1
|
Chapman TW, Kamen Y, Piedra ET, Hill RA. Oligodendrocyte Maturation Alters the Cell Death Mechanisms That Cause Demyelination. J Neurosci 2024; 44:e1794232024. [PMID: 38395617 PMCID: PMC10977033 DOI: 10.1523/jneurosci.1794-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Myelinating oligodendrocytes die in human disease and early in aging. Despite this, the mechanisms that underly oligodendrocyte death are not resolved and it is also not clear whether these mechanisms change as oligodendrocyte lineage cells are undergoing differentiation and maturation. Here, we used a combination of intravital imaging, single-cell ablation, and cuprizone-mediated demyelination, in both female and male mice, to discover that oligodendrocyte maturation dictates the dynamics and mechanisms of cell death. After single-cell phototoxic damage, oligodendrocyte precursor cells underwent programmed cell death within hours, differentiating oligodendrocytes died over several days, while mature oligodendrocytes took weeks to die. Importantly cells at each maturation stage all eventually died but did so with drastically different temporal dynamics and morphological features. Consistent with this, cuprizone treatment initiated a caspase-3-dependent form of rapid cell death in differentiating oligodendrocytes, while mature oligodendrocytes never activated this executioner caspase. Instead, mature oligodendrocytes exhibited delayed cell death which was marked by DNA damage and disruption in poly-ADP-ribose subcellular localization. Thus, oligodendrocyte maturation plays a key role in determining the mechanism of death a cell undergoes in response to the same insult. This means that oligodendrocyte maturation is important to consider when designing strategies for preventing cell death and preserving myelin while also enhancing the survival of new oligodendrocytes in demyelinating conditions.
Collapse
Affiliation(s)
- Timothy W Chapman
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Yasmine Kamen
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Enrique T Piedra
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
2
|
Yilmaz EN, Albrecht S, Groll K, Thomas C, Wallhorn L, Herold M, Hucke S, Klotz L, Kuhlmann T. Influx of T cells into corpus callosum increases axonal injury, but does not change the course of remyelination in toxic demyelination. Glia 2023; 71:991-1001. [PMID: 36511515 DOI: 10.1002/glia.24319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is a focal inflammatory and demyelinating disease. The inflammatory infiltrates consist of macrophages/microglia, T and B cells. Remyelination (RM) is an endogenous repair process which frequently fails in MS patients. In earlier studies, T cells either promoted or impaired RM. Here, we used the combined cuprizone/MOG-EAE model to further dissect the functional role of T cells for RM. The combination of MOG immunization with cuprizone feeding targeted T cells to the corpus callosum and increased the extent of axonal injury. Global gene expression analyses demonstrated significant changes in the inflammatory environment; however, additional MOG immunization did not alter the course of RM. Our results suggest that the inflammatory environment in the combined model affects axons and oligodendrocytes differently and that oligodendroglial lineage cells might be less susceptible to T cell mediated injury.
Collapse
Affiliation(s)
- Elif Nur Yilmaz
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Stefanie Albrecht
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Katharina Groll
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Lutz Wallhorn
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Martin Herold
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Stephanie Hucke
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| |
Collapse
|
3
|
Hamid OIA, Domouky AM, El-Fakharany YM. Molecular evidence of the amelioration of toluene induced encephalopathy by human breast milk mesenchymal stem cells. Sci Rep 2022; 12:9194. [PMID: 35654991 PMCID: PMC9163168 DOI: 10.1038/s41598-022-13173-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
Toluene was widely used volatile organic compound that accumulates in tissues with high lipid content. Stem cells have been proposed as an increasingly attractive approach for repair of damaged nervous system, we aimed to evaluate the ability of breast milk mesenchymal stem cells (MSc) to ameliorate toluene-induced encephalopathy. Sixty adult male albino rats were assigned to 3 groups, control, toluene, and toluene/breast milk-MSc. Neurological assessment was evaluated as well as serum levels of glial fibrillary acidic protein (GFAP), tumor necrosis factor-alpha (TNF-α), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), tissue dopamine and oxidative markers. Gene expression of peroxisome Proliferator-Activated Receptor-Gamma (PPAR-ɣ), nuclear factor-kappaB (NF-kB), and interleukin-6 (IL-6) were evaluated. Moreover, histological and immunohistochemical investigation were done. Results revealed that toluene caused cerebral injury, as evidenced by a significant increase in serum GFAP, TNF-α, malondialdehyde (MDA) and nitric oxide (NO), a significant decrease in serum NGF, tissue dopamine and oxidative markers, besides, a non-significant change in VEGF. Toluene also caused changes in normal cerebral structure and cellular degeneration, including a significant decrease in the total number of neurons and thickness of frontal cortex. Meninges showing signs of inflammation with inflammatory cell infiltration and exudation, a significant decrease in MBP immunoreactivity, and increase in the percent of high motility group box protein-1 (HMGB1) positive cells. PPAR- ɣ, NF-kB, and IL-6 gene expression were all considerably elevated by toluene. These changes were greatly improved by breast milk MSc. Therefore, we conclude that breast milk MSc can attenuate toluene-induced encephalopathy.
