1
|
Tik M, Vasileiadi M, Woletz M, Linhardt D, Schuler AL, Williams N, Windischberger C. Concurrent TMS/fMRI reveals individual DLPFC dose-response pattern. Neuroimage 2023; 282:120394. [PMID: 37805020 DOI: 10.1016/j.neuroimage.2023.120394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND TMS is a valuable tool in both research and clinical settings, playing a crucial role in understanding brain-behavior relationships and providing treatment for various neurological and psychiatric conditions. Importantly, TMS over left DLPFC is an FDA approved treatment for MDD. Despite its potential, response variability to TMS remains a challenge, with stimulation parameters, particularly the stimulation intensity, being a primary contributor to these differences. OBJECTIVE The objective of this study was to establish dose-response relationships of TMS stimulation in DLPFC by means of concurrent TMS/fMRI. METHODS Here, we stimulated 15 subjects at different stimulation intensities of 80, 90, 100 and 110 % relative to the motor threshold during concurrent TMS/fMRI. The experiment comprised two sessions: one session to collect anatomical data in order to perform neuronavigation and one session dedicated to dose-response mapping. We calculated GLMs for each intensity level and each subject, as well as at a group-level per intensity. RESULTS On a group level, we show that the strongest BOLD-response was at 100 % stimulation. However, investigating individual dose response-relationships showed differences in response patterns across the group: subjects that responded to subthreshold stimulation, subjects that required above threshold stimulation in order to show a significant BOLD-response and atypical responders. CONCLUSIONS We observed qualitative inter-subject variability in terms of dose-response relationship to TMS over left DLPFC, which hints towards the motor threshold not being directly transferable to the excitability of the DLPFC. Concurrent TMS/fMRI might have the potential to improve response rates to rTMS applications. As such, it may be valuable in the future to consider implementing this approach prior to clinical TMS or validating more cost-effective methods to determine dose and target with respect to changes in clinical symptoms.
Collapse
Affiliation(s)
- Martin Tik
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Lazarettgasse 14, Vienna 1090, Austria; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Maria Vasileiadi
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Lazarettgasse 14, Vienna 1090, Austria
| | - Michael Woletz
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Lazarettgasse 14, Vienna 1090, Austria
| | - David Linhardt
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Lazarettgasse 14, Vienna 1090, Austria
| | - Anna-Lisa Schuler
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Lazarettgasse 14, Vienna 1090, Austria
| | - Nolan Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Christian Windischberger
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Lazarettgasse 14, Vienna 1090, Austria.
| |
Collapse
|
2
|
Aghamirzayeva K, Temuçin ÇM, Yıldız FG. Excitability Changes in Occipital Cortex After Continuous Theta-Burst Stimulation. Noro Psikiyatr Ars 2023; 67:228-234. [PMID: 39258130 PMCID: PMC11382566 DOI: 10.29399/npa.28431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/04/2023] [Indexed: 09/12/2024] Open
Abstract
Introduction Modulation of visual cortical structures by repetitive transcranial magnetic stimulation is rarely observed in literature. In this study; the researchers aimed to investigate the neurophysiological alterations by using continuous theta burst stimulation (cTBS) protocol over the occipital cortex in healthy subjects. Methods Twenty-five (15 female, 10 male) (mean age 29.84±4.7 years) healthy individuals were included in sham and real cTBS occipital stimulation sessions. Before and after each session, neurophysiological studies including phosphene threshold and visual evoked potential (VEP) responses were recorded. The P100 latency values and maximum amplitude values between N75-P100 peaks of 100 responses of 1000 uninterrupted continuous visual stimuli were measured. The VEP habituation and phosphene thresholds were compared in sham and real cTBS sessions. Results The phosphene threshold values increased to statistically significant levels after the real cTBS session. Visual evoked potential habituation was observed in both sham and real cTBS sessions in individuals without significant differences. Also, no difference between the P100 latencies and N75-P100 amplitude values in the sham and real cTBS sessions was observed. Conclusion Phosphene threshold measurements demonstrated the modulation of the occipital cortex excitability via cTBS in healthy subjects.
