1
|
Ancău M, Tanti GK, Butenschoen VM, Gempt J, Yakushev I, Nekolla S, Mühlau M, Scheunemann C, Heininger S, Löwe B, Löwe E, Baer S, Fischer J, Reiser J, Ayachit SS, Liesche-Starnecker F, Schlegel J, Matiasek K, Schifferer M, Kirschke JS, Misgeld T, Lueth T, Hemmer B. Validating a minipig model of reversible cerebral demyelination using human diagnostic modalities and electron microscopy. EBioMedicine 2024; 100:104982. [PMID: 38306899 PMCID: PMC10850420 DOI: 10.1016/j.ebiom.2024.104982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Inflammatory demyelinating diseases of the central nervous system, such as multiple sclerosis, are significant sources of morbidity in young adults despite therapeutic advances. Current murine models of remyelination have limited applicability due to the low white matter content of their brains, which restricts the spatial resolution of diagnostic imaging. Large animal models might be more suitable but pose significant technological, ethical and logistical challenges. METHODS We induced targeted cerebral demyelinating lesions by serially repeated injections of lysophosphatidylcholine in the minipig brain. Lesions were amenable to follow-up using the same clinical imaging modalities (3T magnetic resonance imaging, 11C-PIB positron emission tomography) and standard histopathology protocols as for human diagnostics (myelin, glia and neuronal cell markers), as well as electron microscopy (EM), to compare against biopsy data from two patients. FINDINGS We demonstrate controlled, clinically unapparent, reversible and multimodally trackable brain white matter demyelination in a large animal model. De-/remyelination dynamics were slower than reported for rodent models and paralleled by a degree of secondary axonal pathology. Regression modelling of ultrastructural parameters (g-ratio, axon thickness) predicted EM features of cerebral de- and remyelination in human data. INTERPRETATION We validated our minipig model of demyelinating brain diseases by employing human diagnostic tools and comparing it with biopsy data from patients with cerebral demyelination. FUNDING This work was supported by the DFG under Germany's Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy, ID 390857198) and TRR 274/1 2020, 408885537 (projects B03 and Z01).
Collapse
Affiliation(s)
- Mihai Ancău
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute of Neuronal Cell Biology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Goutam Kumar Tanti
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Vicki Marie Butenschoen
- Department of Neurosurgery, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany; Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany
| | - Stephan Nekolla
- Department of Nuclear Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany
| | - Mark Mühlau
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christian Scheunemann
- Institute of Micro Technology and Medical Device Technology, Technical University of Munich, Garching, Germany; Ergosurg GmbH, Ismaning, Germany
| | - Sebastian Heininger
- Institute of Micro Technology and Medical Device Technology, Technical University of Munich, Garching, Germany; Ergosurg GmbH, Ismaning, Germany
| | - Benjamin Löwe
- Institute of Micro Technology and Medical Device Technology, Technical University of Munich, Garching, Germany; Ergosurg GmbH, Ismaning, Germany
| | - Erik Löwe
- Institute of Micro Technology and Medical Device Technology, Technical University of Munich, Garching, Germany; Ergosurg GmbH, Ismaning, Germany
| | - Silke Baer
- Centre for Preclinical Research, Department of Veterinary Medicine, Technical University of Munich, Munich, Germany
| | - Johannes Fischer
- Centre for Preclinical Research, Department of Veterinary Medicine, Technical University of Munich, Munich, Germany
| | - Judith Reiser
- Centre for Preclinical Research, Department of Veterinary Medicine, Technical University of Munich, Munich, Germany
| | - Sai S Ayachit
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, Germany
| | - Friederike Liesche-Starnecker
- Department of Neuropathology, Institute of Pathology, Technical University of Munich School of Medicine, Munich, Germany; Medical Faculty, Institute of Pathology and Molecular Diagnostics, University of Augsburg, Augsburg, Germany
| | - Jürgen Schlegel
- Department of Neuropathology, Institute of Pathology, Technical University of Munich School of Medicine, Munich, Germany
| | - Kaspar Matiasek
- Clinical and Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Martina Schifferer
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Jan S Kirschke
- Department of Neuroradiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany
| | - Thomas Misgeld
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Institute of Neuronal Cell Biology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Tim Lueth
- Institute of Micro Technology and Medical Device Technology, Technical University of Munich, Garching, Germany; Ergosurg GmbH, Ismaning, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
2
|
