1
|
Hariharan R, Hood L, Price ND. A data-driven approach to improve wellness and reduce recurrence in cancer survivors. Front Oncol 2024; 14:1397008. [PMID: 38665952 PMCID: PMC11044254 DOI: 10.3389/fonc.2024.1397008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
For many cancer survivors, toxic side effects of treatment, lingering effects of the aftermath of disease and cancer recurrence adversely affect quality of life (QoL) and reduce healthspan. Data-driven approaches for quantifying and improving wellness in healthy individuals hold great promise for improving the lives of cancer survivors. The data-driven strategy will also guide personalized nutrition and exercise recommendations that may help prevent cancer recurrence and secondary malignancies in survivors.
Collapse
Affiliation(s)
- Ramkumar Hariharan
- College of Engineering, Northeastern University, Seattle, WA, United States
- Institute for Experiential Artificial Intelligence, Northeastern University, Boston, MA, United States
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA, United States
- Buck Institute for Research on Aging, Novato, CA, United States
- Phenome Health, Seattle, WA, United States
| | - Nathan D. Price
- Institute for Systems Biology, Seattle, WA, United States
- Thorne HealthTech, New York, NY, United States
| |
Collapse
|
2
|
Abete-Fornara G, Bintintan Socaciu P, Fanizzi C, Fiore G, Locatelli M, Caroli M. Neuropsychological functioning during chemotherapy with temozolomide in high-grade glioma patients: a retrospective single centre study. J Neurooncol 2023; 165:561-568. [PMID: 38108984 DOI: 10.1007/s11060-023-04533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE starting from a lack of precise and coherent data in literature, aim of this work is to retrospectively study the influence of chemotherapy with Temozolomide (TMZ) on a wide series of neuropsychological functions in a population of adult high-grade glioma patients. METHODS an extensive neuropsychological battery was administered pre-operatively (T0) and after 6 (T1) and 12 months (T2) from surgery. After full recovery from surgery, TMZ was delivered concomitant to radiotherapy and, subsequently, adjuvantly for 5-day cycles per month. Parametric and non-parametric analyses were conducted to verify the influence of several aspects of chemotherapy on the adjusted scores of each cognitive test at the two post-operative follow-ups. RESULTS Sixty-one patients were included at T0; patients with a lower adjuvant TMZ dosage reported a better performance at the visual attention test at T1, and at the deductive reasoning test at T2. Undergoing more than 8 cycles of adjuvant therapy was slightly associated with a better performance at the long-term verbal memory tasks at T2. No other associations were found with the other cognitive tests and autonomy scales administered. CONCLUSIONS TMZ proved to be a secure treatment with no negative side effects on cognition and on level of daily autonomy, even at the highest dosage used. This is a positive finding which enables clinicians to reassure patients about the absence of significant negative effects of TMZ on their daily life functioning. In this view, eventual cognitive changes during treatment might not be attributed to chemotherapy but to other events such as tumour relapse.
Collapse
Affiliation(s)
- Giorgia Abete-Fornara
- Department of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Petra Bintintan Socaciu
- Department of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Claudia Fanizzi
- Department of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Fiore
- Department of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Marco Locatelli
- Department of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Manuela Caroli
- Department of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
3
|
Beyer J, Couch R, Ruddy KJ, Zeydan B, Tosakulwong N, Lesnick TG, Novotny PJ, Kohli S, Cerhan JH, Pruthi S, Kantarci K, Kara F. Longitudinal cognitive function and brain metabolites in women receiving chemotherapy for stage 1 to 3 breast cancer: Observational study. Medicine (Baltimore) 2023; 102:e35524. [PMID: 37861526 PMCID: PMC10589550 DOI: 10.1097/md.0000000000035524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023] Open
Abstract
Few proton magnetic resonance spectroscopy studies have explored chemotherapy-related biochemical changes in brain regions. This observational study aimed to longitudinally assess short-term cognitive changes and brain metabolite concentrations in women undergoing chemotherapy for breast cancer. We analyzed 11 women with newly diagnosed stage 1 to 3 breast cancer. Patients were evaluated via objective cognitive testing, and patient self-report tests. Patients were examined using single voxel proton magnetic resonance spectroscopy in the medial frontal cortex, posterior cingulate gyrus, and left thalamus at baseline and after the completion of chemotherapy on a 1.5 Tesla scanner. At the posttreatment evaluation as compared to baseline, 7 of the 10 (70%) patients reported worsening memory on the MD Anderson symptom inventory (annualized change = 1.82 ± 2.88, P = .08), while the delayed recall raw score of the Rey Osterrieth complex figure test did not change from pre- to post-chemotherapy (mean annualized change = 5.00 ± 14.38, P = .30). The annualized change in the creatine concentration in the posterior cingulate gyrus was statistically significant. The annualized change in the MD Anderson symptom inventory was negatively correlated with the annualized change in the medial frontal N-acetylaspartate (Spearman correlation coefficient [rho] = -0.78, P = .01) and positively correlated with the annualized change in the posterior cingulate gyrus creatine (rho = 0.66, P = .04). Annualized changes in the Rey Osterrieth complex figure test were positively correlated with annualized changes in choline (rho = 0.83, P = .01) in the medial frontal cortex, choline (rho = 0.76, P = .04) in the left thalamus, and creatine (rho = 0.73, P = .02) in the medial frontal cortex. Our data suggest that chemotherapy may lead to the worsening of self-reported memory function, which is associated with alterations in brain metabolites.