Collapse
Affiliation(s)
| | - Çağrı Mesut Temuçin
- Hacettepe University, School of Medicine, Department of Neurology, Ankara, Turkey
- Hacettepe University, School of Medicine, Department of Neurology, TMS-EMG Unit, Ankara, Turkey
| | - Fatma Gökçem Yıldız
- Hacettepe University, School of Medicine, Department of Neurology, Ankara, Turkey
- Hacettepe University, School of Medicine, Department of Neurology, TMS-EMG Unit, Ankara, Turkey
| |
Collapse
|
3
|
Bello UM, Wang J, Park ASY, Tan KWS, Cheung BWS, Thompson B, Cheong AMY. Can visual cortex non-invasive brain stimulation improve normal visual function? A systematic review and meta-analysis. Front Neurosci 2023; 17:1119200. [PMID: 36937668 PMCID: PMC10017867 DOI: 10.3389/fnins.2023.1119200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Objective Multiple studies have explored the use of visual cortex non-invasive brain stimulation (NIBS) to enhance visual function. These studies vary in sample size, outcome measures, and methodology. We conducted a systematic review and meta-analyses to assess the effects of NIBS on visual functions in human participants with normal vision. Methods We followed the PRISMA guidelines, and a review protocol was registered with PROSPERO before study commencement (CRD42021255882). We searched Embase, Medline, PsychInfo, PubMed, OpenGrey and Web of Science using relevant keywords. The search covered the period from 1st January 2000 until 1st September 2021. Comprehensive meta-analysis (CMA) software was used for quantitative analysis. Results Fifty studies were included in the systematic review. Only five studies utilized transcranial magnetic stimulation (TMS) and no TMS studies met our pre-specified criteria for meta-analysis. Nineteen transcranial electrical stimulation studies (tES, 38%) met the criteria for meta-analysis and were the focus of our review. Meta-analysis indicated acute effects (Hedges's g = 0.232, 95% CI: 0.023-0.442, p = 0.029) and aftereffects (0.590, 95% CI: 0.182-0.998, p = 0.005) of tES on contrast sensitivity. Visual evoked potential (VEP) amplitudes were significantly enhanced immediately after tES (0.383, 95% CI: 0.110-0.665, p = 0.006). Both tES (0.563, 95% CI: 0.230-0.896, p = 0.001) and anodal-transcranial direct current stimulation (a-tDCS) alone (0.655, 95% CI: 0.273-1.038, p = 0.001) reduced crowding in peripheral vision. The effects of tES on visual acuity, motion perception and reaction time were not statistically significant. Conclusion There are significant effects of visual cortex tES on contrast sensitivity, VEP amplitude, an index of cortical excitability, and crowding among normally sighted individuals. Additional studies are required to enable a comparable meta-analysis of TMS effects. Future studies with robust experimental designs are needed to extend these findings to populations with vision loss. Clinical trial registration ClinicalTrials.gov/, identifier CRD42021255882.
Collapse
Affiliation(s)
- Umar M. Bello
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- Department of Physiotherapy and Paramedicine, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Jingying Wang
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Adela S. Y. Park
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Ken W. S. Tan
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Blossom W. S. Cheung
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Benjamin Thompson
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Allen M. Y. Cheong
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- *Correspondence: Allen M. Y. Cheong,
| |
Collapse
|
4
|
Chiappini E, Sel A, Hibbard PB, Avenanti A, Romei V. Increasing interhemispheric connectivity between human visual motion areas uncovers asymmetric sensitivity to horizontal motion. Curr Biol 2022; 32:4064-4070.e3. [PMID: 35987211 DOI: 10.1016/j.cub.2022.07.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022]
Abstract
Our conscious perceptual experience relies on a hierarchical process involving integration of low-level sensory encoding and higher-order sensory selection.1 This hierarchical process may scale at different levels of brain functioning, including integration of information between the hemispheres.2-5 Here, we test this hypothesis for the perception of visual motion stimuli. Across 3 experiments, we manipulated the connectivity between the left and right visual motion complexes (V5/MT+) responsible for horizontal motion perception2,3 by means of transcranial magnetic stimulation (TMS).4,5 We found that enhancing the strength of connections from the left to the right V5/MT+, by inducing spike-timing-dependent plasticity6 in this pathway, increased sensitivity to horizontal motion. These changes were present immediately and lasted at least 90 min after intervention. Notably, little perceptual changes were observed when strengthening connections from the right to the left V5/MT+. Furthermore, we found that this asymmetric modulation was mirrored by an asymmetric perceptual bias in the direction of the horizontal motion. Overall, observers were biased toward leftward relative to rightward motion direction. Crucially, following the strengthening of the connections from right to left V5/MT+, this bias could be momentarily reversed. These results suggest that the projections connecting left and right V5/MT+ in the human visual cortex are asymmetrical, subtending a hierarchical role of hemispheric specialization7-10 favoring left-to-right hemisphere processing for integrating local sensory input into coherent global motion perception.
Collapse
Affiliation(s)
- Emilio Chiappini
- Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, Campus di Cesena, Via Rasi e Spinelli 176, 47521 Cesena, Italy; Institut für Klinische und Gesundheitspsychologie, Universität Wien, Liebiggasse 5, 1010 Vienna, Austria
| | - Alejandra Sel
- Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Paul B Hibbard
- Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, Campus di Cesena, Via Rasi e Spinelli 176, 47521 Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, 3460000 Talca, Chile
| | - Vincenzo Romei
- Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, Campus di Cesena, Via Rasi e Spinelli 176, 47521 Cesena, Italy.
| |
Collapse
|
5
|
Dai B, Cham KM, Abel LA. Perception of Coherent Motion in Infantile Nystagmus Syndrome. Invest Ophthalmol Vis Sci 2022; 63:31. [PMID: 35072688 PMCID: PMC8802013 DOI: 10.1167/iovs.63.1.31] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Purpose Research on infantile nystagmus syndrome (INS) and motion perception is limited. We investigated how individuals with INS perform coherent motion tasks. Particularly, we assessed how the null position affects their performance. Methods Subjects with INS and controls identified the direction of coherent motion stimuli (22 subjects with INS and 13 controls) in a two-alternative forced-choice design. For subjects with INS, testing was done at the null position and 15 degrees away from it. If there was no null, testing was done at primary gaze position and 15 degrees away from primary. For controls, testing was done at primary gaze position and 20 degrees away from primary. Horizontal and vertical motion coherence thresholds were determined. Results Subjects with INS showed significantly higher horizontal and vertical motion coherence thresholds compared with controls at both gaze positions (P < 0.001). Within the INS group, for 12 subjects with INS who had an identified null position, no differences in coherence thresholds were found between their null and 15 degrees away from it (P > 0.05). Conclusions Coherent motion perception was impaired in subjects with INS. The null position did not significantly influence motion coherence thresholds for either horizontal or vertical motion.
