1
|
Ren X, Yang Y, Wang M, Yuan Q, Suo N, Xie X. Vitamin C and MEK Inhibitor PD0325901 Synergistically Promote Oligodendrocytes Generation by Promoting DNA Demethylation. Molecules 2024; 29:5939. [PMID: 39770028 PMCID: PMC11677943 DOI: 10.3390/molecules29245939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
DNA methylation and demethylation are key epigenetic events that regulate gene expression and cell fate. DNA demethylation via oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) is typically mediated by TET (ten-eleven translocation) enzymes. The 5hmC modification is considered an intermediate state of DNA demethylation; it is particularly prevalent in the brain and is believed to play a role in the development of many cell types in the brain. Our previous studies have identified that vitamin C (Vc) and MEK inhibitor PD0325901 could significantly promote OPC (oligodendrocyte progenitor cell)-to-OL (oligodendrocyte) differentiation. Here we discovered that Vc and PD0325901 may promote OPC-to-OL differentiation by inducing DNA demethylation via hydroxymethylation. Blocking 5hmC formation almost totally blocked Vc- and PD0325901-stimulated OPC-to-OL differentiation. In addition, TET1 is not involved in Vc,- and PD0325901-promoted OL generation. We also found a synergistic effect between the two compounds in inducing OL generation, suggesting the possibility of a combination therapy for demyelination diseases in the future.
Collapse
Affiliation(s)
- Xinyue Ren
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (X.R.); (Y.Y.); (M.W.); (Q.Y.)
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Yang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (X.R.); (Y.Y.); (M.W.); (Q.Y.)
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Min Wang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (X.R.); (Y.Y.); (M.W.); (Q.Y.)
| | - Qianting Yuan
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (X.R.); (Y.Y.); (M.W.); (Q.Y.)
| | - Na Suo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (X.R.); (Y.Y.); (M.W.); (Q.Y.)
| | - Xin Xie
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (X.R.); (Y.Y.); (M.W.); (Q.Y.)
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
2
|
Yang Y, Suo N, Cui SH, Wu X, Ren XY, Liu Y, Guo R, Xie X. Trametinib, an anti-tumor drug, promotes oligodendrocytes generation and myelin formation. Acta Pharmacol Sin 2024; 45:2527-2539. [PMID: 38871922 PMCID: PMC11579360 DOI: 10.1038/s41401-024-01313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Oligodendrocytes (OLs) are differentiated from oligodendrocyte precursor cells (OPCs) in the central nervous system (CNS). Demyelination is a common feature of many neurological diseases such as multiple sclerosis (MS) and leukodystrophies. Although spontaneous remyelination can happen after myelin injury, nevertheless, it is often insufficient and may lead to aggravated neurodegeneration and neurological disabilities. Our previous study has discovered that MEK/ERK pathway negatively regulates OPC-to-OL differentiation and remyelination in mouse models. To facilitate possible clinical evaluation, here we investigate several MEK inhibitors which have been approved by FDA for cancer therapies in both mouse and human OPC-to-OL differentiation systems. Trametinib, the first FDA approved MEK inhibitor, displays the best effect in stimulating OL generation in vitro among the four MEK inhibitors examined. Trametinib also significantly enhances remyelination in both MOG-induced EAE model and LPC-induced focal demyelination model. More exciting, trametinib facilitates the generation of MBP+ OLs from human embryonic stem cells (ESCs)-derived OPCs. Mechanism study indicates that trametinib promotes OL generation by reducing E2F1 nuclear translocation and subsequent transcriptional activity. In summary, our studies indicate a similar inhibitory role of MEK/ERK in human and mouse OL generation. Targeting the MEK/ERK pathway might help to develop new therapies or repurpose existing drugs for demyelinating diseases.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Na Suo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Shi-Hao Cui
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin-Yue Ren
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yin Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ren Guo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Xin Xie
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
3
|
Marangon D, Castro e Silva JH, Cerrato V, Boda E, Lecca D. Oligodendrocyte Progenitors in Glial Scar: A Bet on Remyelination. Cells 2024; 13:1024. [PMID: 38920654 PMCID: PMC11202012 DOI: 10.3390/cells13121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) represent a subtype of glia, giving rise to oligodendrocytes, the myelin-forming cells in the central nervous system (CNS). While OPCs are highly proliferative during development, they become relatively quiescent during adulthood, when their fate is strictly influenced by the extracellular context. In traumatic injuries and chronic neurodegenerative conditions, including those of autoimmune origin, oligodendrocytes undergo apoptosis, and demyelination starts. Adult OPCs become immediately activated; they migrate at the lesion site and proliferate to replenish the damaged area, but their efficiency is hampered by the presence of a glial scar-a barrier mainly formed by reactive astrocytes, microglia and the deposition of inhibitory extracellular matrix components. If, on the one hand, a glial scar limits the lesion spreading, it also blocks tissue regeneration. Therapeutic strategies aimed at reducing astrocyte or microglia activation and shifting them toward a neuroprotective phenotype have been proposed, whereas the role of OPCs has been largely overlooked. In this review, we have considered the glial scar from the perspective of OPCs, analysing their behaviour when lesions originate and exploring the potential therapies aimed at sustaining OPCs to efficiently differentiate and promote remyelination.