Collapse
Affiliation(s)
- Joana Beyer
- Department of Anesthesiology and Peri-operative Medicine, Mayo Clinic, Rochester, MN
| | - Ronan Couch
- Mayo Clinic Rochester, Department of Radiology, Mayo Clinic, Rochester, MN
| | | | - Burcu Zeydan
- Department of Neurology, Mayo Clinic, Rochester, MN
| | | | | | - Paul J. Novotny
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Sadhna Kohli
- University of Utah, PIVOT Center, Salty City, UT
| | - Jane H. Cerhan
- Department of Psychiatry and Psychology Mayo Clinic Rochester, MN
| | - Sandhya Pruthi
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Kejal Kantarci
- Mayo Clinic Rochester, Department of Radiology, Mayo Clinic, Rochester, MN
| | - Firat Kara
- Mayo Clinic Rochester, Department of Radiology, Mayo Clinic, Rochester, MN
| |
Collapse
|
4
|
Fleming B, Edison P, Kenny L. Cognitive impairment after cancer treatment: mechanisms, clinical characterization, and management. BMJ 2023; 380:e071726. [PMID: 36921926 DOI: 10.1136/bmj-2022-071726] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Cognitive impairment is a debilitating side effect experienced by patients with cancer treated with systemically administered anticancer therapies. With around 19.3 million new cases of cancer worldwide in 2020 and the five year survival rate growing from 50% in 1970 to 67% in 2013, an urgent need exists to understand enduring side effects with severe implications for quality of life. Whereas cognitive impairment associated with chemotherapy is recognized in patients with breast cancer, researchers have started to identify cognitive impairment associated with other treatments such as immune, endocrine, and targeted therapies only recently. The underlying mechanisms are diverse and therapy specific, so further evaluation is needed to develop effective therapeutic interventions. Drug and non-drug management strategies are emerging that target mechanistic pathways or the cognitive deficits themselves, but they need to be rigorously evaluated. Clinically, consistent use of objective diagnostic tools is necessary for accurate diagnosis and clinical characterization of cognitive impairment in patients treated with anticancer therapies. This should be supplemented with clinical guidelines that could be implemented in daily practice. This review summarizes the recent advances in the mechanisms, clinical characterization, and novel management strategies of cognitive impairment associated with treatment of non-central nervous system cancers.
Collapse
Affiliation(s)
- Ben Fleming
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Paul Edison
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Laura Kenny
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
5
|
A Systematic Review on the Potential Acceleration of Neurocognitive Aging in Older Cancer Survivors. Cancers (Basel) 2023; 15:cancers15041215. [PMID: 36831557 PMCID: PMC9954467 DOI: 10.3390/cancers15041215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
As survival rates increase, more emphasis has gone to possible cognitive sequelae in older cancer patients, which could be explained by accelerated brain aging. In this review, we provide a complete overview of studies investigating neuroimaging, neurocognitive, and neurodegenerative disorders in older cancer survivors (>65 years), based on three databases (Pubmed, Web of Science and Medline). Ninety-six studies were included. Evidence was found for functional and structural brain changes (frontal regions, basal ganglia, gray and white matter), compared to healthy controls. Cognitive decline was mainly found in memory functioning. Anti-hormonal treatments were repeatedly associated with cognitive decline (tamoxifen) and sometimes with an increased risk of Alzheimer's disease (androgen deprivation therapy). Chemotherapy was inconsistently associated with later development of cognitive changes or dementia. Radiotherapy was not associated with cognition in patients with non-central nervous system cancer but can play a role in patients with central nervous system cancer, while neurosurgery seemed to improve their cognition in the short-term. Individual risk factors included cancer subtypes (e.g., brain cancer, hormone-related cancers), treatment (e.g., anti-hormonal therapy, chemotherapy, cranial radiation), genetic predisposition (e.g., APOE, COMT, BDNF), age, comorbidities (e.g., frailty, cognitive reserve), and psychological (e.g., depression, (post-traumatic) distress, sleep, fatigue) and social factors (e.g., loneliness, limited caregiver support, low SES). More research on accelerated aging is required to guide intervention studies.
Collapse
|
6
|
Schroyen G, Schramm G, Van Weehaeghe D, Leenaerts N, Vande Casteele T, Blommaert J, Koole M, Smeets A, Van Laere K, Sunaert S, Deprez S. Cerebral glucose changes after chemotherapy and their relation to long-term cognitive complaints and fatigue. Front Oncol 2022; 12:1021615. [PMID: 36313711 PMCID: PMC9612406 DOI: 10.3389/fonc.2022.1021615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose To investigate the short-term cerebral metabolic effects of intravenous chemotherapy and their association with long-term fatigue/cognitive complaints. Experimental design Using [18F]-FDG-PET/CT whole-body scans, we retrospectively quantified relative cerebral glucose metabolism before and after neoadjuvant chemotherapy in a cohort of patients treated for non-metastatic breast cancer (2009-2019). Self-report of cognitive complaints and fatigue were prospectively assessed 7 ± 3 years after therapy. Metabolic changes were estimated with i) robust mixed-effects modelling in regions-of-interest (frontal, parietal, temporal, occipital, and insular cortex) and ii) general-linear modelling of whole-brain voxel-wise outcomes. iii) The association between metabolic changes and self-reported outcomes was evaluated using linear regression-analysis. Results Of the 667 screened patients, 263 underwent PET/CT before and after chemotherapy and 183 (48 ± 9 years) met the inclusion criteria. After chemotherapy, decreased frontal and increased parietal and insular metabolism were observed (|ß|>0.273, pFDR<0.008). Separately, additional increased occipital metabolism after epiribucin+ cyclophosphamide (EC) and temporal metabolism after EC+ fluorouracil chemotherapy were observed (ß>0.244, pFDR≤0.048). Voxel-based analysis (pcluster-FWE<0.001) showed decreased metabolism in the paracingulate gyrus (-3.2 ± 3.9%) and putamen (3.1 ± 4.1%) and increased metabolism in the lateral cortex (L=2.9 ± 3.1%) and pericentral gyri (3.0 ± 4.4%). Except for the central sulcus, the same regions showed changes in EC, but not in FEC patients. Of the 97 self-reported responders, 23% and 27% experienced extreme fatigue and long-term cognitive complaints, respectively, which were not associated with metabolic changes. Conclusion Both hyper- and hypometabolism were observed after chemotherapy for breast cancer. Combined with earlier findings, this study could support inflammatory mechanisms resulting in relative hypermetabolism, mainly in the parietal/occipital cortices. As early metabolic changes did not precede long-term complaints, further research is necessary to identify vulnerable patients.
