1
|
Tarkowska A, Furmaga-Jabłońska W, Bogucki J, Kocki J, Pluta R. Hypothermia after Perinatal Asphyxia Does Not Affect Genes Responsible for Amyloid Production in Neonatal Peripheral Lymphocytes. J Clin Med 2022; 11:3263. [PMID: 35743334 PMCID: PMC9225259 DOI: 10.3390/jcm11123263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/11/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, the expression of the genes of the amyloid protein precursor, β-secretase, presenilin 1 and 2 by RT-PCR in the lymphocytes of newborns after perinatal asphyxia and perinatal asphyxia treated with hypothermia was analyzed at the age of 15-21 days. The relative quantification of Alzheimer's-disease-related genes was first performed by comparing the peripheral lymphocytes of non-asphyxia control versus those with asphyxia or asphyxia with hypothermia. In the newborns who had perinatal asphyxia, the peripheral lymphocytes presented a decreased expression of the amyloid protein precursor and β-secretase genes. On the other hand, the expression of the presenilin 1 and 2 genes increased in the studied group. The expression of the studied genes in the asphyxia group treated with hypothermia had an identical pattern of changes that were not statistically significant to the asphyxia group. This suggests that the expression of the genes involved in the metabolism of the amyloid protein precursor in the peripheral lymphocytes may be a biomarker of progressive pathological processes in the brain after asphyxia that are not affected by hypothermia. These are the first data in the world showing the role of hypothermia in the gene changes associated with Alzheimer's disease in the peripheral lymphocytes of newborns after asphyxia.
Collapse
Affiliation(s)
- Agata Tarkowska
- Department of Neonate and Infant Pathology, Medical University of Lublin, 20-093 Lublin, Poland; (A.T.); (W.F.-J.)
| | - Wanda Furmaga-Jabłońska
- Department of Neonate and Infant Pathology, Medical University of Lublin, 20-093 Lublin, Poland; (A.T.); (W.F.-J.)
| | - Jacek Bogucki
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland;
| | - Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
2
|
Brain imaging abnormalities in mixed Alzheimer's and subcortical vascular dementia. Neurol Sci 2022:1-14. [PMID: 35614521 DOI: 10.1017/cjn.2022.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Vargas-George S, Dave KR. Models of cerebral amyloid angiopathy-related intracerebral hemorrhage. BRAIN HEMORRHAGES 2022. [DOI: 10.1016/j.hest.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
4
|
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Sahib S, Tian ZR, Bryukhovetskiy I, Manzhulo I, Menon PK, Patnaik R, Wiklund L, Sharma A. Alzheimer's disease neuropathology is exacerbated following traumatic brain injury. Neuroprotection by co-administration of nanowired mesenchymal stem cells and cerebrolysin with monoclonal antibodies to amyloid beta peptide. PROGRESS IN BRAIN RESEARCH 2021; 265:1-97. [PMID: 34560919 DOI: 10.1016/bs.pbr.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Military personnel are prone to traumatic brain injury (TBI) that is one of the risk factors in developing Alzheimer's disease (AD) at a later stage. TBI induces breakdown of the blood-brain barrier (BBB) to serum proteins into the brain and leads to extravasation of plasma amyloid beta peptide (ΑβP) into the brain fluid compartments causing AD brain pathology. Thus, there is a need to expand our knowledge on the role of TBI in AD. In addition, exploration of the novel roles of nanomedicine in AD and TBI for neuroprotection is the need of the hour. Since stem cells and neurotrophic factors play important roles in TBI and in AD, it is likely that nanodelivery of these agents exert superior neuroprotection in TBI induced exacerbation of AD brain pathology. In this review, these aspects are examined in details based on our own investigations in the light of current scientific literature in the field. Our observations show that TBI exacerbates AD brain pathology and TiO2 nanowired delivery of mesenchymal stem cells together with cerebrolysin-a balanced composition of several neurotrophic factors and active peptide fragments, and monoclonal antibodies to amyloid beta protein thwarted the development of neuropathology following TBI in AD, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Is Cerebral Amyloid-β Deposition Related to Post-stroke Cognitive Impairment? Transl Stroke Res 2021; 12:946-957. [PMID: 34195928 DOI: 10.1007/s12975-021-00921-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 01/20/2023]
Abstract
Approximately two-thirds of ischemic stroke patients suffer from different levels of post-stroke cognitive impairment (PSCI), but the underlying mechanisms of PSCI remain unclear. Cerebral amyloid-β (Aβ) deposition, a pathological hallmark of Alzheimer's disease, has been discovered in the brains of stroke patients in some autopsy studies. However, less is known about the role of Aβ pathology in the development of PSCI. It is hypothesized that cerebral ischemic injury may lead to neurotoxic Aβ accumulation in the brain, which further induces secondary neurodegeneration and progressive cognitive decline after stroke onset. In this review, we summarized available evidence from pre-clinical and clinical studies relevant to the aforementioned hypothesis. We found inconsistency in the results obtained from studies in rodents, nonhuman primates, and stroke patients. Moreover, the causal relationship between post-stroke cerebral Aβ deposition and PSCI has been uncertain and controversial. Taken together, evidence supporting the hypothesis that brain ischemia induces cerebral Aβ deposition has been insufficient so far. And, there is still no consensus regarding the contribution of cerebral amyloid pathology to PSCI. Other non-amyloid neurodegenerative mechanisms might be involved and remain to be fully elucidated.