Zhou M, Zheng M, Zhou X, Tian S, Yang X, Ning Y, Li Y, Zhang S. The roles of connexins and gap junctions in the progression of cancer. Cell Commun Signal 2023; 21:8. [PMID: 36639804 PMCID: PMC9837928 DOI: 10.1186/s12964-022-01009-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/03/2022] [Indexed: 01/15/2023] Open
Abstract
Gap junctions (GJs), which are composed of connexins (Cxs), provide channels for direct information exchange between cells. Cx expression has a strong spatial specificity; however, its influence on cell behavior and information exchange between cells cannot be ignored. A variety of factors in organisms can modulate Cxs and subsequently trigger a series of responses that have important effects on cellular behavior. The expression and function of Cxs and the number and function of GJs are in dynamic change. Cxs have been characterized as tumor suppressors in the past, but recent studies have highlighted the critical roles of Cxs and GJs in cancer pathogenesis. The complex mechanism underlying Cx and GJ involvement in cancer development is a major obstacle to the evolution of therapy targeting Cxs. In this paper, we review the post-translational modifications of Cxs, the interactions of Cxs with several chaperone proteins, and the effects of Cxs and GJs on cancer. Video Abstract.
Collapse
Affiliation(s)
- Mingming Zhou
- grid.265021.20000 0000 9792 1228Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| | - Xinyue Zhou
- grid.265021.20000 0000 9792 1228Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Shifeng Tian
- grid.265021.20000 0000 9792 1228Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Xiaohui Yang
- grid.216938.70000 0000 9878 7032Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yidi Ning
- grid.216938.70000 0000 9878 7032Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yuwei Li
- grid.417031.00000 0004 1799 2675Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| |
Collapse
|
3
|
Gorter RP, Baron W. Recent insights into astrocytes as therapeutic targets for demyelinating diseases. Curr Opin Pharmacol 2022; 65:102261. [PMID: 35809402 DOI: 10.1016/j.coph.2022.102261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Astrocytes are a group of glial cells that exhibit great morphological, transcriptional and functional diversity both in the resting brain and in response to injury. In recent years, astrocytes have attracted increasing interest as therapeutic targets for demyelinating diseases. Following a demyelinating insult, astrocytes can adopt a wide spectrum of reactive states, which can exacerbate damage, but may also facilitate oligodendrocyte progenitor cell differentiation and myelin regeneration. In this review, we provide an overview of recent literature on astrocyte-oligodendrocyte interactions in the context of demyelinating diseases. We highlight novel key roles for astrocytes both during demyelination and remyelination with a focus on potential therapeutic strategies to favor a pro-regenerative astrocyte response in (progressive) multiple sclerosis.
Collapse
Affiliation(s)
- Rianne Petra Gorter
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
4
|
Cheng N, Xiong Y, Zhang W, Wu X, Sun Z, Zhang L, Wu H, Tang Y, Peng Y. Astrocytes promote the proliferation of oligodendrocyte precursor cells through connexin 47-mediated LAMB2 secretion in exosomes. Mol Biol Rep 2022; 49:7263-7273. [PMID: 35596050 DOI: 10.1007/s11033-022-07508-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/22/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Oligodendrocyte precursor cells (OPCs) can proliferate and differentiate into oligodendrocytes, the only myelin-forming cells in the central nervous system. Proliferating OPCs promotes remyelination in neurodegenerative diseases. Astrocytes (ASTs) are the most widespread cells in the brain and play a beneficial role in the proliferation of OPCs. Connexin 47 (Cx47) is the main component of AST-OPC gap junctions to regulate OPC proliferation. Nonetheless, the specific mechanism remains unclear. METHODS AND RESULTS This study investigates the proliferation mechanism of OPCs connected to ASTs via Cx47. Cx47 siRNA significantly inhibited OPCs from entering the proliferation cycle. Transcriptome sequencing of OPCs and gene ontology enrichment analysis revealed that ASTs enhanced the exosome secretion by OPCs via Cx47. Transmission electron microscopy, Western blot, and nanoparticle tracking analysis indicated that the OPC proliferation was related to extracellular exosomes. Cx47 siRNA decreased the OPC proliferation and exosome secretion in AST-OPC cocultures. Exogenous exosome supplementation alleviated the inhibitory effect of Cx47 siRNA and significantly improved OPC proliferation. Mass spectrometry revealed that LAMB2 was abundant in exosomes. The administration of exogenous LAMB2 induced DNA replication in the S phase in OPCs by activating cyclin D1. CONCLUSIONS Collectively, ASTs induce the secretion of exosomes that carry LAMB2 by OPCs via Cx47 to upregulate cyclin D1 thereby accelerating OPC proliferation.