Collapse
Affiliation(s)
- Gwen Schroyen
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
- *Correspondence: Gwen Schroyen,
| | - Georg Schramm
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Leuven, Belgium
| | - Donatienne Van Weehaeghe
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Nicolas Leenaerts
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurosciences, Mind-Body Research, KU Leuven, Leuven, Belgium
- University Psychiatric Centre, KU Leuven, Leuven, Belgium
- Department of Psychiatry, University Hospitals Leuven, Leuven, Belgium
| | - Thomas Vande Casteele
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- University Psychiatric Centre, KU Leuven, Leuven, Belgium
- Department of Psychiatry, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences, Neuropsychiatry, KU Leuven, Leuven, Belgium
| | - Jeroen Blommaert
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
- Department of Oncology, Gynaecological Oncology, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Leuven, Belgium
| | - Ann Smeets
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
- Department of Oncology, Surgical Oncology, KU Leuven, Leuven, Belgium
- Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Koen Van Laere
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
- Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Sabine Deprez
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Hu Y, Zhang Q, Cui C, Zhang Y. Altered Regional Brain Glucose Metabolism in Diffuse Large B-Cell Lymphoma Patients Treated With Cyclophosphamide, Epirubicin, Vincristine, and Prednisone: An Fluorodeoxyglucose Positron Emission Tomography Study of 205 Cases. Front Neurosci 2022; 16:914556. [PMID: 35784854 PMCID: PMC9240384 DOI: 10.3389/fnins.2022.914556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Background A growing number of neuroimaging studies reported that chemotherapy might impair brain functions, leading to persistent cognitive alterations in a subset of cancer patients. The present study aimed to investigate the regional brain glucose metabolism differences between diffuse large B cell lymphoma (DLBCL) patients treated with cyclophosphamide, epirubicin, vincristine, and prednisone and controls using positron emission tomography with 18F-labeled fluoro-2-deoxyglucose integrated with computed tomography (18F-FDG PET/CT) scanning. Methods We analyzed 18F-FDG PET data from 205 right-handed subjects (for avoiding the influence of handedness factors on brain function), including 105 post-chemotherapy DLBCL patients and 100 controls. The two groups had similar average age, gender ratio, and years of education. First, we compared the regional brain glucose metabolism using a voxel-based two-sample t-test. Second, we compared the interregional correlation. Finally, we investigated the correlations between the regional brain glucose metabolism and the number of chemotherapy cycles. Results Compared with the controls, the post-chemotherapy group showed higher metabolism in the right hippocampus and parahippocampal gyrus (region of interest (ROI) 1) and the left hippocampus (ROI 2), and lower metabolism in the left medial orbitofrontal gyrus (ROI 3), the left medial superior frontal gyrus (ROI 4), and the left superior frontal gyrus (ROI 5). The two groups had different interregional correlations between ROI 3 and ROI 5. In some brain regions—mainly located in the bilateral frontal gyrus—the number of chemotherapy cycles was positively correlated with the regional brain glucose metabolism. Meanwhile, in some bilateral hippocampus regions, these two parameters were negatively correlated. Conclusion The present study provides solid data on the regional brain glucose metabolism differences between post-chemotherapy DLBCL patients and controls. These results should improve our understanding of human brain functions alterations in post-chemotherapy DLBCL patients and suggest that 18F-FDG PET/CT scanning is a valuable neuroimaging technology for studying chemotherapy-induced brain function changes.
Collapse
Affiliation(s)
- Yuxiao Hu
- Department of PET/CT Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yuxiao Hu,
| | - Qin Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Qin Zhang,
| | - Can Cui
- Department of PET/CT Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Zhang
- Department of PET/CT Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Zhang Y, Shang S, Hu L, You J, Gu W, Muthaiah VP, Chen YC, Yin X. Cerebral Blood Flow and its Connectivity Deficits in Patients With Lung Cancer After Chemotherapy. Front Mol Biosci 2022; 9:761272. [PMID: 35402514 PMCID: PMC8983959 DOI: 10.3389/fmolb.2022.761272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/21/2022] [Indexed: 11/27/2022] Open
Abstract
Purpose: This study was performed to investigate the regional cerebral blood flow (CBF) and CBF connectivity in the chemotherapy-induced cognitive impairment of patients with lung cancer by using arterial spin labeling. Methods: Pseudocontinuous arterial spin labeling perfusion magnetic resonance imaging and neuropsychological tests were performed for 21 patients with non-small cell lung cancer who had received chemotherapy CT (+) and 25 non-small cell lung cancer patients who need chemotherapy but did not yet received CT (-). The CT (+) group previously received platinum-based therapy for 3 months to 6 months (the time from their first chemotherapy to the MRI scan). Group comparisons were performed in the regional normalized CBF and CBF connectivity, and the relationship between the regional normalized CBF and cognitive impairment were detected. Results: The CT (+) group exhibited higher CBF in the left insula, right caudate, right superior occipital gyrus, left superior temporal gyrus (STG), and right middle frontal gyrus (MFG). MoCA scores as well as the memory scores were negatively correlated with the increased CBF in the right MFG (r = −0.492, p = 0.023; r = −0.497, p = 0.022). Alterations in the CBF connectivity were detected only in the CT (+) group between the following: right MFG and the right precentral gyrus; the right caudate and the right lingual gyrus; right caudate and right precuneus; left STG and the bilateral MFG; and the left STG and the right middle cingulum. Conclusion: These findings indicated that chemotherapy is associated with abnormalities in the CBF and connectivity alterations, which may contribute to the cognitive impairment in patients with lung cancer.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Song’an Shang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lanyue Hu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jia You
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Vijaya Prakash Muthaiah
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Yu-Chen Chen, ; Xindao Yin,
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Yu-Chen Chen, ; Xindao Yin,
| |
Collapse
|
9
|
Petr J, Hogeboom L, Nikulin P, Wiegers E, Schroyen G, Kallehauge J, Chmelík M, Clement P, Nechifor RE, Fodor LA, De Witt Hamer PC, Barkhof F, Pernet C, Lequin M, Deprez S, Jančálek R, Mutsaerts HJMM, Pizzini FB, Emblem KE, Keil VC. A systematic review on the use of quantitative imaging to detect cancer therapy adverse effects in normal-appearing brain tissue. MAGMA (NEW YORK, N.Y.) 2022; 35:163-186. [PMID: 34919195 PMCID: PMC8901489 DOI: 10.1007/s10334-021-00985-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022]
Abstract
Cancer therapy for both central nervous system (CNS) and non-CNS tumors has been previously associated with transient and long-term cognitive deterioration, commonly referred to as 'chemo fog'. This therapy-related damage to otherwise normal-appearing brain tissue is reported using post-mortem neuropathological analysis. Although the literature on monitoring therapy effects on structural magnetic resonance imaging (MRI) is well established, such macroscopic structural changes appear relatively late and irreversible. Early quantitative MRI biomarkers of therapy-induced damage would potentially permit taking these treatment side effects into account, paving the way towards a more personalized treatment planning.This systematic review (PROSPERO number 224196) provides an overview of quantitative tomographic imaging methods, potentially identifying the adverse side effects of cancer therapy in normal-appearing brain tissue. Seventy studies were obtained from the MEDLINE and Web of Science databases. Studies reporting changes in normal-appearing brain tissue using MRI, PET, or SPECT quantitative biomarkers, related to radio-, chemo-, immuno-, or hormone therapy for any kind of solid, cystic, or liquid tumor were included. The main findings of the reviewed studies were summarized, providing also the risk of bias of each study assessed using a modified QUADAS-2 tool. For each imaging method, this review provides the methodological background, and the benefits and shortcomings of each method from the imaging perspective. Finally, a set of recommendations is proposed to support future research.