Collapse
Affiliation(s)
- Omaima I Abdel Hamid
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Alsharquiah, 44519, Egypt
| | - Ayat M Domouky
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Alsharquiah, 44519, Egypt.
| | - Yara M El-Fakharany
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Alsharquiah, 44519, Egypt
| |
Collapse
|
4
|
Healy LM, Yaqubi M, Ludwin S, Antel JP. Species differences in immune-mediated CNS tissue injury and repair: A (neuro)inflammatory topic. Glia 2019; 68:811-829. [PMID: 31724770 DOI: 10.1002/glia.23746] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022]
Abstract
Cells of the adaptive and innate immune systems in the brain parenchyma and in the meningeal spaces contribute to physiologic functions and disease states in the central nervous system (CNS). Animal studies have demonstrated the involvement of immune constituents, along with major histocompatibility complex (MHC) molecules, in neural development and rare genetic disorders (e.g., colony stimulating factor 1 receptor [CSF1R] deficiency). Genome wide association studies suggest a comparable role of the immune system in humans. Although the CNS can be the target of primary autoimmune disorders, no current experimental model captures all of the features of the most common human disorder placed in this category, multiple sclerosis (MS). Such features include spontaneous onset, environmental contributions, and a recurrent/progressive disease course in a genetically predisposed host. Numerous therapeutic interventions related to antigen and cytokine specific therapies have demonstrated effectiveness in experimental autoimmune encephalomyelitis (EAE), the animal model used to define principles underlying immune-mediated mechanisms in MS. Despite the similarities in the two diseases, most treatments used to ameliorate EAE have failed to translate to the human disease. As directly demonstrated in animal models and implicated by correlative studies in humans, adaptive and innate immune constituents within the systemic compartment and resident in the CNS contribute to the disease course of neurodegenerative and neurobehavioral disorders. The expanding knowledge of the molecular properties of glial cells provides increasing insights into species related variables. These variables affect glial bidirectional interactions with the immune system as well as their own production of "immune molecules" that mediate tissue injury and repair.
Collapse
Affiliation(s)
- Luke M Healy
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Samuel Ludwin
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
5
|
Oligodendrocyte degeneration and concomitant microglia activation directs peripheral immune cells into the forebrain. Neurochem Int 2019; 126:139-153. [PMID: 30867127 DOI: 10.1016/j.neuint.2019.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/21/2019] [Accepted: 03/06/2019] [Indexed: 11/22/2022]
Abstract
Brain-intrinsic degenerative cascades are a proposed factor driving inflammatory lesion formation in multiple sclerosis (MS) patients. We recently showed that encephalitogenic lymphocytes are recruited to the sites of active demyelination induced by cuprizone. Here, we investigated whether cuprizone-induced oligodendrocyte and myelin pathology is sufficient to trigger peripheral immune cell recruitment into the forebrain. We show that early cuprizone-induced white matter lesions display a striking similarity to early MS lesions, i.e., oligodendrocyte degeneration, microglia activation and absence of severe lymphocyte infiltration. Such early cuprizone lesions are sufficient to trigger peripheral immune cell recruitment secondary to subsequent EAE (experimental autoimmune encephalomyelitis) induction. The lesions are characterized by discontinuation of the perivascular glia limitans, focal axonal damage, and perivascular astrocyte pathology. Time course studies showed that the severity of cuprizone-induced lesions positively correlates with the extent of peripheral immune cell recruitment. Furthermore, results of genome-wide array analyses suggest that moesin is integral for early microglia activation in cuprizone and MS lesions. This study underpins the significance of brain-intrinsic degenerative cascades for immune cell recruitment and, in consequence, MS lesion formation.