Collapse
|
6
|
Brodtmann A, Khlif MS, Bird LJ, Cumming T, Werden E. Hippocampal Volume and Amyloid PET Status Three Years After Ischemic Stroke: A Pilot Study. J Alzheimers Dis 2021; 80:527-532. [PMID: 33554919 DOI: 10.3233/jad-201525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hippocampal atrophy is seen in many neurodegenerative disorders and may be a cardinal feature of vascular neurodegeneration. We examined hippocampal volume (HV) in a group of ischemic stroke survivors with amyloid 18F-NAV4694 PET imaging three years after stroke. We compared HV between the amyloid-positive (n = 4) and amyloid-negative (n = 29) groups, and associations with co-morbidities using Charlson Comorbidity Indices and multi-way ANOVA. Amyloid status was not associated with verbal or visual delayed free recall memory indices or cognitive impairment. We found no association between amyloid status and HV in this group of ischemic stroke survivors.
Collapse
Affiliation(s)
- Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia.,Department of Neurology, Austin Health, Heidelberg, VIC, Australia.,Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia.,Eastern Cognitive Disorders Clinic, Box Hill Hospital, Monash University, Box Hill, VIC, Australia
| | - Mohamed Salah Khlif
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Laura J Bird
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Toby Cumming
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Emilio Werden
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Loeffler DA. Modifiable, Non-Modifiable, and Clinical Factors Associated with Progression of Alzheimer's Disease. J Alzheimers Dis 2021; 80:1-27. [PMID: 33459643 DOI: 10.3233/jad-201182] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is an extensive literature relating to factors associated with the development of Alzheimer's disease (AD), but less is known about factors which may contribute to its progression. This review examined the literature with regard to 15 factors which were suggested by PubMed search to be positively associated with the cognitive and/or neuropathological progression of AD. The factors were grouped as potentially modifiable (vascular risk factors, comorbidities, malnutrition, educational level, inflammation, and oxidative stress), non-modifiable (age at clinical onset, family history of dementia, gender, Apolipoprotein E ɛ4, genetic variants, and altered gene regulation), and clinical (baseline cognitive level, neuropsychiatric symptoms, and extrapyramidal signs). Although conflicting results were found for the majority of factors, a positive association was found in nearly all studies which investigated the relationship of six factors to AD progression: malnutrition, genetic variants, altered gene regulation, baseline cognitive level, neuropsychiatric symptoms, and extrapyramidal signs. Whether these or other factors which have been suggested to be associated with AD progression actually influence the rate of decline of AD patients is unclear. Therapeutic approaches which include addressing of modifiable factors associated with AD progression should be considered.
Collapse
Affiliation(s)
- David A Loeffler
- Beaumont Research Institute, Department of Neurology, Beaumont Health, Royal Oak, MI, USA
| |
Collapse
|
8
|
Koenig LN, McCue LM, Grant E, Massoumzadeh P, Roe CM, Xiong C, Moulder KL, Wang L, Zazulia AR, Kelly P, Dincer A, Zaza A, Shimony JS, Benzinger TLS, Morris JC. Lack of association between acute stroke, post-stroke dementia, race, and β-amyloid status. Neuroimage Clin 2021; 29:102553. [PMID: 33524806 PMCID: PMC7848631 DOI: 10.1016/j.nicl.2020.102553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Stroke and Alzheimer disease share risk factors and often co-occur, and both have been reported to have a higher prevalence in African Americans as compared to non-Hispanic whites. However, their interaction has not been established. The objective of this study was to determine if preclinical Alzheimer disease is a risk factor for stroke and post-stroke dementia and whether racial differences moderate this relationship. METHODS This case-control study was analyzed in 2019 using retrospective data from 2007 to 2013. Participants were adults age 65 and older with and without acute ischemic stroke. Recruitment included word of mouth and referrals in Saint Louis, MO, with stroke participants recruited from acutely hospitalized patients and non-stroke participants from community living older adults who were research volunteers. Our assessment included radiologic reads of infarcts, microbleeds, and white matter hyperintensitites (WMH); a Pittsburgh Compound B PET measure of cortical β-amyloid binding; quantitative measures of hippocampal and WMH volume; longitudinal Mini Mental State Examination (MMSE) scores; and Clinical Dementia Rating (CDR) 1 year post-stroke. RESULTS A total of 243 participants were enrolled, 81 of which had a recent ischemic stroke. Participants had a mean age of 75, 57% were women, and 52% were African American. Cortical amyloid did not differ significantly by race, stroke status, or CDR post-stroke. There were racial differences in MMSE scores at baseline (mean 26.8 for African Americans, 27.9 for non-Hispanic whites, p = 0.03), but not longitudinally. African Americans were more likely to have microbleeds (32.8% vs 22.6%, p = 0.04), and within the acute stroke group, African Americans were more likely to have small infarcts (75.6% vs 56.8%, p = 0.049). CONCLUSION Preclinical Alzheimer disease did not show evidence of being a risk factor for stroke nor predictive of post-stroke dementia. We did not observe racial differences in β-amyloid levels. However, even after controlling for several vascular risk factors, African Americans with clinical stroke presentations had greater levels of vascular pathology on MRI.