Collapse
Affiliation(s)
- Bing Dai
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| | - Kwang Meng Cham
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| | - Larry Allen Abel
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia.,Optometry, School of Medicine, Deakin University, Waurn Ponds, Australia
| |
Collapse
|
6
|
Pavan A, Ghin F, Campana G. Visual Short-Term Memory for Coherent and Sequential Motion: A rTMS Investigation. Brain Sci 2021; 11:brainsci11111471. [PMID: 34827470 PMCID: PMC8615668 DOI: 10.3390/brainsci11111471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 01/10/2023] Open
Abstract
We investigated the role of the human medio-temporal complex (hMT+) in the memory encoding and storage of a sequence of four coherently moving random dot kinematograms (RDKs), by applying repetitive transcranial magnetic stimulation (rTMS) during an early or late phase of the retention interval. Moreover, in a second experiment, we also tested whether disrupting the functional integrity of hMT+ during the early phase impaired the precision of the encoded motion directions. Overall, results showed that both recognition accuracy and precision were worse in middle serial positions, suggesting the occurrence of primacy and recency effects. We found that rTMS delivered during the early (but not the late) phase of the retention interval was able to impair not only recognition of RDKs, but also the precision of the retained motion direction. However, such impairment occurred only for RDKs presented in middle positions along the presented sequence, where performance was already closer to chance level. Altogether these findings suggest an involvement of hMT+ in the memory encoding of visual motion direction. Given that both position sequence and rTMS modulated not only recognition but also the precision of the stored information, these findings are in support of a model of visual short-term memory with a variable resolution of each stored item, consistent with the assigned amount of memory resources, and that such item-specific memory resolution is supported by the functional integrity of area hMT+.
Collapse
Affiliation(s)
- Andrea Pavan
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40127 Bologna, Italy
- School of Psychology, University of Lincoln, Brayford Wharf East, Lincoln LN5 7AY, UK;
- Correspondence:
| | - Filippo Ghin
- School of Psychology, University of Lincoln, Brayford Wharf East, Lincoln LN5 7AY, UK;
- Department of Child and Adolescent Psychiatry, Cognitive Neurophysiology, Faculty of Medicine of the TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Gianluca Campana
- Dipartimento di Psicologia Generale, University of Padova, Via Venezia 8, 35131 Padova, Italy;
- Human Inspired Technology Research Centre, University of Padova, Via Luzzati 4, 35121 Padova, Italy
| |
Collapse
|
7
|
Chow A, Silva AE, Tsang K, Ng G, Ho C, Thompson B. Binocular Integration of Perceptually Suppressed Visual Information in Amblyopia. Invest Ophthalmol Vis Sci 2021; 62:11. [PMID: 34515731 PMCID: PMC8444466 DOI: 10.1167/iovs.62.12.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/20/2021] [Indexed: 01/01/2023] Open
Abstract
Purpose The purpose of this study was to assess whether motion information from suppressed amblyopic eyes can influence visual perception. Methods Participants with normal vision (n = 20) and with amblyopia (n = 20; 11 anisometropic and 9 strabismic/mixed) viewed dichoptic, orthogonal drifting gratings through a mirror stereoscope. Participants continuously reported form and motion percepts as gratings rivaled for 60 seconds. Responses were binned into categories ranging from binocular integration to complete suppression. Periods when the grating presented to the nondominant/amblyopic eye was suppressed were analyzed further to determine the extent of binocular integration of motion. Results Individuals with amblyopia experienced longer periods of non-preferred eye suppression than controls. When the non-preferred eye grating was suppressed, binocular integration of motion occurred 48.1 ± 6.2% and 31.2 ± 5.8% of the time in control and amblyopic participants, respectively. Periods of motion integration from the suppressed eye were significantly non-zero for both groups. Conclusions Visual information seen only by a suppressed amblyopic eye can be binocularly integrated and influence the overall visual percept. These findings reveal that visual information subjected to interocular suppression can still contribute to binocular vision and suggest the use of appropriate optical correction for the amblyopic eye to improve image quality for binocular combination.
Collapse
Affiliation(s)
- Amy Chow
- Department of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Andrew E. Silva
- Department of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Katelyn Tsang
- Department of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Gabriel Ng
- Mount Pleasant Optometry Centre, Vancouver, British Columbia, Canada
| | - Cindy Ho
- Mount Pleasant Optometry Centre, Vancouver, British Columbia, Canada
| | - Benjamin Thompson
- Department of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
- Center for Eye and Vision Research, 17W Science Park, Hong Kong
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Ghin F, O'Hare L, Pavan A. Electrophysiological aftereffects of high-frequency transcranial random noise stimulation (hf-tRNS): an EEG investigation. Exp Brain Res 2021; 239:2399-2418. [PMID: 34105019 PMCID: PMC8354881 DOI: 10.1007/s00221-021-06142-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/24/2021] [Indexed: 12/02/2022]
Abstract
There is evidence that high-frequency transcranial random noise stimulation (hf-tRNS) is effective in improving behavioural performance in several visual tasks. However, so far there has been limited research into the spatial and temporal characteristics of hf-tRNS-induced facilitatory effects. In the present study, electroencephalogram (EEG) was used to investigate the spatial and temporal dynamics of cortical activity modulated by offline hf-tRNS on performance on a motion direction discrimination task. We used EEG to measure the amplitude of motion-related VEPs over the parieto-occipital cortex, as well as oscillatory power spectral density (PSD) at rest. A time-frequency decomposition analysis was also performed to investigate the shift in event-related spectral perturbation (ERSP) in response to the motion stimuli between the pre- and post-stimulation period. The results showed that the accuracy of the motion direction discrimination task was not modulated by offline hf-tRNS. Although the motion task was able to elicit motion-dependent VEP components (P1, N2, and P2), none of them showed any significant change between pre- and post-stimulation. We also found a time-dependent increase of the PSD in alpha and beta bands regardless of the stimulation protocol. Finally, time-frequency analysis showed a modulation of ERSP power in the hf-tRNS condition for gamma activity when compared to pre-stimulation periods and Sham stimulation. Overall, these results show that offline hf-tRNS may induce moderate aftereffects in brain oscillatory activity.