Collapse
Affiliation(s)
- Davide Marangon
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (J.H.C.e.S.)
| | - Juliana Helena Castro e Silva
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (J.H.C.e.S.)
| | - Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy; (V.C.); (E.B.)
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy; (V.C.); (E.B.)
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (J.H.C.e.S.)
| |
Collapse
|
4
|
Cui SH, Suo N, Yang Y, Wu X, Guo SM, Xie X. The aminosteroid U73122 promotes oligodendrocytes generation and myelin formation. Acta Pharmacol Sin 2024; 45:490-501. [PMID: 37935896 PMCID: PMC10834981 DOI: 10.1038/s41401-023-01183-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/13/2023] [Indexed: 11/09/2023] Open
Abstract
Oligodendrocytes (OLs) are glial cells that ensheath neuronal axons and form myelin in the central nervous system (CNS). OLs are differentiated from oligodendrocyte precursor cells (OPCs) during development and myelin repair, which is often insufficient in the latter case in demyelinating diseases such as multiple sclerosis (MS). Many factors have been reported to regulate OPC-to-OL differentiation, including a number of G protein-coupled receptors (GPCRs). In an effort to search pathways downstream of GPCRs that might be involved in OPC differentiation, we discover that U73122, a phosphoinositide specific phospholipase C (PI-PLC) inhibitor, dramatically promotes OPC-to-OL differentiation and myelin regeneration in experimental autoimmune encephalomyelitis model. Unexpectedly, U73343, a close analog of U73122 which lacks PI-PLC inhibitory activity also promotes OL differentiation, while another reported PI-PLC inhibitor edelfosine does not have such effect, suggesting that U73122 and U73343 enhance OPC differentiation independent of PLC. Although the structures of U73122 and U73343 closely resemble 17β-estradiol, and both compounds do activate estrogen receptors Erα and Erβ with low efficacy and potency, further study indicates that these compounds do not act through Erα and/or Erβ to promote OPC differentiation. RNA-Seq and bioinformatic analysis indicate that U73122 and U73343 may regulate cholesterol biosynthesis. Further study shows both compounds increase 14-dehydrozymostenol, a steroid reported to promote OPC differentiation, in OPC culture. In conclusion, the aminosteroids U73122 and U73343 promote OPC-to-OL generation and myelin formation by regulating cholesterol biosynthesis pathway.
Collapse
Affiliation(s)
- Shi-Hao Cui
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Suo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ying Yang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xuan Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shi-Meng Guo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin Xie
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
5
|
Xu J, Peng Q, Cai J, Shangguan J, Su W, Chen G, Sun H, Zhu C, Gu Y. The Schwann cell-specific G-protein Gαo (Gnao1) is a cell-intrinsic controller contributing to the regulation of myelination in peripheral nerve system. Acta Neuropathol Commun 2024; 12:24. [PMID: 38331815 PMCID: PMC10854112 DOI: 10.1186/s40478-024-01720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/27/2023] [Indexed: 02/10/2024] Open
Abstract
Myelin sheath abnormality is the cause of various neurodegenerative diseases (NDDs). G-proteins and their coupled receptors (GPCRs) play the important roles in myelination. Gnao1, encoding the major Gα protein (Gαo) in mammalian nerve system, is required for normal motor function. Here, we show that Gnao1 restricted to Schwann cell (SCs) lineage, but not neurons, negatively regulate SC differentiation, myelination, as well as re-myelination in peripheral nervous system (PNS). Mice lacking Gnao1 expression in SCs exhibit faster re-myelination and motor function recovery after nerve injury. Conversely, mice with Gnao1 overexpression in SCs display the insufficient myelinating capacity and delayed re-myelination. In vitro, Gnao1 deletion in SCs promotes SC differentiation. We found that Gnao1 knockdown in SCs resulting in the elevation of cAMP content and the activation of PI3K/AKT pathway, both associated with SC differentiation. The analysis of RNA sequencing data further evidenced that Gnao1 deletion cause the increased expression of myelin-related molecules and activation of regulatory pathways. Taken together, our data indicate that Gnao1 negatively regulated SC differentiation by reducing cAMP level and inhibiting PI3K-AKT cascade activation, identifying a novel drug target for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Jinghui Xu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Qianqian Peng
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Jieyi Cai
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Jianghong Shangguan
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Wenfeng Su
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Gang Chen
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Hualin Sun
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Changlai Zhu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China.