Collapse
Affiliation(s)
- Lauren N Koenig
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Lena M McCue
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO USA
| | - Elizabeth Grant
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO USA
| | - Parinaz Massoumzadeh
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Catherine M Roe
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO USA
| | - Krista L Moulder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
| | - Liang Wang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Allyson R Zazulia
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
| | - Peggy Kelly
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
| | - Aylin Dincer
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Aiad Zaza
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Joshua S Shimony
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA.
| |
Collapse
|
9
|
Hagberg G, Ihle-Hansen H, Fure B, Thommessen B, Ihle-Hansen H, Øksengård AR, Beyer MK, Wyller TB, Müller EG, Pendlebury ST, Selnes P. No evidence for amyloid pathology as a key mediator of neurodegeneration post-stroke - a seven-year follow-up study. BMC Neurol 2020; 20:174. [PMID: 32384876 PMCID: PMC7206753 DOI: 10.1186/s12883-020-01753-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/29/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cognitive impairment (CI) with mixed vascular and neurodegenerative pathologies after stroke is common. The role of amyloid pathology in post-stroke CI is unclear. We hypothesize that amyloid deposition, measured with Flutemetamol (18F-Flut) positron emission tomography (PET), is common in seven-year stroke survivors diagnosed with CI and, further, that quantitatively assessed 18F-Flut-PET uptake after 7 years correlates with amyloid-β peptide (Aβ42) levels in cerebrospinal fluid (CSF) at 1 year, and with measures of neurodegeneration and cognition at 7 years post-stroke. Methods 208 patients with first-ever stroke or transient Ischemic Attack (TIA) without pre-existing CI were included during 2007 and 2008. At one- and seven-years post-stroke, cognitive status was assessed, and categorized into dementia, mild cognitive impairment or normal. Etiologic sub-classification was based on magnetic resonance imaging (MRI) findings, CSF biomarkers and clinical cognitive profile. At 7 years, patients were offered 18F-Flut-PET, and amyloid-positivity was assessed visually and semi-quantitatively. The associations between 18F-Flut-PET standardized uptake value ratios (SUVr) and measures of neurodegeneration (medial temporal lobe atrophy (MTLA), global cortical atrophy (GCA)) and cognition (Mini-Mental State Exam (MMSE), Trail-making test A (TMT-A)) and CSF Aβ42 levels were assessed using linear regression. Results In total, 111 patients completed 7-year follow-up, and 26 patients agreed to PET imaging, of whom 13 had CSF biomarkers from 1 year. Thirteen out of 26 patients were diagnosed with CI 7 years post-stroke, but only one had visually assessed amyloid positivity. CSF Aβ42 levels at 1 year, MTA grade, GCA scale, MMSE score or TMT-A at 7 years did not correlate with 18F-Flut-PET SUVr in this cohort. Conclusions Amyloid binding was not common in 7-year stroke survivors diagnosed with CI. Quantitatively assessed, cortical amyloid deposition did not correlate with other measures related to neurodegeneration or cognition. Therefore, amyloid pathology may not be a key mediator of neurodegeneration 7 years post-stroke. Trial registration Clinicaltrials.gov (NCT00506818). July 23, 2007. Inclusion from February 2007, randomization and intervention from May 2007 and trial registration in July 2007.
Collapse
Affiliation(s)
- Guri Hagberg
- Bærum Hospital, Vestre Viken Hospital Trust, N-3004, Drammen, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Hege Ihle-Hansen
- Bærum Hospital, Vestre Viken Hospital Trust, N-3004, Drammen, Norway.,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Brynjar Fure
- Department of Neurology, Department of Internal Medicine, Central Hospital Karlstad and Faculty of Medicine, Örebro University, Örebro, Sweden
| | - Bente Thommessen
- Department of Neurology, Akershus University Hospital, Oslo, Norway
| | - Håkon Ihle-Hansen
- Bærum Hospital, Vestre Viken Hospital Trust, N-3004, Drammen, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Mona K Beyer
- Division of Radiology, Nuclear Medicine Oslo University Hospital, Oslo, Norway
| | - Torgeir B Wyller
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Ebba Gløersen Müller
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Sarah T Pendlebury
- Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Per Selnes
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Neurology, Akershus University Hospital, Oslo, Norway
| |
Collapse
|