Collapse
|
6
|
Albrecht S, Korr S, Nowack L, Narayanan V, Starost L, Stortz F, Araúzo‐Bravo MJ, Meuth SG, Kuhlmann T, Hundehege P. The K
2P
‐channel TASK1 affects Oligodendroglial differentiation but not myelin restoration. Glia 2019; 67:870-883. [DOI: 10.1002/glia.23577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Stefanie Albrecht
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
| | - Sabrina Korr
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
- Cells in Motion, Cluster of Excellence Münster Germany
| | - Luise Nowack
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
| | - Venu Narayanan
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
| | - Laura Starost
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
| | - Franziska Stortz
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
| | - Marcos J. Araúzo‐Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute San Sebastian Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| | - Sven G. Meuth
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
- Cells in Motion, Cluster of Excellence Münster Germany
| | - Tanja Kuhlmann
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
| | - Petra Hundehege
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
- Cells in Motion, Cluster of Excellence Münster Germany
| |
Collapse
|
7
|
Kieser TJ, Santschi N, Nowack L, Kehr G, Kuhlmann T, Albrecht S, Gilmour R. Single Site Fluorination of the GM 4 Ganglioside Epitope Upregulates Oligodendrocyte Differentiation. ACS Chem Neurosci 2018; 9:1159-1165. [PMID: 29361218 DOI: 10.1021/acschemneuro.8b00002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Relapsing multiple sclerosis is synonymous with demyelination, and thus, suppressing and or reversing this process is of paramount clinical significance. While insulating myelin sheath has a large lipid composition (ca. 70-80%), it also has a characteristically large composition of the sialosylgalactosylceramide gangliosde GM4 present. In this study, the effect of the carbohydrate epitope on oligodendrocyte differentiation is determined. While the native epitope had no impact on oligodendroglial cell viability, a single site OH → F substitution is the structural basis of a significant increase in ATP production that is optimal at 50 μg/mL. From a translational perspective, this subtle change increases the amount of MBP+ oligodendrocytes compared to the control studies and may open up novel therapeutic remyelination strategies.
Collapse
Affiliation(s)
- Tobias J. Kieser
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
- Excellence Cluster EXC 1003 “Cells in Motion”, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Nico Santschi
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
- Excellence Cluster EXC 1003 “Cells in Motion”, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Luise Nowack
- Institute for Neuropathology, University Hospital Münster, Pottkamp 2, 48149 Münster, Germany
| | - Gerald Kehr
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Tanja Kuhlmann
- Institute for Neuropathology, University Hospital Münster, Pottkamp 2, 48149 Münster, Germany
| | - Stefanie Albrecht
- Institute for Neuropathology, University Hospital Münster, Pottkamp 2, 48149 Münster, Germany
| | - Ryan Gilmour
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
- Excellence Cluster EXC 1003 “Cells in Motion”, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
8
|
Kim S, Bielawski J, Yang H, Kong Y, Zhou B, Li J. Functional antagonism of sphingosine-1-phosphate receptor 1 prevents cuprizone-induced demyelination. Glia 2017; 66:654-669. [PMID: 29193293 DOI: 10.1002/glia.23272] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/07/2017] [Accepted: 11/15/2017] [Indexed: 11/08/2022]
Abstract