Collapse
Affiliation(s)
- Jan Petr
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Louise Hogeboom
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Pavel Nikulin
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Evita Wiegers
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gwen Schroyen
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jesper Kallehauge
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Marek Chmelík
- Department of Technical Disciplines in Medicine, Faculty of Health Care, University of Prešov, Prešov, Slovakia
| | - Patricia Clement
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Ruben E Nechifor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Liviu-Andrei Fodor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Evidence Based Psychological Assessment and Interventions Doctoral School, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Philip C De Witt Hamer
- Department of Neurosurgery, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Cyril Pernet
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Maarten Lequin
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabine Deprez
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Radim Jančálek
- St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Francesca B Pizzini
- Radiology, Deptartment of Diagnostic and Public Health, Verona University, Verona, Italy
| | - Kyrre E Emblem
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Vera C Keil
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Crouch A, Champion V, Von Ah D. Cognitive Dysfunction in Older Breast Cancer Survivors: An Integrative Review. Cancer Nurs 2022; 45:E162-E178. [PMID: 34870942 PMCID: PMC8649173 DOI: 10.1097/ncc.0000000000000896] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Approximately 60% of the more than 3.8 million breast cancer survivors (BCSs) living in the United States are 60 years or older. Breast cancer survivors experience many symptoms including cognitive dysfunction; however, little is known regarding how age affects these symptoms. OBJECTIVE This integrative review was conducted to synthesize the literature on cognitive dysfunction in older BCSs. The purpose was to (1) describe the prevalence of objective and subjective cognitive dysfunctions and (2) examine factors associated with cognitive dysfunction in older BCSs. METHODS Whittemore and Knafl's integrative review methodology was used to examine cognitive dysfunction in BCSs 60 years or older. RESULTS Twelve quantitative studies were included. Up to 41% of older BCSs experienced cognitive dysfunction on neuropsychological examination, and up to 64% reported cognitive dysfunction on subjective measures pretreatment. Approximately half of older BCSs experienced cognitive decline from pretreatment to posttreatment regardless of cognitive measure. The domains most impacted were memory, executive functioning, and processing speed. Objective and subjective cognitive dysfunctions were associated with age, comorbidities, chemotherapy receipt, sleep, neuropsychological symptom cluster, frailty, and quality of life. CONCLUSIONS Cognitive dysfunction among older BCSs was common both prior to and following treatment. Cognitive dysfunction was associated with multiple factors that are compounded in the aging population and could be detrimental to quality of life and independent living. IMPLICATIONS TO PRACTICE Early assessment and intervention by healthcare providers, including nurses, for cognitive dysfunction in older BCSs are essential. Future research should focus on evidence-based interventions for cognitive dysfunction incorporating the unique needs of older BCSs.
Collapse
Affiliation(s)
- Adele Crouch
- Author Affiliation: Indiana University School of Nursing, Indianapolis
| | | | | |
Collapse
|
11
|
Schroyen G, Vissers J, Smeets A, Gillebert CR, Lemiere J, Sunaert S, Deprez S, Sleurs C. Blood and neuroimaging biomarkers of cognitive sequelae in breast cancer patients throughout chemotherapy: A systematic review. Transl Oncol 2021; 16:101297. [PMID: 34896851 PMCID: PMC8681023 DOI: 10.1016/j.tranon.2021.101297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/27/2022] Open
Abstract
Breast cancer treatment can induce alterations in blood- and neuroimaging-based markers. However, an overview of the predictive value of these markers for cognition is lacking for breast cancer survivors. This systematic review summarized studies of the last decade, using the PubMed database, evaluating blood markers, and the association between blood- or structural neuroimaging markers and cognition across the chemotherapy trajectory for primary breast cancer, following PRISMA guidelines. Forty-four studies were included. Differences were observed in all blood marker categories, from on-therapy until years post-chemotherapy. Associations were found between cognitive functioning and (1) blood markers (mainly inflammation-related) during, shortly-, or years post-chemotherapy and (2) white and gray matter metrics in frontal, temporal and parietal brain regions months up until years post-chemotherapy. Preliminary evidence exists for epigenetic and metabolic changes being associated with cognition, only after chemotherapy. This review demonstrated time-dependent associations between specific blood-based and structural neuroimaging markers with cognitive impairment in patients with breast cancer. Future studies are encouraged to include both neuroimaging- and blood markers (e.g. of neuronal integrity, epigenetics and metabolism) to predict long-term cognitive effects of chemotherapy.
