1
|
Jang MH, Song J. Adenosine and adenosine receptors in metabolic imbalance-related neurological issues. Biomed Pharmacother 2024; 177:116996. [PMID: 38897158 DOI: 10.1016/j.biopha.2024.116996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic syndromes (e.g., obesity) are characterized by insulin resistance, chronic inflammation, impaired glucose metabolism, and dyslipidemia. Recently, patients with metabolic syndromes have experienced not only metabolic problems but also neuropathological issues, including cognitive impairment. Several studies have reported blood-brain barrier (BBB) disruption and insulin resistance in the brain of patients with obesity and diabetes. Adenosine, a purine nucleoside, is known to regulate various cellular responses (e.g., the neuroinflammatory response) by binding with adenosine receptors in the central nervous system (CNS). Adenosine has four known receptors: A1R, A2AR, A2BR, and A3R. These receptors play distinct roles in various physiological and pathological processes in the brain, including endothelial cell homeostasis, insulin sensitivity, microglial activation, lipid metabolism, immune cell infiltration, and synaptic plasticity. Here, we review the recent findings on the role of adenosine receptor-mediated signaling in neuropathological issues related to metabolic imbalance. We highlight the importance of adenosine signaling in the development of therapeutic solutions for neuropathological issues in patients with metabolic syndromes.
Collapse
Affiliation(s)
- Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea.
| |
Collapse
|
2
|
Dos Santos B, Piermartiri T, Tasca CI. The impact of purine nucleosides on neuroplasticity in the adult brain. Purinergic Signal 2024:10.1007/s11302-024-09988-9. [PMID: 38367178 DOI: 10.1007/s11302-024-09988-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/19/2024] Open
Abstract
Neuroplasticity refers to the nervous system's ability to adapt and reorganize its cell structures and neuronal networks in response to internal and external stimuli. In adults, this process involves neurogenesis, synaptogenesis, and synaptic and neurochemical plasticity. Several studies have reported the significant impact of the purinergic system on neuroplasticity modulation. And, there is considerable evidence supporting the role of purine nucleosides, such as adenosine, inosine, and guanosine, in this process. This review presents extensive research on how these nucleosides enhance the neuroplasticity of the adult central nervous system, particularly in response to damage. The mechanisms through which these nucleosides exert their effects involve complex interactions with various receptors and signaling pathways. Adenosine's influence on neurogenesis involves interactions with adenosine receptors, specifically A1R and A2AR. A1R activation appears to inhibit neuronal differentiation and promote astrogliogenesis, while A2AR activation supports neurogenesis, neuritogenesis, and synaptic plasticity. Inosine and guanosine positively impact cell proliferation, neurogenesis, and neuritogenesis. Inosine seems to modulate extracellular adenosine levels, and guanosine might act through interactions between purinergic and glutamatergic systems. Additionally, the review discusses the potential therapeutic implications of purinergic signaling in neurodegenerative and neuropsychiatric diseases, emphasizing the importance of these nucleosides in the neuroplasticity of brain function and recovery.