| | - Yun Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China.
| |
Collapse
|
6
|
Wyler S, Surbhi, Cao N, Merchant W, Bookout A, Gautron L. Gpr149 is involved in energy homeostasis in the male mouse. PeerJ 2024; 12:e16739. [PMID: 38282864 PMCID: PMC10822134 DOI: 10.7717/peerj.16739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 12/08/2023] [Indexed: 01/30/2024] Open
Abstract
GPR149 is an orphan receptor about which little is known. Accordingly, in the present study, we mapped the tissue expression of Gpr149 in mice using three complementary approaches: quantitative PCR, in situ hybridization, and a newly generated Gpr149-Cre reporter mouse model. The strongest expressions of Gpr149 were observed in neurons of the islands of Calleja, the ventromedial hypothalamus, and the rostral interpeduncular nucleus. Moderate-to-low expression was also observed in the basal forebrain, striatum, hypothalamus, brainstem, and spinal cord. Some Gpr149 expression was also detected in the primary afferent neurons, enteric neurons, and pituitary endocrine cells. This expression pattern is consistent with the involvement of GPR149 signaling in the regulation of energy balance. To explore the physiological function of GPR149 in vivo, we used CRISPR-Cas9 to generate a global knockout allele with mice lacking Gpr149 exon 1. Preliminary metabolic findings indicated that Gpr149-/- mice partially resist weight gain when fed with a high-fat diet and have greater sensitivity to insulin than control mice. In summary, our data may serve as a resource for future in vivo studies on GPR149 in the context of diet-induced obesity.
Collapse
Affiliation(s)
- Steven Wyler
- Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, United States
| | - Surbhi
- Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, United States
| | - Newton Cao
- Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, United States
| | - Warda Merchant
- Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, United States
| | - Angie Bookout
- Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, United States
| | - Laurent Gautron
- Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
7
|
Provasek VE, Kodavati M, Guo W, Wang H, Boldogh I, Van Den Bosch L, Britz G, Hegde ML. lncRNA Sequencing Reveals Neurodegeneration-Associated FUS Mutations Alter Transcriptional Landscape of iPS Cells That Persists in Motor Neurons. Cells 2023; 12:2461. [PMID: 37887305 PMCID: PMC10604943 DOI: 10.3390/cells12202461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Fused-in sarcoma (FUS) gene mutations have been implicated in amyotrophic lateral sclerosis (ALS). This study aimed to investigate the impact of FUS mutations (R521H and P525L) on the transcriptome of induced pluripotent stem cells (iPSCs) and iPSC-derived motor neurons (iMNs). Using RNA sequencing (RNA Seq), we characterized differentially expressed genes (DEGs) and differentially expressed lncRNAs (DELs) and subsequently predicted lncRNA-mRNA target pairs (TAR pairs). Our results show that FUS mutations significantly altered the expression profiles of mRNAs and lncRNAs in iPSCs. Using this large dataset, we identified and verified six key differentially regulated TAR pairs in iPSCs that were also altered in iMNs. These target transcripts included: GPR149, NR4A, LMO3, SLC15A4, ZNF404, and CRACD. These findings indicated that selected mutant FUS-induced transcriptional alterations persist from iPSCs into differentiated iMNs. Functional enrichment analyses of DEGs indicated pathways associated with neuronal development and carcinogenesis as likely altered by these FUS mutations. Furthermore, ingenuity pathway analysis (IPA) and GO network analysis of lncRNA-targeted mRNAs indicated associations between RNA metabolism, lncRNA regulation, and DNA damage repair. Our findings provide insights into potential molecular mechanisms underlying the pathophysiology of ALS-associated FUS mutations and suggest potential therapeutic targets for the treatment of ALS.
Collapse
Affiliation(s)
- Vincent E. Provasek
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (M.K.); (H.W.)