Collapse
Affiliation(s)
- Filippo Ghin
- School of Psychology, University of Lincoln, Brayford Wharf East, Lincoln, LN5 7AY, UK.
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Fetscherstraße 74, Schubertstraße 42, 01309, Dresden, Germany.
| | - Louise O'Hare
- School of Psychology, University of Lincoln, Brayford Wharf East, Lincoln, LN5 7AY, UK
- Division of Psychology, Nottingham Trent University, 50 Shakespeare Street, Nottingham, NG1 4FQ, UK
| | - Andrea Pavan
- School of Psychology, University of Lincoln, Brayford Wharf East, Lincoln, LN5 7AY, UK
- Department of Psychology, University of Bologna, Viale Berti Pichat, 5, 40127, Bologna, Italy
| |
Collapse
|
9
|
Donato R, Pavan A, Campana G. Investigating the Interaction Between Form and Motion Processing: A Review of Basic Research and Clinical Evidence. Front Psychol 2020; 11:566848. [PMID: 33192845 PMCID: PMC7661965 DOI: 10.3389/fpsyg.2020.566848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
A widely held view of the visual system supported the perspective that the primate brain is organized in two main specialized streams, called the ventral and dorsal streams. The ventral stream is known to be involved in object recognition (e.g., form and orientation). In contrast, the dorsal stream is thought to be more involved in spatial recognition (e.g., the spatial relationship between objects and motion direction). Recent evidence suggests that these two streams are not segregated but interact with each other. A class of visual stimuli known as Glass patterns has been developed to shed light on this process. Glass patterns are visual stimuli made of pairs of dots, called dipoles, that give the percept of a specific form or apparent motion, depending on the spatial and temporal arrangement of the dipoles. In this review, we show an update of the neurophysiological, brain imaging, psychophysical, clinical, and brain stimulation studies which have assessed form and motion integration mechanisms, and the level at which this occurs in the human and non-human primate brain. We also discuss several studies based on non-invasive brain stimulation techniques that used different types of visual stimuli to assess the cortico-cortical interactions in the visual cortex for the processing of form and motion information. Additionally, we discuss the timing of specific visual processing in the ventral and dorsal streams. Finally, we report some parallels between healthy participants and neurologically impaired patients in the conscious processing of form and motion.
Collapse
Affiliation(s)
- Rita Donato
- Department of General Psychology, University of Padua, Padua, Italy
- Human Inspired Technology Research Centre, University of Padua, Padua, Italy
| | - Andrea Pavan
- Department of Psychology, University of Bologna, Bologna, Italy
| | - Gianluca Campana
- Department of General Psychology, University of Padua, Padua, Italy
- Human Inspired Technology Research Centre, University of Padua, Padua, Italy
| |
Collapse
|
10
|
Battaglini L. Effect of Repetitive Transcranial Magnetic Stimulation on a Target Moving in Front of a Static or Random Dynamic Visual Noise. Perception 2020; 49:882-892. [PMID: 32646284 DOI: 10.1177/0301006620940222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Observers report seeing as slower a target disk moving in front of a static visual noise (SVN) background than the same object moving in front of a random dynamic visual noise (rDVN) background when the speed is the same. To investigate in which brain region (lower vs. higher visual areas) the background and the target signals might be combined to elicit this misperception, the transcranial magnetic stimulation (TMS) was delivered over the early visual cortex (V1/V2), middle temporal area (MT) and Cz (control site) while participants performed a speed discrimination task with targets moving in front of an SVN or an rDVN. Results showed that the TMS over MT reduced the perceived speed of the target moving in front of an SVN, but not when the target was moving in front of an rDVN background. Moreover, the TMS do not seem to interfere with encoding processing but more likely affected decoding processing in conditions of high uncertainty (i.e., when targets have similar speed).