Collapse
Affiliation(s)
- Nannan Cheng
- Laboratory of Tissue Engineering and Stem Cell, Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuanfeng Xiong
- Laboratory of Tissue Engineering and Stem Cell, Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenjin Zhang
- Laboratory of Tissue Engineering and Stem Cell, Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiaohong Wu
- Laboratory of Tissue Engineering and Stem Cell, Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhongxiang Sun
- Laboratory of Tissue Engineering and Stem Cell, Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Lei Zhang
- Laboratory of Tissue Engineering and Stem Cell, Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Hong Wu
- Laboratory of Tissue Engineering and Stem Cell, Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yong Tang
- Laboratory of Tissue Engineering and Stem Cell, Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China.
| | - Yan Peng
- Laboratory of Tissue Engineering and Stem Cell, Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
5
|
Mozafari S, Deboux C, Laterza C, Ehrlich M, Kuhlmann T, Martino G, Baron-Van Evercooren A. Beneficial contribution of induced pluripotent stem cell-progeny to Connexin 47 dynamics during demyelination-remyelination. Glia 2020; 69:1094-1109. [PMID: 33301181 PMCID: PMC7984339 DOI: 10.1002/glia.23950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022]
Abstract
Oligodendrocytes are extensively coupled to astrocytes, a phenomenon ensuring glial homeostasis and maintenance of central nervous system myelin. Molecular disruption of this communication occurs in demyelinating diseases such as multiple sclerosis. Less is known about the vulnerability and reconstruction of the panglial network during adult demyelination‐remyelination. Here, we took advantage of lysolcithin‐induced demyelination to investigate the expression dynamics of the oligodendrocyte specific connexin 47 (Cx47) and to some extent that of astrocyte Cx43, and whether this dynamic could be modulated by grafted induced pluripotent stem cell (iPSC)‐neural progeny. Our data show that disruption of Cx43‐Cx47 mediated hetero‐cellular gap‐junction intercellular communication following demyelination is larger in size than demyelination. Loss of Cx47 expression is timely rescued during remyelination and accelerated by the grafted neural precursors. Moreover, mouse and human iPSC‐derived oligodendrocytes express Cx47, which co‐labels with astrocyte Cx43, indicating their integration into the panglial network. These data suggest that in rodents, full lesion repair following transplantation occurs by panglial reconstruction in addition to remyelination. Targeting panglial elements by cell therapy or pharmacological compounds may help accelerating or stabilizing re/myelination in myelin disorders.
Collapse
Affiliation(s)
- Sabah Mozafari
- INSERM, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Sorbonne Université UPMC Paris 06, UM-75, Paris, France.,ICM-GH Pitié-Salpêtrière, Paris, France
| | - Cyrille Deboux
- INSERM, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Sorbonne Université UPMC Paris 06, UM-75, Paris, France.,ICM-GH Pitié-Salpêtrière, Paris, France
| | - Cecilia Laterza
- Institute of Experimental Neurology-DIBIT 2, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita San Raffaele University, Milan, Italy.,Industrial Engineering Department, University of Padova, Padova, Italy
| | - Marc Ehrlich
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Gianvito Martino
- Institute of Experimental Neurology-DIBIT 2, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita San Raffaele University, Milan, Italy
| | - Anne Baron-Van Evercooren
- INSERM, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Sorbonne Université UPMC Paris 06, UM-75, Paris, France.,ICM-GH Pitié-Salpêtrière, Paris, France
| |
Collapse
|