Recent evidence suggests that the oral drug Fingolimod (FTY720) for relapsing-remitting multiple sclerosis (MS) may act directly on the central nervous system (CNS) and modulate disease pathogenesis and progression in experimental models of MS. However, the specific subtype of sphingosine-1-phosphate (S1P) receptors that mediates the effect of FTY720 on the CNS cells has not been fully elucidated. Here, we report that S1P receptor 1 (S1PR1) is elevated in reactive astrocytes in an autoimmunity independent mouse model of MS and that selective S1PR1 modulation is sufficient to ameliorate the loss of oligodendrocytes and demyelination. The non-selective S1PR modulator, FTY720, or a short-lived S1PR1-specific modulator, CYM5442, was administered daily to mice while on cuprizone diet. Both FTY720- and CYM5422-treated mice displayed a significant reduction in oligodendrocyte apoptosis and astrocyte and microglial activation in comparison to vehicle-treated groups, which was associated with decreased production of proinflammatory mediators and down-regulation of astrocytic S1PR1 protein. Interestingly, S1PR1 modulation during the early phase of cuprizone intoxication was required to suppress oligodendrocyte death and consequent demyelination as drug treatment from 10 days after the initiation of cuprizone feeding was no longer effective. CYM5442 treatment during the brief cuprizone exposure significantly prevented Il-1β, Il-6, Cxcl10, and Cxcl3 induction, resulting in suppression of subsequent reactive gliosis and demyelination. Our study identifies functional antagonism of S1PR1 as a major mechanism for the protective effect of FTY720 in the cuprizone model and suggests pathogenic contributions of astrocyte S1PR1 signaling in primary demyelination and its potential as a therapeutic target for CNS inflammation.
Collapse
Affiliation(s)
- SunJa Kim
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843
| | - Jacek Bielawski
- Lipidomics Center, Medical University of South Carolina, Charleston, South Carolina, 29425
| | - Hyunmin Yang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843
| | - Yu Kong
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843
| | - Beiyan Zhou
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, 77843
| | - Jianrong Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843.,Institute for Neuroscience, Texas A&M University, College Station, Texas, 77843
| |
Collapse
|
9
|
Ichikawa N, Alves M, Pfeiffer S, Langa E, Hernández-Santana YE, Suzuki H, Prehn JH, Engel T, Henshall DC. Deletion of the BH3-only protein Noxa alters electrographic seizures but does not protect against hippocampal damage after status epilepticus in mice. Cell Death Dis 2017; 8:e2556. [PMID: 28079889 PMCID: PMC5457684 DOI: 10.1038/cddis.2016.301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/19/2022]
Abstract
Several members of the Bcl-2 gene family are dysregulated in human temporal lobe epilepsy and animal studies show that genetic deletion of some of these proteins influence electrographic seizure responses to chemoconvulsants and associated brain damage. The BH3-only proteins form a subgroup comprising direct activators of Bax–Bak that are potently proapoptotic and a number of weaker proapoptotic BH3-only proteins that act as sensitizers by neutralization of antiapoptotic Bcl-2 family members. Noxa was originally characterized as a weaker proapoptotic, ‘sensitizer' BH3-only protein, although recent evidence suggests it too may be potently proapoptotic. Expression of Noxa is under p53 control, a known seizure-activated pathway, although Noxa has been linked to energetic stress and autophagy. Here we characterized the response of Noxa to prolonged seizures and the phenotype of mice lacking Noxa. Status epilepticus induced by intra-amygdala kainic acid caused a rapid increase in expression of noxa in the damaged CA3 subfield of the hippocampus but not undamaged CA1 region. In vivo upregulation of noxa was reduced by pifithrin-α, suggesting transcription may be partly p53-dependent. Mice lacking noxa developed less severe electrographic seizures during status epilepticus in the model but, surprisingly, displayed equivalent hippocampal damage to wild-type animals. The present findings indicate Noxa does not serve as a proapoptotic BH3-only protein during seizure-induced neuronal death in vivo. This study extends the comprehensive phenotyping of seizure and damage responses in mice lacking specific Bcl-2 gene family members and provides further evidence that these proteins may serve roles beyond control of cell death in the brain.
