonstrated that rapamycin prevented the motor impairment induced by QA. Moreover, mTOR inhibition also reduced the neurodegeneration and the production of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α induced by excitotoxic stimulus. The lowest dose of rapamycin also increased the production of IL-10 and prevented the reduction of astrocyte density induced by QA. By using an in vitro approach, we demonstrated that rapamycin differently alters the release of glutamate from striatal synaptosomes induced by QA, reducing or enhancing the release of this neurotransmitter at low or high concentrations, respectively. Conclusion Taken together, these data demonstrated a protective effect of rapamycin against an excitotoxic stimulus. Therefore, this study provides new evidence of the detrimental role of mTOR in neurodegeneration, which might represent an important target for the treatment of neurodegenerative diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0793-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Soraya Wilke Saliba
- Department of Pharmacology, Universidade Federal de Minas Gerais, Avenida Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil.,Department of Psychiatry, University of Freiburg Medical School, Hauptstr. 5, 79104, Freiburg, Germany
| | | | - Rebeca Priscila de Melo Santos
- Department of Pharmacology, Universidade Federal de Minas Gerais, Avenida Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | | | - Bernd L Fiebich
- Department of Psychiatry, University of Freiburg Medical School, Hauptstr. 5, 79104, Freiburg, Germany.
| | - Luciene Bruno Vieira
- Department of Pharmacology, Universidade Federal de Minas Gerais, Avenida Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Antonio Lucio Teixeira
- Department of Internal Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
45
|
Fiander MD, Stifani N, Nichols M, Akay T, Robertson GS. Kinematic gait parameters are highly sensitive measures of motor deficits and spinal cord injury in mice subjected to experimental autoimmune encephalomyelitis. Behav Brain Res 2017; 317:95-108. [DOI: 10.1016/j.bbr.2016.09.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/13/2022]
|
46
|
Lana D, Di Russo J, Mello T, Wenk GL, Giovannini MG. Rapamycin inhibits mTOR/p70S6K activation in CA3 region of the hippocampus of the rat and impairs long term memory. Neurobiol Learn Mem 2016; 137:15-26. [PMID: 27838442 DOI: 10.1016/j.nlm.2016.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/06/2016] [Accepted: 11/08/2016] [Indexed: 01/09/2023]
Abstract
The present study was aimed at establishing whether the mTOR pathway and its downstream effector p70S6K in CA3 pyramidal neurons are under the modulation of the cholinergic input to trigger the formation of long term memories, similar to what we demonstrated in CA1 hippocampus. We performed in vivo behavioral experiments using the step down inhibitory avoidance test in adult Wistar rats to evaluate memory formation under different conditions. We examined the effects of rapamycin, an inhibitor of mTORC1 formation, scopolamine, a muscarinic receptor antagonist or mecamylamine, a nicotinic receptor antagonist, on short and long term memory formation and on the functionality of the mTOR pathway. Acquisition was conducted 30min after i.c.v. injection of rapamycin. Recall testing was performed 1h, 4h or 24h after acquisition. We found that (1) mTOR and p70S6K activation in CA3 pyramidal neurons were involved in long term memory formation; (2) rapamycin significantly inhibited mTOR and of p70S6K activation at 4h, and long term memory impairment 24h after acquisition; (3) scopolamine impaired short but not long term memory, with an early increase of mTOR/p70S6K activation at 1h followed by stabilization at longer times; (4) mecamylamine and scopolamine co-administration impaired short term memory at 1h and 4h and reduced the scopolamine-induced increase of mTOR/p70S6K activation at 1h and 4h; (5) mecamylamine and scopolamine treatment did not impair long term memory formation; (6) unexpectedly, rapamycin increased mTORC2 activation in microglial cells. Our results demonstrate that in CA3 pyramidal neurons the mTOR/p70S6K pathway is under the modulation of the cholinergic system and is involved in long-term memory encoding, and are consistent with the hypothesis that the CA3 region of the hippocampus is involved in memory mechanisms based on rapid, one-trial object-place learning and recall. Furthermore, our results are in accordance with previous reports that selective molecular mechanisms underlie either short term memory, long term memory, or both. Furthermore, our discovery that administration of rapamycin increased the activation of mTORC2 in microglial cells supports a reappraisal of the beneficial/adverse effects of rapamycin administration.
Collapse
Affiliation(s)
- D Lana
- Department of Health Sciences, Section of Pharmacology and Clinical Oncology, University of Florence, Florence, Italy
| | - J Di Russo
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - T Mello
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - G L Wenk
- Department of Psychology, The Ohio State University, OH, USA
| | - M G Giovannini
- Department of Health Sciences, Section of Pharmacology and Clinical Oncology, University of Florence, Florence, Italy.