Collapse
Affiliation(s)
- Gwen Schroyen
- Leuven Brain Institute, KU Leuven, Leuven, Belgium; Leuven Cancer Institute, KU Leuven, Leuven, Belgium; Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
| | - Julie Vissers
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Ann Smeets
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium; Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Céline R Gillebert
- Leuven Brain Institute, KU Leuven, Leuven, Belgium; Department of Brain and Cognition, KU Leuven, Leuven 3000, Belgium
| | - Jurgen Lemiere
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium; Pediatric Hemato-Oncology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Stefan Sunaert
- Leuven Brain Institute, KU Leuven, Leuven, Belgium; Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; Radiology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Sabine Deprez
- Leuven Brain Institute, KU Leuven, Leuven, Belgium; Leuven Cancer Institute, KU Leuven, Leuven, Belgium; Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Charlotte Sleurs
- Leuven Brain Institute, KU Leuven, Leuven, Belgium; Leuven Cancer Institute, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Dias-Carvalho A, Ferreira M, Ferreira R, Bastos MDL, Sá SI, Capela JP, Carvalho F, Costa VM. Four decades of chemotherapy-induced cognitive dysfunction: comprehensive review of clinical, animal and in vitro studies, and insights of key initiating events. Arch Toxicol 2021; 96:11-78. [PMID: 34725718 DOI: 10.1007/s00204-021-03171-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/23/2021] [Indexed: 01/22/2023]
Abstract
Cognitive dysfunction has been one of the most reported and studied adverse effects of cancer treatment, but, for many years, it was overlooked by the medical community. Nevertheless, the medical and scientific communities have now recognized that the cognitive deficits caused by chemotherapy have a strong impact on the morbidity of cancer treated patients. In fact, chemotherapy-induced cognitive dysfunction or 'chemobrain' (also named also chemofog) is at present a well-recognized effect of chemotherapy that could affect up to 78% of treated patients. Nonetheless, its underlying neurotoxic mechanism is still not fully elucidated. Therefore, this work aimed to provide a comprehensive review using PubMed as a database to assess the studies published on the field and, therefore, highlight the clinical manifestations of chemobrain and the putative neurotoxicity mechanisms.In the last two decades, a great number of papers was published on the topic, mainly with clinical observations. Chemotherapy-treated patients showed that the cognitive domains most often impaired were verbal memory, psychomotor function, visual memory, visuospatial and verbal learning, memory function and attention. Chemotherapy alters the brain's metabolism, white and grey matter and functional connectivity of brain areas. Several mechanisms have been proposed to cause chemobrain but increase of proinflammatory cytokines with oxidative stress seem more relevant, not excluding the action on neurotransmission and cellular death or impaired hippocampal neurogenesis. The interplay between these mechanisms and susceptible factors makes the clinical management of chemobrain even more difficult. New studies, mainly referring to the underlying mechanisms of chemobrain and protective measures, are important in the future, as it is expected that chemobrain will have more clinical impact in the coming years, since the number of cancer survivors is steadily increasing.
Collapse
Affiliation(s)
- Ana Dias-Carvalho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal. .,UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Mariana Ferreira
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.,LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Maria de Lourdes Bastos
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Susana Isabel Sá
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Paulo Capela
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.,Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal. .,UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
13
|
Neuroinflammation and Its Association with Cognition, Neuronal Markers and Peripheral Inflammation after Chemotherapy for Breast Cancer. Cancers (Basel) 2021; 13:cancers13164198. [PMID: 34439351 PMCID: PMC8391457 DOI: 10.3390/cancers13164198] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Up to 70% of chemotherapy-treated patients experience problems with memory and concentration, potentially caused by direct and indirect neurotoxicity, such as (neuro-)inflammatory processes. Can neuroinflammation changes be detected in chemotherapy-treated patients with breast cancer using translocator protein [18F]DPA714 simultaneous positron emission tomographic- and magnetic resonance imaging? Moreover, what is the association with clinical biomarkers? In a study including 19 chemotherapy-treated breast cancer patients, 18 chemotherapy-naïve and 37 healthy controls, we found significant relative glial overexpression in parietal and occipital brain regions in chemotherapy-treated patients compared to controls, which were associated with cognitive abnormalities and markers of neuronal survival. Shortly after ending chemotherapy, changes in brain neuroinflammation seem to occur, possibly contributing to the cognitive decline seen in breast cancer patients. Additionally, blood levels of an axonal damage marker were 20-fold higher in chemotherapy-treated patients, providing evidence for its use as a biomarker to assess neurotoxic effects of anticancer chemotherapies. Abstract To uncover mechanisms underlying chemotherapy-induced cognitive impairment in breast cancer, we studied new biomarkers of neuroinflammation and neuronal survival. This cohort study included 74 women (47 ± 10 years) from 22 October 2017 until 20 August 2020. Nineteen chemotherapy-treated and 18 chemotherapy-naïve patients with breast cancer were assessed one month after the completion of surgery and/or chemotherapy, and 37 healthy controls were included. Assessments included neuropsychological testing, questionnaires, blood sampling for 17 inflammatory and two neuronal survival markers (neurofilament light-chain (NfL), and brain-derived neurotrophic factor (BDNF) and PET-MR neuroimaging. To investigate neuroinflammation, translocator protein (TSPO) [18F]DPA714-PET-MR was acquired for 15 participants per group, and evaluated by volume of distribution normalized to the cerebellum. Chemotherapy-treated patients showed higher TSPO expression, indicative for neuroinflammation, in the occipital and parietal lobe when compared to healthy controls or chemotherapy-naïve patients. After partial-volume correction, differences with healthy controls persisted (pFWE < 0.05). Additionally, compared to healthy- or chemotherapy-naïve controls, cognitive impairment (17–22%) and altered levels in blood markers (F ≥ 3.7, p ≤ 0.031) were found in chemotherapy-treated patients. NfL, an axonal damage marker, was particularly sensitive in differentiating groups (F = 105, p = 4.2 × 10 −21), with levels 20-fold higher in chemotherapy-treated patients. Lastly, in chemotherapy-treated patients alone, higher local TSPO expression was associated with worse cognitive performance, higher blood levels of BDNF/NfL, and decreased fiber cross-section in the corpus callosum (pFWE < 0.05). These findings suggest that increased neuroinflammation is associated with chemotherapy-related cognitive impairment in breast cancer. Additionally, NfL could be a useful biomarker to assess neurotoxic effects of anticancer chemotherapies.