Collapse
|
11
|
Roberts JW, Thompson B, Leat SJ, Dalton K. Towards developing a test of global motion for use with Paralympic athletes. Sci Rep 2020; 10:8482. [PMID: 32439862 PMCID: PMC7242343 DOI: 10.1038/s41598-020-65202-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 04/29/2020] [Indexed: 11/16/2022] Open
Abstract
The Paralympic classification system for visual impairment only assesses static visual acuity and static visual field despite many Paralympic sports being dynamic in nature. As a first step towards determining whether motion perception tests should be used in Paralympic classification, we assessed whether motion coherence thresholds could be measured when visual acuity or visual fields were impaired at levels consistent with the current Paralympic classification criteria. Visual acuity and visual field impairments corresponding to Paralympic classification criteria were simulated in normally sighted individuals and motion coherence thresholds were measured. Mild-to-moderate visual acuity impairments had no effect on motion coherence thresholds. The most severe Paralympic class of acuity impairment (≥2.6 logMAR) significantly elevated thresholds. A trend towards superior motion coherence thresholds in the peripheral visual field compared to the central visual field was also present. Global motion perception appears to be measurable under simulated visual impairments that are consistent with the Paralympic classification. Poorer global motion perception was found for visual acuities >2.6 logMAR and visual fields <10° in diameter. Further research is needed to investigate the relationship between global motion perception and sports performance in athletes with real visual impairment.
Collapse
Affiliation(s)
- James W Roberts
- University of Waterloo, School of Optometry & Vision Science, 200 University Avenue West, Waterloo, N2L 3G1, Ontario, Canada.,Liverpool John Moores University, Brain & Behaviour Laboratory, Research Institute of Sport & Exercise Sciences (RISES), Byrom Street, Tom Reilly Building, L3 5AF, Liverpool, United Kingdom
| | - Benjamin Thompson
- University of Waterloo, School of Optometry & Vision Science, 200 University Avenue West, Waterloo, N2L 3G1, Ontario, Canada
| | - Susan J Leat
- University of Waterloo, School of Optometry & Vision Science, 200 University Avenue West, Waterloo, N2L 3G1, Ontario, Canada
| | - Kristine Dalton
- University of Waterloo, School of Optometry & Vision Science, 200 University Avenue West, Waterloo, N2L 3G1, Ontario, Canada.
| |
Collapse
|
12
|
Sabel BA, Thut G, Haueisen J, Henrich-Noack P, Herrmann CS, Hunold A, Kammer T, Matteo B, Sergeeva EG, Waleszczyk W, Antal A. Vision modulation, plasticity and restoration using non-invasive brain stimulation – An IFCN-sponsored review. Clin Neurophysiol 2020; 131:887-911. [DOI: 10.1016/j.clinph.2020.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
|
13
|
Pavan A, Ghin F, Contillo A, Milesi C, Campana G, Mather G. Modulatory mechanisms underlying high-frequency transcranial random noise stimulation (hf-tRNS): A combined stochastic resonance and equivalent noise approach. Brain Stimul 2019; 12:967-977. [DOI: 10.1016/j.brs.2019.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/17/2019] [Accepted: 02/21/2019] [Indexed: 01/10/2023] Open
|
14
|
Flint S, Pammer K. It is the egg, not the chicken; dorsal visual deficits present in dyslexia are not present in illiterate adults. DYSLEXIA (CHICHESTER, ENGLAND) 2019; 25:69-83. [PMID: 30592104 DOI: 10.1002/dys.1607] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/03/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Some individuals with dyslexia demonstrate deficits in reading, visual attention, and visual processing which can be attributed to a functional failure of the magnocells in the visual system or in the dorsal visual pathway. The study examines the role of magno/dorsal function in dyslexic adults compared with normal, illiterate, and semi-literate readers. Coherent motion and coherent form were used in Experiment 1, and the frequency doubling illusion and static-gratings were used in Experiment 2. If a magno/dorsal deficit is demonstrated for dyslexic readers but not illiterate, semi-literate, and normal reading adults, then the deficit cannot be attributed to reading experience. Illiterate adults performed the same as normal and semi-literate readers in coherent motion and frequency doubling tasks, and all three groups performed better than the dyslexic readers. There was no difference between any of the groups in the coherent form or static grating tasks. Together, these studies show that illiterate and semi-literate adults do not demonstrate a magno/dorsal deficit that is a characteristic of some sufferers of dyslexia. Therefore, magno/dorsal deficits in dyslexia are unlikely to be a consequence of failing to learn to read but rather provides evidence to suggest a causal role for reduced visual magno/dorsal processing.
Collapse
Affiliation(s)
- Sarah Flint
- The Research School of Psychology, The Australian National University, Canberra, Australia
| | - Kristen Pammer
- The School of Psychology, The University of Newcastle, Newcastle, Australia
| |
Collapse
|
15
|
Ghin F, Pavan A, Contillo A, Mather G. The effects of high-frequency transcranial random noise stimulation (hf-tRNS) on global motion processing: An equivalent noise approach. Brain Stimul 2018; 11:1263-1275. [PMID: 30078542 DOI: 10.1016/j.brs.2018.07.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND High frequency transcranial random noise stimulation (hf-tRNS) facilitates performance in several perceptual and cognitive tasks, however, little is known about the underlying modulatory mechanisms. OBJECTIVE In this study we compared the effects of hf-tRNS to those of anodal and cathodal tDCS in a global motion direction discrimination task. An equivalent noise (EN) paradigm was used to assess how hf-tRNS modulates the mechanisms underlying local and global motion processing. METHOD Motion coherence threshold and slope of the psychometric function were estimated using an 8AFC task in which observers had to discriminate the motion direction of a random dot kinematogram presented either in the left or right visual hemi-field. During the task hf-tRNS, anodal and cathodal tDCS were delivered over the left hMT+. In a subsequent experiment we implemented an EN paradigm in order to investigate the effects of hf-tRNS on the mechanisms involved in visual motion integration (i.e., internal noise and sampling). RESULTS hf-tRNS reduced the motion coherence threshold but did not affect the slope of the psychometric function, suggesting no modulation of stimulus discriminability. Anodal and cathodal tDCS did not produce any modulatory effects. EN analysis in the last experiment found that hf-tRNS modulates sampling but not internal noise, suggesting that hf-tRNS modulates the integration of local motion cues. CONCLUSION hf-tRNS interacts with the output neurons tuned to directions near to the directional signal, incrementing the signal-to-noise ratio and the pooling of local motion cues and thus increasing the sensitivity for global moving stimuli.