Collapse
Affiliation(s)
- Beatriz Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Tetsade Piermartiri
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Carla I Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
- Programa de Pós-Graduação Em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
3
|
Madeira D, Domingues J, Lopes CR, Canas PM, Cunha RA, Agostinho P. Modification of astrocytic Cx43 hemichannel activity in animal models of AD: modulation by adenosine A 2A receptors. Cell Mol Life Sci 2023; 80:340. [PMID: 37898985 PMCID: PMC10613596 DOI: 10.1007/s00018-023-04983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
Increasing evidence implicates astrocytic dysfunction in Alzheimer's disease (AD), a neurodegenerative disorder characterised by progressive cognitive loss. The accumulation of amyloid-β (Aβ) plaques is a histopathological hallmark of AD and associated with increased astrocyte reactivity. In APP/PS1 mice modelling established AD (9 months), we now show an altered astrocytic morphology and enhanced activity of astrocytic hemichannels, mainly composed by connexin 43 (Cx43). Hemichannel activity in hippocampal astrocytes is also increased in two models of early AD: (1) mice with intracerebroventricular (icv) administration of Aβ1-42, and (2) hippocampal slices superfused with Aβ1-42 peptides. In hippocampal gliosomes of APP/PS1 mice, Cx43 levels were increased, whereas mice administered icv with Aβ1-42 only displayed increased Cx43 phosphorylation levels. This suggests that hemichannel activity might be differentially modulated throughout AD progression. Additionally, we tested if adenosine A2A receptor (A2AR) blockade reversed alterations of astrocytic hemichannel activity and found that the pharmacological blockade or genetic silencing (global and astrocytic) of A2AR prevented Aβ-induced hemichannel dysregulation in hippocampal slices, although A2AR genetic silencing increased the activity of astroglial hemichannels in control conditions. In primary cultures of astrocytes, A2AR-related protective effect was shown to occur through a protein kinase C (PKC) pathway. Our results indicate that the dysfunction of hemichannel activity in hippocampal astrocytes is an early event in AD, which is modulated by A2AR.
Collapse
Affiliation(s)
- Daniela Madeira
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Rua Larga, Polo I FMUC, First Floor, 3004-504, Coimbra, Portugal
| | - Joana Domingues
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Rua Larga, Polo I FMUC, First Floor, 3004-504, Coimbra, Portugal
| | - Cátia R Lopes
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Rua Larga, Polo I FMUC, First Floor, 3004-504, Coimbra, Portugal
| | - Paula M Canas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Rua Larga, Polo I FMUC, First Floor, 3004-504, Coimbra, Portugal
| | - Rodrigo A Cunha
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Rua Larga, Polo I FMUC, First Floor, 3004-504, Coimbra, Portugal
| | - Paula Agostinho
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal.
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Rua Larga, Polo I FMUC, First Floor, 3004-504, Coimbra, Portugal.
| |
Collapse
|
4
|
Lopes CR, Silva AC, Silva HB, Canas PM, Agostinho P, Cunha RA, Lopes JP. Adenosine A 2A Receptor Up-Regulation Pre-Dates Deficits of Synaptic Plasticity and of Memory in Mice Exposed to Aβ 1-42 to Model Early Alzheimer's Disease. Biomolecules 2023; 13:1173. [PMID: 37627238 PMCID: PMC10452250 DOI: 10.3390/biom13081173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The intracerebroventricular (icv) injection of amyloid peptides (Aβ) models Alzheimer's disease (AD) in mice, as typified by the onset within 15 days of deficits of memory and of hippocampal long-term potentiation (LTP) that are prevented by the blockade of adenosine A2A receptors (A2AR). Since A2AR overfunction is sufficient to trigger memory deficits, we tested if A2AR were upregulated in hippocampal synapses before the onset of memory deficits to support the hypothesis that A2AR overfunction could be a trigger of AD. Six to eight days after Aβ-icv injection, mice displayed no alterations of hippocampal dependent memory; however, they presented an increased excitability of hippocampal synapses, a slight increase in LTP magnitude in Schaffer fiber-CA1 pyramid synapses and an increased density of A2AR in hippocampal synapses. A2AR blockade with SCH58261 (50 nM) normalized excitability and LTP in hippocampal slices from mice sacrificed 7-8 days after Aβ-icv injection. Fifteen days after Aβ-icv injection, mice displayed evident deficits of hippocampal-dependent memory deterioration, with reduced hippocampal CA1 LTP but no hyperexcitability and a sustained increase in synaptic A2AR, which blockade restored LTP magnitude. This shows that the upregulation of synaptic A2AR precedes the onset of deterioration of memory and of hippocampal synaptic plasticity, supporting the hypothesis that the overfunction of synaptic A2AR could be a trigger of memory deterioration in AD.
Collapse
Affiliation(s)
- Cátia R. Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - António C. Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
| | - Henrique B. Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
| | - Paula M. Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
| | - Paula Agostinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - João Pedro Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
| |
Collapse
|