Collapse
|
14
|
Jia M, Zhang X, Wei L, Gao J. Measurement, outcomes and interventions of cognitive function after breast cancer treatment: A narrative review. Asia Pac J Clin Oncol 2020; 17:321-329. [PMID: 33079484 DOI: 10.1111/ajco.13484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 09/19/2020] [Indexed: 11/29/2022]
Abstract
Cancer-related cognitive impairment (CRCI) is a common complaint in breast cancer patients, especially related to chemotherapy. It is characterized as cognitive disorders in areas of memory, attention and executive function, which can negatively affect patients' quality of life and their ability to work. While various assessment methods of CRCI cause highly diverse results in CRCI-related studies. Currently, it is not clear how cerebral structure and function change in breast cancer patients and underlying mechanisms of developing CRCI are still undefined. Intervention research is limited. This article reviews the results of CRCI-related studies and research progress and discusses the advantages and limits of various methods. Besides, the mechanisms and intervention strategies are reviewed.
Collapse
Affiliation(s)
- Miaomiao Jia
- Department of Breast Surgery, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | - Xiaojun Zhang
- Department of Breast Surgery, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | - Liyuan Wei
- Department of Breast Surgery, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | - Jinnan Gao
- Department of Breast Surgery, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
15
|
Alcantara A, Berenji GR, Scherling CS, Durcanova B, Diaz-Aguilar D, Silverman DHS. Long-Term Clinical and Neuronuclear Imaging Sequelae of Cancer Therapy, Trauma, and Brain Injury. J Nucl Med 2019; 60:1682-1690. [PMID: 31601702 DOI: 10.2967/jnumed.119.237578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/04/2019] [Indexed: 11/16/2022] Open
Abstract
Neuronuclear imaging has been used for several decades in the study of primary neurodegenerative conditions, such as dementia and parkinsonian syndromes, both for research and for clinical purposes. There has been a relative paucity of applications of neuronuclear imaging to evaluate nonneurodegenerative conditions that can also have long-term effects on cognition and function. This article summarizes clinical and imaging aspects of 3 such conditions that have garnered considerable attention in recent years: cancer- and chemotherapy-related cognitive impairment, posttraumatic stress disorder, and traumatic brain injury. Further, we describe current research using neuroimaging tools aimed to better understand the relationships between the clinical presentations and brain structure and function in these conditions.
Collapse
Affiliation(s)
- April Alcantara
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gholam R Berenji
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Radiology, VA Greater Los Angeles Healthcare System, Los Angeles, California; and
| | - Carole S Scherling
- Department of Psychological Science, Belmont University, Nashville, Tennessee
| | - Beata Durcanova
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Daniel Diaz-Aguilar
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Daniel H S Silverman
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
16
|
Tauty A, Noblet V, Paillard C, Fornecker LM, Namer IJ, Bund C. Evaluation of the effects of chemotherapy on brain glucose metabolism in children with Hodgkin's lymphoma. Ann Nucl Med 2019; 33:564-569. [PMID: 31087250 DOI: 10.1007/s12149-019-01363-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/01/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Chemobrain is a recently proposed pathological entity. 18F-FDG PET/CT can show objective abnormalities to explain brain disorders caused by chemotherapy, although no study has investigated these phenomena in children to date. The main objective of the present study was to examine quantitatively the effects of chemotherapy on brain metabolism in a homogeneous population of children treated for Hodgkin's lymphoma using 18F-FDG PET/CT. METHODS In this retrospective study, we included 20 children, newly diagnosed with Hodgkin's lymphoma, who underwent 18F-FDG PET/CT at initial staging and at least one PET/CT in follow-up. The SPM12 software provided t-maps to show the difference in metabolism between these PET/CTs. The statistical maps were analyzed with xjView software to identify the brain regions associated with the clusters detected. RESULTS Altered glucose metabolism was found in the frontal, cingular, and temporoinsular regions after two cycles of chemotherapy. Results in children were compared to a group of 35 adults. For the same statistical threshold, the extent and depth of the metabolic alterations were less in the adult group than in children. CONCLUSIONS 18F-FDG PET/CT is useful in providing objective data to explain brain disorders caused by chemotherapy. This could lead to better care and should be compared to neuropsychological test results.
Collapse
Affiliation(s)
- Alban Tauty
- Service de Biophysique Et de Médecine Nucléaire, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 1, Avenue Molière, 67098, Strasbourg Cedex 09, France
| | - Vincent Noblet
- ICube Université de Strasbourg/CNRS UMR 7357, Strasbourg, France.,Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Catherine Paillard
- Service D'Onco-hématologie Pédiatrique, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France.,Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Luc-Matthieu Fornecker
- Service d'Onco-hématologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Izzie Jacques Namer
- Service de Biophysique Et de Médecine Nucléaire, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 1, Avenue Molière, 67098, Strasbourg Cedex 09, France.,ICube Université de Strasbourg/CNRS UMR 7357, Strasbourg, France.,Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Caroline Bund
- Service de Biophysique Et de Médecine Nucléaire, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 1, Avenue Molière, 67098, Strasbourg Cedex 09, France. .,ICube Université de Strasbourg/CNRS UMR 7357, Strasbourg, France.
| |
Collapse
|
17
|
Di Iulio F, Cravello L, Shofany J, Paolucci S, Caltagirone C, Morone G. Neuropsychological disorders in non-central nervous system cancer: a review of objective cognitive impairment, depression, and related rehabilitation options. Neurol Sci 2019; 40:1759-1774. [PMID: 31049790 DOI: 10.1007/s10072-019-03898-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 04/12/2019] [Indexed: 01/17/2023]
Abstract
AIM The objective of the present review was to systematically characterize the types of cognitive impairment that are found in different non-brain types of cancer as measured by objective and validated tests, and also to further examine depression and cognitive function in cancer patients and explore their available rehabilitation treatments. RESULTS A total of 29 articles were reviewed. Most of these studies suggest that chemotherapy as well as the combination of chemotherapy and hormonal therapy can influence cognition in different types of cancer patients. Breast cancer patients appear to be the most affected in neuropsychological function, specifically in terms of cognitive impairment and reduced quality of life, as compared to other non-brain solid tumours. Overall, the most impaired functions were verbal ability, memory, executive function, and motor speed. CONCLUSION Chemotherapy-related cognitive dysfunction remains under-recognized and undertreated. The various studies reported differing and non-homogenous findings with mixed results, obtained by self-reporting and web-assisted assessment, with other confounding factors such as age and depression during both cancer diagnosis and treatment. An objective neuropsychological assessment is fundamental to avoid underestimation of the extent of chemobrain. Self-reported and web-assisted assessment may ultimately result in confusion between the neuropsychological signs of chemobrain versus those of depression.