Collapse
Affiliation(s)
- Filippo Ghin
- University of Lincoln, School of Psychology, Brayford Wharf East, Lincoln LN5 7AY, United Kingdom.
| | - Andrea Pavan
- University of Lincoln, School of Psychology, Brayford Wharf East, Lincoln LN5 7AY, United Kingdom
| | - Adriano Contillo
- University of Ferrara, Dipartimento di Fisica e Scienze della Terra, Via Saragat 1, 44122 Ferrara, Italy
| | - George Mather
- University of Lincoln, School of Psychology, Brayford Wharf East, Lincoln LN5 7AY, United Kingdom
| |
Collapse
|
16
|
Thompson B, McKinlay CJD, Chakraborty A, Anstice NS, Jacobs RJ, Paudel N, Yu TY, Ansell JM, Wouldes TA, Harding JE. Global motion perception is associated with motor function in 2-year-old children. Neurosci Lett 2017; 658:177-181. [PMID: 28864240 DOI: 10.1016/j.neulet.2017.08.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/04/2017] [Accepted: 08/28/2017] [Indexed: 01/30/2023]
Abstract
The dorsal visual processing stream that includes V1, motion sensitive area V5 and the posterior parietal lobe, supports visually guided motor function. Two recent studies have reported associations between global motion perception, a behavioural measure of processing in V5, and motor function in pre-school and school aged children. This indicates a relationship between visual and motor development and also supports the use of global motion perception to assess overall dorsal stream function in studies of human neurodevelopment. We investigated whether associations between vision and motor function were present at 2 years of age, a substantially earlier stage of development. The Bayley III test of Infant and Toddler Development and measures of vision including visual acuity (Cardiff Acuity Cards), stereopsis (Lang stereotest) and global motion perception were attempted in 404 2-year-old children (±4 weeks). Global motion perception (quantified as a motion coherence threshold) was assessed by observing optokinetic nystagmus in response to random dot kinematograms of varying coherence. Linear regression revealed that global motion perception was modestly, but statistically significantly associated with Bayley III composite motor (r2=0.06, P<0.001, n=375) and gross motor scores (r2=0.06, p<0.001, n=375). The associations remained significant when language score was included in the regression model. In addition, when language score was included in the model, stereopsis was significantly associated with composite motor and fine motor scores, but unaided visual acuity was not statistically significantly associated with any of the motor scores. These results demonstrate that global motion perception and binocular vision are associated with motor function at an early stage of development. Global motion perception can be used as a partial measure of dorsal stream function from early childhood.
Collapse
Affiliation(s)
- Benjamin Thompson
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand; School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada.
| | - Christopher J D McKinlay
- Liggins Institute, University of Auckland, Auckland, New Zealand; Department of Paediatrics: Youth and Child Health, University of Auckland, Auckland, New Zealand
| | - Arijit Chakraborty
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand; School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| | - Nicola S Anstice
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - Robert J Jacobs
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - Nabin Paudel
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - Tzu-Ying Yu
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - Judith M Ansell
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Trecia A Wouldes
- Department of Psychological Medicine, University of Auckland, Auckland, New Zealand
| | - Jane E Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Pavan A, Ghin F, Donato R, Campana G, Mather G. The neural basis of form and form-motion integration from static and dynamic translational Glass patterns: A rTMS investigation. Neuroimage 2017. [PMID: 28633972 DOI: 10.1016/j.neuroimage.2017.06.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
A long-held view of the visual system is that form and motion are independently analysed. However, there is physiological and psychophysical evidence of early interaction in the processing of form and motion. In this study, we used a combination of Glass patterns (GPs) and repetitive Transcranial Magnetic Stimulation (rTMS) to investigate in human observers the neural mechanisms underlying form-motion integration. GPs consist of randomly distributed dot pairs (dipoles) that induce the percept of an oriented stimulus. GPs can be either static or dynamic. Dynamic GPs have both a form component (i.e., orientation) and a non-directional motion component along the orientation axis. GPs were presented in two temporal intervals and observers were asked to discriminate the temporal interval containing the most coherent GP. rTMS was delivered over early visual area (V1/V2) and over area V5/MT shortly after the presentation of the GP in each interval. The results showed that rTMS applied over early visual areas affected the perception of static GPs, but the stimulation of area V5/MT did not affect observers' performance. On the other hand, rTMS was delivered over either V1/V2 or V5/MT strongly impaired the perception of dynamic GPs. These results suggest that early visual areas seem to be involved in the processing of the spatial structure of GPs, and interfering with the extraction of the global spatial structure also affects the extraction of the motion component, possibly interfering with early form-motion integration. However, visual area V5/MT is likely to be involved only in the processing of the motion component of dynamic GPs. These results suggest that motion and form cues may interact as early as V1/V2.