- School of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Manohar Kodavati
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (M.K.); (H.W.)
| | - Wenting Guo
- INSERM, UMR-S1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Université de Strasbourg, CRBS, 67000 Strasbourg, France;
- VIB, Center for Brain & Disease Research, 3000 Leuven, Belgium
- Leuven Brain Institute (LBI), 3000 Leuven, Belgium
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
| | - Haibo Wang
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (M.K.); (H.W.)
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Ludo Van Den Bosch
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
| | - Gavin Britz
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Muralidhar L. Hegde
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (M.K.); (H.W.)
- School of Medicine, Texas A&M University, College Station, TX 77843, USA
- Department of Neurosurgery, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
8
|
Xie X. GPCRs in Oligodendrocyte Differentiation and Myelin Regeneration. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/maced.pharm.bull.2022.68.04.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Xin Xie
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, 189 Guo Shou Jing Rd, 201203, Shanghai, China
| |
Collapse
|
9
|
Leo H, Kipp M. Remyelination in Multiple Sclerosis: Findings in the Cuprizone Model. Int J Mol Sci 2022; 23:ijms232416093. [PMID: 36555733 PMCID: PMC9783537 DOI: 10.3390/ijms232416093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Remyelination therapies, which are currently under development, have a great potential to delay, prevent or even reverse disability in multiple sclerosis patients. Several models are available to study the effectiveness of novel compounds in vivo, among which is the cuprizone model. This model is characterized by toxin-induced demyelination, followed by endogenous remyelination after cessation of the intoxication. Due to its high reproducibility and ease of use, this model enjoys high popularity among various research and industrial groups. In this review article, we will summarize recent findings using this model and discuss the potential of some of the identified compounds to promote remyelination in multiple sclerosis patients.
Collapse
Affiliation(s)
| | - Markus Kipp
- Correspondence: ; Tel.: +49-(0)-381-494-8400
| |
Collapse
|
10
|
Ahmed YM, Orfali R, Hamad DS, Rateb ME, Farouk HO. Sustainable Release of Propranolol Hydrochloride Laden with Biconjugated-Ufasomes Chitosan Hydrogel Attenuates Cisplatin-Induced Sciatic Nerve Damage in In Vitro/In Vivo Evaluation. Pharmaceutics 2022; 14:1536. [PMID: 35893792 PMCID: PMC9394333 DOI: 10.3390/pharmaceutics14081536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerve injuries significantly impact patients' quality of life and poor functional recovery. Chitosan-ufasomes (CTS-UFAs) exhibit biomimetic features, making them a viable choice for developing novel transdermal delivery for neural repair. This study aimed to investigate the role of CTS-UFAs loaded with the propranolol HCl (PRO) as a model drug in enhancing sciatica in cisplatin-induced sciatic nerve damage in rats. Hence, PRO-UFAs were primed, embedding either span 20 or 60 together with oleic acid and cholesterol using a thin-film hydration process based on full factorial design (24). The influence of formulation factors on UFAs' physicochemical characteristics and the optimum formulation selection were investigated using Design-Expert® software. Based on the optimal UFA formulation, PRO-CTS-UFAs were constructed and characterized using transmission electron microscopy, stability studies, and ex vivo permeation. In vivo trials on rats with a sciatic nerve injury tested the efficacy of PRO-CTS-UFA and PRO-UFA transdermal hydrogels, PRO solution, compared to normal rats. Additionally, oxidative stress and specific apoptotic biomarkers were assessed, supported by a sciatic nerve histopathological study. PRO-UFAs and PRO-CTS-UFAs disclosed entrapment efficiency of 82.72 ± 2.33% and 85.32 ± 2.65%, a particle size of 317.22 ± 6.43 and 336.12 ± 4.9 nm, ζ potential of -62.06 ± 0.07 and 65.24 ± 0.10 mV, and accumulatively released 70.95 ± 8.14% and 64.03 ± 1.9% PRO within 6 h, respectively. Moreover, PRO-CTS-UFAs significantly restored sciatic nerve structure, inhibited the cisplatin-dependent increase in peripheral myelin 22 gene expression and MDA levels, and further re-established sciatic nerve GSH and CAT content. Furthermore, they elicited MBP re-expression, BCL-2 mild expression, and inhibited TNF-α expression. Briefly, our findings proposed that CTS-UFAs are promising to enhance PRO transdermal delivery to manage sciatic nerve damage.
Collapse
Affiliation(s)
- Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Doaa S. Hamad
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| | - Mostafa E. Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Hanan O. Farouk
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| |
Collapse
|