Collapse
Affiliation(s)
| | - Luca Cravello
- Centro Regionale Alzheimer ASST Rhodense, Passirana di Rho Hospital, Milan, Italy
| | | | | | - Carlo Caltagirone
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Università degli Studi di Roma Tor Vergata, Rome, Italy
| | | |
Collapse
|
18
|
Walczak P, Janowski M. Chemobrain as a Product of Growing Success in Chemotherapy - Focus on Glia as both a Victim and a Cure. ACTA ACUST UNITED AC 2019; 9:2207-2216. [PMID: 31316584 DOI: 10.4172/neuropsychiatry.1000565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemotherapy-induced cognitive impairment or chemobrain is a frequent consequence of cancer treatment with many psychiatric features. Ironically, the increasing efficacy of chemotherapy leaves growing number of patients alive with chemobrain. Therefore, there is an urgent need for strategies capable of returning cancer survivors back to their pre-morbid quality of life. Molecular mechanisms of chemobrain are largely unknown. Over the last decade there was a lot of emphasis in preclinical research on inflammatory consequences of chemotherapy and oxidative stress but so far none of these approaches were translated into clinical scenario. The co-administration of chemotherapy with protective agents was evaluated preclinically but it should be introduced with caution as potential interference was not yet studied and that could blunt therapeutic efficacy. Stem cell-based regenerative medicine approach has so far been exploited very sparsely in the context of chemobrain and the focus was on indirect mechanisms or neuronal replacement in the hippocampus. However, there is evidence for widespread white matter abnormalities in patients with chemobrain. This is quite logical considering life-long proliferation and turnover of glial cells, which makes them vulnerable to chemotherapeutic agents. Feasibility of glia replacement has been established in mice with global dysmyelination where profound therapeutic effect has been observed but only in case of global cell engraftment (across the entire brain). While global glia replacement has been achieved in mice translation to clinical setting might be challenging due to much larger brain size. Therefore, a lot of attention should be directed towards the route of administration to accomplish widespread cell delivery. Techniques facilitating that broad cell distribution including intra-arterial and intrathecal methods should be considered as very compelling options. Summarizing, chemobrain is a rapidly growing medical problem and global glia replacement should be considered as worthwhile therapeutic strategy.
Collapse
Affiliation(s)
- Piotr Walczak
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology and Neurosurgery, University of Warmia and Mazury, Olsztyn, Poland
| | - Miroslaw Janowski
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Reply to the Letter to the Editor from Peters et al: On the use of the liver as a reference organ for Deauville scoring in lymphoma patients and how it may be affected by liver steatosis. Eur J Nucl Med Mol Imaging 2018; 45:2233-2234. [DOI: 10.1007/s00259-018-4087-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
|
20
|
Wu S, Huang Y, Tang Q, Li Z, Horng H, Li J, Wu Z, Chen Y, Li H. Quantitative evaluation of redox ratio and collagen characteristics during breast cancer chemotherapy using two-photon intrinsic imaging. BIOMEDICAL OPTICS EXPRESS 2018. [PMID: 29541528 PMCID: PMC5846538 DOI: 10.1364/boe.9.001375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Preoperative neoadjuvant treatment in locally advanced breast cancer is recognized as an effective adjuvant therapy, as it improves treatment outcomes. However, the potential complications remain a threat, so there is an urgent clinical need to assess both the tumor response and changes in its microenvironment using non-invasive and precise identification techniques. Here, two-photon microscopy was employed to detect morphological alterations in breast cancer progression and recession throughout chemotherapy. The changes in structure were analyzed based on the autofluorescence and collagen of differing statuses. Parameters, including optical redox ratio, the ratio of second harmonic generation and auto-fluorescence signal, collagen density, and collagen shape orientation, were studied. Results indicate that these parameters are potential indicators for evaluating breast tumors and their microenvironment changes during progression and chemotherapy. Combined analyses of these parameters could provide a quantitative, novel method for monitoring tumor therapy.
Collapse
Affiliation(s)
- Shulian Wu
- College of Photonic and Electronic Engineering, Fujian Normal University, Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fuzhou, Fujian, 350007, China
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- These authors contributed equally to this work
| | - Yudian Huang
- Department of Pathology, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, 350009, China
- These authors contributed equally to this work
| | - Qinggong Tang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Zhifang Li
- College of Photonic and Electronic Engineering, Fujian Normal University, Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fuzhou, Fujian, 350007, China
| | - Hannah Horng
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Jiatian Li
- College of Photonic and Electronic Engineering, Fujian Normal University, Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fuzhou, Fujian, 350007, China
| | - Zaihua Wu
- Department of Pathology, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Yu Chen
- College of Photonic and Electronic Engineering, Fujian Normal University, Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fuzhou, Fujian, 350007, China
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Hui Li
- College of Photonic and Electronic Engineering, Fujian Normal University, Fujian Provincial Key Laboratory of Photonic Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fuzhou, Fujian, 350007, China
| |
Collapse
|
21
|
Abstract
PURPOSE To review how PET/MR technology could add value for pediatric cancer patients. RECENT FINDINGS Since many primary tumors in children are evaluated with MRI and metastases are detected with PET/CT, integrated PET/MR can be a time-efficient and convenient solution for pediatric cancer staging. 18F-FDG PET/MR can assess primary tumors and the whole body in one imaging session, avoid repetitive anesthesia and reduce radiation exposure compared to 18F-FDG PET/CT. This article lists 10 action points, which might improve the clinical value of PET/MR for children with cancer. However, even if PET/MR proves valuable, it cannot enter mainstream applications if it is not accessible to the majority of pediatric cancer patients. Therefore, innovations are needed to make PET/MR scanners affordable and increase patient throughput. SUMMARY PET/MR offers opportunities for more efficient, accurate and safe diagnoses of pediatric cancer patients. The impact on patient management and outcomes has to be substantiated by large-scale prospective clinical trials.