Collapse
Affiliation(s)
- Andrea Pavan
- University of Lincoln, School of Psychology, Brayford Pool, Lincoln LN6 7TS, UK.
| | - Filippo Ghin
- University of Lincoln, School of Psychology, Brayford Pool, Lincoln LN6 7TS, UK
| | - Rita Donato
- University of Padova, Dipartimento di Psicologia Generale, Via Venezia 8, 35131 Padova, Italy
| | - Gianluca Campana
- University of Padova, Dipartimento di Psicologia Generale, Via Venezia 8, 35131 Padova, Italy
| | - George Mather
- University of Lincoln, School of Psychology, Brayford Pool, Lincoln LN6 7TS, UK
| |
Collapse
|
18
|
Lubeck AJA, Van Ombergen A, Ahmad H, Bos JE, Wuyts FL, Bronstein AM, Arshad Q. Differential effect of visual motion adaption upon visual cortical excitability. J Neurophysiol 2016; 117:903-909. [PMID: 27903640 DOI: 10.1152/jn.00655.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/29/2016] [Indexed: 11/22/2022] Open
Abstract
The objectives of this study were 1) to probe the effects of visual motion adaptation on early visual and V5/MT cortical excitability and 2) to investigate whether changes in cortical excitability following visual motion adaptation are related to the degree of visual dependency, i.e., an overreliance on visual cues compared with vestibular or proprioceptive cues. Participants were exposed to a roll motion visual stimulus before, during, and after visual motion adaptation. At these stages, 20 transcranial magnetic stimulation (TMS) pulses at phosphene threshold values were applied over early visual and V5/MT cortical areas from which the probability of eliciting a phosphene was calculated. Before and after adaptation, participants aligned the subjective visual vertical in front of the roll motion stimulus as a marker of visual dependency. During adaptation, early visual cortex excitability decreased whereas V5/MT excitability increased. After adaptation, both early visual and V5/MT excitability were increased. The roll motion-induced tilt of the subjective visual vertical (visual dependence) was not influenced by visual motion adaptation and did not correlate with phosphene threshold or visual cortex excitability. We conclude that early visual and V5/MT cortical excitability is differentially affected by visual motion adaptation. Furthermore, excitability in the early or late visual cortex is not associated with an increase in visual reliance during spatial orientation. Our findings complement earlier studies that have probed visual cortical excitability following motion adaptation and highlight the differential role of the early visual cortex and V5/MT in visual motion processing.NEW & NOTEWORTHY We examined the influence of visual motion adaptation on visual cortex excitability and found a differential effect in V1/V2 compared with V5/MT. Changes in visual excitability following motion adaptation were not related to the degree of an individual's visual dependency.
Collapse
Affiliation(s)
- Astrid J A Lubeck
- Academic Department of Neuro-Otology, Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, London, United Kingdom.,Research Institute MOVE, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Angelique Van Ombergen
- Academic Department of Neuro-Otology, Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, London, United Kingdom.,Antwerp University Research Centre for Equilibrium and Aerospace (AUREA), University of Antwerp, Antwerp, Belgium; and
| | - Hena Ahmad
- Academic Department of Neuro-Otology, Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, London, United Kingdom
| | - Jelte E Bos
- Research Institute MOVE, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,TNO Perceptual and Cognitive Systems, Soesterberg, The Netherlands
| | - Floris L Wuyts
- Antwerp University Research Centre for Equilibrium and Aerospace (AUREA), University of Antwerp, Antwerp, Belgium; and
| | - Adolfo M Bronstein
- Academic Department of Neuro-Otology, Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, London, United Kingdom;
| | - Qadeer Arshad
- Academic Department of Neuro-Otology, Division of Brain Sciences, Charing Cross Hospital Campus, Imperial College London, London, United Kingdom
| |
Collapse
|
19
|
Thompson B, Deblieck C, Wu A, Iacoboni M, Liu Z. Psychophysical and rTMS Evidence for the Presence of Motion Opponency in Human V5. Brain Stimul 2016; 9:876-881. [PMID: 27342938 DOI: 10.1016/j.brs.2016.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/22/2016] [Accepted: 05/30/2016] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Motion sensitive cells within macaque V5, but not V1, exhibit motion opponency whereby their firing is suppressed by motion in their anti-preferred direction. fMRI studies indicate the presence of motion opponent mechanisms in human V5. OBJECTIVE/HYPOTHESIS We tested two hypotheses. 1) Performance of a motion discrimination task would be poorer when stimuli were constructed from pairs of dots that moved in counter-phase vs. in-phase, because counter-phase dots would activate motion opponent mechanisms in V5. 2) Offline 1 Hz rTMS of V5 would impair discrimination performance for in-phase stimuli but not counter-phase stimuli, and the opposite effect would be found for rTMS of V1. METHODS Stimuli were constructed from 100 dot pairs. Paired dots moved along a fixed motion axis either in counter-phase (motion opponent stimulus) or in-phase (non-opponent motion stimulus). Motion axis orientation discrimination thresholds were measured for each stimulus. Blocks of 300 trials were then presented at 85% correct threshold and discrimination accuracy was measured before and after 1 Hz offline rTMS of either V1 or V5. Subjects were 8 healthy adults. RESULTS Discrimination thresholds were significantly larger (worse) for counter-phase than in-phase stimuli (p = 0.02). V5 rTMS mildly impaired discrimination accuracy for the in-phase dot stimuli (p = 0.02) but not the counter-phase dot stimuli. The opposite effect occurred for V1 rTMS (p = 0.05). CONCLUSIONS Opponent motion mechanisms are present within human V5 and activation of these mechanisms impairs motion discrimination. In addition, perception of the motion axis within opponent motion stimuli involves processing within V1.