Collapse
Affiliation(s)
- Naoki Ichikawa
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.,Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Shona Pfeiffer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Elena Langa
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Yasmina E Hernández-Santana
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Jochen Hm Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| |
Collapse
|
10
|
Abe H, Saito F, Tanaka T, Mizukami S, Watanabe Y, Imatanaka N, Akahori Y, Yoshida T, Shibutani M. Global gene expression profiles in brain regions reflecting abnormal neuronal and glial functions targeting myelin sheaths after 28-day exposure to cuprizone in rats. Toxicol Appl Pharmacol 2016; 310:20-31. [DOI: 10.1016/j.taap.2016.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
|
11
|
Abe H, Saito F, Tanaka T, Mizukami S, Hasegawa-Baba Y, Imatanaka N, Akahori Y, Yoshida T, Shibutani M. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats. Toxicol Appl Pharmacol 2016; 290:10-20. [DOI: 10.1016/j.taap.2015.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
|
12
|
Lee DH, Steinacker P, Seubert S, Turnescu T, Melms A, Manzel A, Otto M, Linker RA. Role of glial 14-3-3 gamma protein in autoimmune demyelination. J Neuroinflammation 2015; 12:187. [PMID: 26438180 PMCID: PMC4595275 DOI: 10.1186/s12974-015-0381-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/18/2015] [Indexed: 02/06/2023] Open
Abstract
Background The family of 14-3-3 proteins plays an important role in the regulation of cell survival and death. Here, we investigate the role of the 14-3-3 gamma (14-3-3 γ) subunit for glial responses in autoimmune demyelination. Methods Expression of 14-3-3 γ in glial cell culture was investigated by reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemistry. 14-3-3 γ knockout mice were subjected to murine myelin oligodendrocyte-induced experimental autoimmune encephalomyelitis (MOG-EAE), an animal model mimicking inflammatory features and neurodegenerative aspects of multiple sclerosis (MS). Results Expression studies in cell culture confined expression of 14-3-3 γ to both, oligodendrocytes (OL) and astrocytes. RT-PCR analysis revealed an increased expression of 14-3-3 γ mRNA in the spinal cord during the late chronic phase of MOG-EAE. At that stage, EAE was more severe in 14-3-3 γ knockout mice as compared to age- and gender-matched controls. Histopathological analyses on day 56 post immunization (p.i.) revealed significantly enhanced myelin damage as well as OL injury and secondary, an increase in axonal injury and gliosis in 14-3-3 γ −/− mice. At the same time, deficiency in 14-3-3 γ protein did not influence the immune response. Further histological studies revealed an increased susceptibility towards apoptosis in 14-3-3 γ-deficient OL in the inflamed spinal cord. Conclusion These data argue for a pivotal role of 14-3-3 γ-mediated signalling pathways for OL protection in neuroinflammation. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0381-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- De-Hyung Lee
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054, Erlangen, Germany
| | - Petra Steinacker
- Department of Neurology, Universitäts- und Rehabilitationskliniken Ulm (RKU), Oberer Eselsberg 45, D-89081, Ulm, Germany
| | - Silvia Seubert
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054, Erlangen, Germany
| | - Tanja Turnescu
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054, Erlangen, Germany
| | - Arthur Melms
- Neurological Rehabilitation, Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054, Erlangen, Germany
| | - Arndt Manzel
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054, Erlangen, Germany
| | - Markus Otto
- Department of Neurology, Universitäts- und Rehabilitationskliniken Ulm (RKU), Oberer Eselsberg 45, D-89081, Ulm, Germany
| | - Ralf A Linker
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054, Erlangen, Germany.
| |
Collapse
|
13
|
Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P. Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 2015; 47:485-505. [PMID: 25445182 DOI: 10.1016/j.neubiorev.2014.10.004] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/18/2014] [Accepted: 10/01/2014] [Indexed: 01/30/2023]
Abstract
The cuprizone mouse model allows the investigation of the complex molecular mechanisms behind nonautoimmune-mediated demyelination and spontaneous remyelination. While it is generally accepted that oligodendrocytes are specifically vulnerable to cuprizone intoxication due to their high metabolic demands, a comprehensive overview of the etiology of cuprizone-induced pathology is still missing to date. In this review we extensively describe the physico-chemical mode of action of cuprizone and discuss the molecular and enzymatic mechanisms by which cuprizone induces metabolic stress, oligodendrocyte apoptosis, myelin degeneration and eventually axonal and neuronal pathology. In addition, we describe the dual effector function of the immune system which tightly controls demyelination by effective induction of oligodendrocyte apoptosis, but in contrast also paves the way for fast and efficient remyelination by the secretion of neurotrophic factors and the clearance of cellular and myelinic debris. Finally, we discuss the many clinical symptoms that can be observed following cuprizone treatment, and how these strengthened the cuprizone model as a useful tool to study human multiple sclerosis, schizophrenia and epilepsy.