| |
Collapse
|
47
|
Talaei F. Pathophysiological Concepts in Multiple Sclerosis and the Therapeutic Effects of Hydrogen Sulfide. Basic Clin Neurosci 2016; 7:121-36. [PMID: 27303607 PMCID: PMC4892317 DOI: 10.15412/j.bcn.03070206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction: Multiple sclerosis (MS) is generally known as a manageable but not yet curable autoimmune disease affecting central nervous system. A potential therapeutic approach should possess several properties: Prevent immune system from damaging the brain and spinal cord, promote differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes to produce myelin, prevent the formation of fibronectin aggregates by astrocytes to inhibit scar formation, and enhance function of healthy endothelial cells (ECs). Methods: To determine if an increase in sulfur contents through H2S, a potent antioxidant known to induce protective autophagy in cells, could provide the above desired outcomes, peripheral blood mononuclear cells (PBMNCs), OCPs, astrocytes, and ECs were treated with NaHS (50 μM) in vitro. Results: Transmigration assay using EC monolayer showed that serotonin increased migration of PBMNC while pretreatment of EC with NaHS inhibited the migration induced by serotonin treatment. NaHS upregulated proteins involved in immune system response and downregulated PBMNCs- and EC-related adhesion molecules (LFA-1 and VCAM-1). Furthermore, it had a cell expansion inducing effect, altering EC morphology. The effects of NaHS on OPCs and astrocytes were studied compared to mTOR inhibitor rapamycin. In NaHS treated astrocytes the induced fibronectin production was partially inhibited while rapamycin almost fully inhibited fibronectin production. NaHS slowed but did not inhibit the differentiation of OCPs or the production of myelin compared to rapamycin. Conclusion: The in vitro results point to the potential therapeutic application of hydrogen sulfide releasing molecules or health-promoting sulfur compounds in MS.
Collapse
Affiliation(s)
- Fatemeh Talaei
- Novel Drug Delivery Systems Lab, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Citraro R, Leo A, Constanti A, Russo E, De Sarro G. mTOR pathway inhibition as a new therapeutic strategy in epilepsy and epileptogenesis. Pharmacol Res 2016; 107:333-343. [DOI: 10.1016/j.phrs.2016.03.039] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 12/24/2022]
|
49
|
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2015; 82:1245-1266. [PMID: 26469771 DOI: 10.1111/bcp.12804] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 10/11/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders are significantly increasing in incidence as the age of the global population continues to climb with improved life expectancy. At present, more than 30 million individuals throughout the world are impacted by acute and chronic neurodegenerative disorders with limited treatment strategies. The mechanistic target of rapamycin (mTOR), also known as the mammalian target of rapamycin, is a 289 kDa serine/threonine protein kinase that offers exciting possibilities for novel treatment strategies for a host of neurodegenerative diseases that include Alzheimer's disease, Parkinson's disease, Huntington's disease, epilepsy, stroke and trauma. mTOR governs the programmed cell death pathways of apoptosis and autophagy that can determine neuronal stem cell development, precursor cell differentiation, cell senescence, cell survival and ultimate cell fate. Coupled to the cellular biology of mTOR are a number of considerations for the development of novel treatments involving the fine control of mTOR signalling, tumourigenesis, complexity of the apoptosis and autophagy relationship, functional outcome in the nervous system, and the intimately linked pathways of growth factors, phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), AMP activated protein kinase (AMPK), silent mating type information regulation two homologue one (Saccharomyces cerevisiae) (SIRT1) and others. Effective clinical translation of the cellular signalling mechanisms of mTOR offers provocative avenues for new drug development in the nervous system tempered only by the need to elucidate further the intricacies of the mTOR pathway.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey, 07101, USA.
| |
Collapse
|
50
|
Song Q, Xie D, Pan S, Xu W. Rapamycin protects neurons from brain contusion‑induced inflammatory reaction via modulation of microglial activation. Mol Med Rep 2015; 12:7203-10. [PMID: 26458361 PMCID: PMC4626160 DOI: 10.3892/mmr.2015.4407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/02/2015] [Indexed: 12/17/2022] Open
Abstract
The inflammatory reaction is important in secondary injury following traumatic brain injury (TBI). Rapamycin has been demonstrated as a neuroprotective agent in a mouse model of TBI, however, there is a lack of data regarding the effects of rapamycin on the inflammatory reaction following TBI. Therefore, the present study was designed to assess the effects of treatment with rapamycin on inflammatory reactions and examine the possible involvement of microglial activation following TBI. Male imprinting control region mice were randomly divided into four groups: Sham group (n=23), TBI group (n=23), TBI + dimethyl sulfoxide (DMSO) group (n=31) and TBI + rapamycin group (n=31). Rapamycin was dissolved in DMSO (50 mg/ml) and injected 30 min after TBI (2 mg/Kg; intraperitoneally). A weight-drop model of TBI was induced, and the brain tissues were harvested 24 h after TBI. The findings indicated that the administration of rapamycin following TBI was associated with decreased levels of activated microglia and neuron degeneration at the peri-injury site, reduced levels of proinflammatory cytokines and increased neurobehavioral function, possibly mediated by inactivation of the mammalian target of rapamycin pathway. The results of the present study offer novel insight into the mechanisms responsible for the anti-neuroinflammatory effects of rapamycin, possibly involving the modulation of microglial activation.
Collapse
Affiliation(s)
- Qi Song
- Department of Healthcare, Nanjing General Hospital of Nanjing Command, Nanjing, Jiangsu 210002, P.R. China
| | - Dujiang Xie
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Shiyong Pan
- Department of Healthcare, Nanjing General Hospital of Nanjing Command, Nanjing, Jiangsu 210002, P.R. China
| | - Weijun Xu
- Department of Healthcare, Nanjing General Hospital of Nanjing Command, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|