Collapse
Affiliation(s)
- Heike Daldrup-Link
- Department of Radiology, Lucile Packard Children's Hospital, and Pediatric Molecular Imaging Program (@PedsMIPS) in the Molecular Imaging Program at Stanford (MIPS), Stanford University
- Department of Pediatrics, Stanford University
| |
Collapse
|
22
|
In vivo neuroimaging and behavioral correlates in a rat model of chemotherapy-induced cognitive dysfunction. Brain Imaging Behav 2017; 12:87-95. [DOI: 10.1007/s11682-017-9674-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
PET Evidence of the Effect of Donepezil on Cognitive Performance in an Animal Model of Chemobrain. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6945415. [PMID: 27556039 PMCID: PMC4983340 DOI: 10.1155/2016/6945415] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/30/2016] [Indexed: 12/15/2022]
Abstract
A considerable number of patients with breast cancer complain of cognitive impairment after chemotherapy. In this study, we showed that donepezil enhanced memory function and increased brain glucose metabolism in a rat model of cognitive impairment after chemotherapy using behavioral analysis and positron emission tomography (PET). We found that chemotherapy affected spatial learning ability, reference memory, and working memory and that donepezil improved these cognitive impairments. According to PET analysis, chemotherapy reduced glucose metabolism in the medial prefrontal cortex and hippocampus, and donepezil increased glucose metabolism in the bilateral frontal lobe, parietal lobe, and hippocampus. Reduced glucose metabolism was more prominent after treatment with doxorubicin than cyclophosphamide. Our results demonstrated the neural mechanisms for cognitive impairment after chemotherapy and show that cognition was improved after donepezil intervention using both behavioral and imaging methods. Our results suggested that donepezil can be employed clinically for the treatment of cognitive deficits after chemotherapy.
Collapse
|
24
|
Zitella LM, Teplitzky BA, Yager P, Hudson HM, Brintz K, Duchin Y, Harel N, Vitek JL, Baker KB, Johnson MD. Subject-specific computational modeling of DBS in the PPTg area. Front Comput Neurosci 2015; 9:93. [PMID: 26236229 PMCID: PMC4500924 DOI: 10.3389/fncom.2015.00093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/02/2015] [Indexed: 11/23/2022] Open
Abstract
Deep brain stimulation (DBS) in the pedunculopontine tegmental nucleus (PPTg) has been proposed to alleviate medically intractable gait difficulties associated with Parkinson's disease. Clinical trials have shown somewhat variable outcomes, stemming in part from surgical targeting variability, modulating fiber pathways implicated in side effects, and a general lack of mechanistic understanding of DBS in this brain region. Subject-specific computational models of DBS are a promising tool to investigate the underlying therapy and side effects. In this study, a parkinsonian rhesus macaque was implanted unilaterally with an 8-contact DBS lead in the PPTg region. Fiber tracts adjacent to PPTg, including the oculomotor nerve, central tegmental tract, and superior cerebellar peduncle, were reconstructed from a combination of pre-implant 7T MRI, post-implant CT, and post-mortem histology. These structures were populated with axon models and coupled with a finite element model simulating the voltage distribution in the surrounding neural tissue during stimulation. This study introduces two empirical approaches to evaluate model parameters. First, incremental monopolar cathodic stimulation (20 Hz, 90 μs pulse width) was evaluated for each electrode, during which a right eyelid flutter was observed at the proximal four contacts (−1.0 to −1.4 mA). These current amplitudes followed closely with model predicted activation of the oculomotor nerve when assuming an anisotropic conduction medium. Second, PET imaging was collected OFF-DBS and twice during DBS (two different contacts), which supported the model predicted activation of the central tegmental tract and superior cerebellar peduncle. Together, subject-specific models provide a framework to more precisely predict pathways modulated by DBS.
Collapse
Affiliation(s)
- Laura M Zitella
- Department of Biomedical Engineering, University of Minnesota Minneapolis, MN, USA
| | - Benjamin A Teplitzky
- Department of Biomedical Engineering, University of Minnesota Minneapolis, MN, USA
| | - Paul Yager
- Department of Neurology, University of Minnesota Minneapolis, MN, USA
| | - Heather M Hudson
- Department of Neurology, University of Minnesota Minneapolis, MN, USA
| | - Katelynn Brintz
- Department of Biomedical Engineering, University of Minnesota Minneapolis, MN, USA
| | - Yuval Duchin
- Center for Magnetic Resonance Research, University of Minnesota Minneapolis, MN, USA
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota Minneapolis, MN, USA
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota Minneapolis, MN, USA
| | - Kenneth B Baker
- Department of Neurology, University of Minnesota Minneapolis, MN, USA
| | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota Minneapolis, MN, USA ; Institute for Translational Neuroscience, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
25
|
Wefel JS, Kesler SR, Noll KR, Schagen SB. Clinical characteristics, pathophysiology, and management of noncentral nervous system cancer-related cognitive impairment in adults. CA Cancer J Clin 2015; 65:123-38. [PMID: 25483452 PMCID: PMC4355212 DOI: 10.3322/caac.21258] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Answer questions and earn CME/CNE Over the past few decades, a body of research has emerged confirming what many adult patients with noncentral nervous system cancer have long reported-that cancer and its treatment are frequently associated with cancer-related cognitive impairment (CRCI). The severity of CRCI varies, and symptoms can emerge early or late in the disease course. Nonetheless, CRCI is typically mild to moderate in nature and primarily involves the domains of memory, attention, executive functioning, and processing speed. Animal models and novel neuroimaging techniques have begun to unravel the pathophysiologic mechanisms underlying CRCI, including the role of inflammatory cascades, direct neurotoxic effects, damage to progenitor cells, white matter abnormalities, and reduced functional connectivity, among others. Given the paucity of research on CRCI with other cancer populations, this review synthesizes the current literature with a deliberate focus on CRCI within the context of breast cancer. A hypothetical case-study approach is used to illustrate how CRCI often presents clinically and how current science can inform practice. While the literature regarding intervention for CRCI is nascent, behavioral and pharmacologic approaches are discussed.
Collapse
Affiliation(s)
- Jeffrey S. Wefel
- Associate Professor, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Corresponding author: Jeffrey S. Wefel, PhD, Department of Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX 77030;
| | - Shelli R. Kesler
- Associate Professor, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kyle R. Noll
- Associate Professor, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sanne B. Schagen
- Associate Professor, Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|