Collapse
|
14
|
Coutts DJC, Harrison NL. Acetaldehyde, not ethanol, impairs myelin formation and viability in primary mouse oligodendrocytes. Alcohol Clin Exp Res 2015; 39:455-62. [PMID: 25703384 DOI: 10.1111/acer.12642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/24/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND Excessive ethanol (EtOH) drinking is associated with white matter loss in the brain at all stages of life. Myelin-forming oligodendrocytes (OLs) are a major component of white matter, but their involvement in EtOH-mediated white matter loss is unclear. Myelination continues throughout the life with highest rates during fetal development and adolescence. However, little is known about the effects of EtOH and its principal metabolite acetaldehyde (ACD) on OLs at the cellular level. METHODS We compared the responses to different concentrations of EtOH or ACD by primary OLs in culture. RESULTS EtOH did not cause significant cell death at concentrations lower than 120 mM, even after 24 hours. In comparison, ACD was highly lethal at doses above 50 μM. High concentrations of EtOH (120 mM) and ACD (500 μM) for 24 hours did not reduce myelin in mature OLs. Myelin production and OL differentiation were significantly impaired by 7 days exposure to 500 or 50 μM ACD but not 120 mM EtOH. CONCLUSIONS This study shows that OLs are relatively resistant to EtOH, even at a concentration more than 4 times the typical blood EtOH concentrations associated with social drinking (10 to 30 mM). In contrast, OLs are much more sensitive to ACD than EtOH, particularly with long-term exposure. This suggests that part of white matter loss in response to EtOH, especially during high rates of myelin formation, may be due in part to the effects of its principal metabolite ACD.
Collapse
Affiliation(s)
- David J C Coutts
- Department of Anesthesiology, Columbia University, New York, New York
| | | |
Collapse
|
15
|
Zhang J, Sun X, Zheng S, Liu X, Jin J, Ren Y, Luo J. Myelin basic protein induces neuron-specific toxicity by directly damaging the neuronal plasma membrane. PLoS One 2014; 9:e108646. [PMID: 25255088 PMCID: PMC4177931 DOI: 10.1371/journal.pone.0108646] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 08/18/2014] [Indexed: 12/15/2022] Open
Abstract
The central nervous system (CNS) insults may cause massive demyelination and lead to the release of myelin-associated proteins including its major component myelin basic protein (MBP). MBP is reported to induce glial activation but its effect on neurons is still little known. Here we found that MBP specifically bound to the extracellular surface of the neuronal plasma membrane and induced neurotoxicity in vitro. This effect of MBP on neurons was basicity-dependent because the binding was blocked by acidic lipids and competed by other basic proteins. Further studies revealed that MBP induced damage to neuronal membrane integrity and function by depolarizing the resting membrane potential, increasing the permeability to cations and other molecules, and decreasing the membrane fluidity. At last, artificial liposome vesicle assay showed that MBP directly disturbed acidic lipid bilayer and resulted in increased membrane permeability. These results revealed that MBP induces neurotoxicity through its direct interaction with acidic components on the extracellular surface of neuronal membrane, which may suggest a possible contribution of MBP to the pathogenesis in the CNS disorders with myelin damage.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Sun
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sixin Zheng
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao Liu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghua Jin
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Jianhong Luo
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
16
|
LU HUADING, HOU GANG, ZHANG YONGKAI, DAI YUHU, ZHAO HUIQING. c-Jun transactivates Puma gene expression to promote osteoarthritis. Mol Med Rep 2014; 9:1606-12. [DOI: 10.3892/mmr.2014.1981] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 02/12/2014] [Indexed: 11/05/2022] Open
|