Collapse
Affiliation(s)
- Benjamin Thompson
- School of Optometry and Vision Science, University of Waterloo, Canada; School of Optometry and Vision Science, University of Auckland, New Zealand.
| | - Choi Deblieck
- AcCENT (Academic Center for ECT and Neuromodulation), University Psychiatric Center - KU Leuven (University of Leuven) - Campus Kortenberg, Kortenberg, Belgium
| | - Allan Wu
- Ahmanson-Lovelace Brain Mapping Center, UCLA, Los Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Marco Iacoboni
- Ahmanson-Lovelace Brain Mapping Center, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Zili Liu
- Department of Psychology, UCLA, Los Angeles, CA, USA
| |
Collapse
|
20
|
Mather G, Battaglini L, Campana G. TMS reveals flexible use of form and motion cues in biological motion perception. Neuropsychologia 2016; 84:193-7. [PMID: 26916969 DOI: 10.1016/j.neuropsychologia.2016.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/01/2016] [Accepted: 02/21/2016] [Indexed: 10/22/2022]
Abstract
The perception of human movement is a key component of daily social interactions. Although extrastriate area MT+/V5 is closely associated with motion processing, its role in the processing of sparse 'biological motion' displays is still unclear. We developed two closed matched psychophysical tasks to assess simple coherent motion perception and biological motion perception, and measured changes in performance caused by application of TMS over MT+/V5. Performance of the simple motion discrimination task was significantly depressed by TMS stimulation, and highly correlated within observers in TMS conditions, but there was no significant decrement in performance of the biological motion task, despite low intra-observer correlations across TMS conditions. We conclude that extrastriate area MT+/V5 is an obligatory waypoint in the neural processing of simple coherent motion, but is not obligatory for the processing of biological motion. Results are consistent with a dual neural processing route for biological motion processing.
Collapse
Affiliation(s)
- George Mather
- School of Psychology, University of Lincoln, Brayford Pool, Lincoln LN2 1NB, UK
| | - Luca Battaglini
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
| | - Gianluca Campana
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy; Human Inspired Technology Research Centre, University of Padova, Via Luzzati 4, 35122 Padova, Italy
| |
Collapse
|
21
|
Vaghefi E, Cai P, Fang F, Byblow WD, Stinear CM, Thompson B. MRI Guided Brain Stimulation without the Use of a Neuronavigation System. BIOMED RESEARCH INTERNATIONAL 2015; 2015:647510. [PMID: 26413537 PMCID: PMC4564628 DOI: 10.1155/2015/647510] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/13/2014] [Accepted: 09/09/2014] [Indexed: 11/23/2022]
Abstract
A key issue in the field of noninvasive brain stimulation (NIBS) is the accurate localization of scalp positions that correspond to targeted cortical areas. The current gold standard is to combine structural and functional brain imaging with a commercially available "neuronavigation" system. However, neuronavigation systems are not commonplace outside of specialized research environments. Here we describe a technique that allows for the use of participant-specific functional and structural MRI data to guide NIBS without a neuronavigation system. Surface mesh representations of the head were generated using Brain Voyager and vectors linking key anatomical landmarks were drawn on the mesh. Our technique was then used to calculate the precise distances on the scalp corresponding to these vectors. These calculations were verified using actual measurements of the head and the technique was used to identify a scalp position corresponding to a brain area localized using functional MRI.
Collapse
Affiliation(s)
- Ehsan Vaghefi
- Department of Optometry and Vision Science, University of Auckland, Building 502, Level 4, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Peng Cai
- Department of Psychology, Peking University, Haidian Road, Haidian, Beijing 100871, China
| | - Fang Fang
- Department of Psychology, Peking University, Haidian Road, Haidian, Beijing 100871, China
| | - Winston D. Byblow
- Department of Sport and Exercise Science, University of Auckland, Symonds Street, Auckland 1023, New Zealand
| | - Cathy M. Stinear
- Department of Medicine, University of Auckland, Symonds Street, Auckland 1023, New Zealand
| | - Benjamin Thompson
- Department of Optometry and Vision Science, University of Auckland, Building 502, Level 4, 85 Park Road, Grafton, Auckland 1023, New Zealand
- School of Optometry and Vision Science, University of Waterloo, 200 Columbia Street W, Waterloo, ON, Canada N2L 3G1
| |
Collapse
|
22
|
Hess RF, Thompson B, Baker DH. Binocular vision in amblyopia: structure, suppression and plasticity. Ophthalmic Physiol Opt 2014; 34:146-62. [PMID: 24588532 DOI: 10.1111/opo.12123] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/17/2014] [Indexed: 02/04/2023]
Abstract
The amblyopic visual system was once considered to be structurally monocular. However, it now evident that the capacity for binocular vision is present in many observers with amblyopia. This has led to new techniques for quantifying suppression that have provided insights into the relationship between suppression and the monocular and binocular visual deficits experienced by amblyopes. Furthermore, new treatments are emerging that directly target suppressive interactions within the visual cortex and, on the basis of initial data, appear to improve both binocular and monocular visual function, even in adults with amblyopia. The aim of this review is to provide an overview of recent studies that have investigated the structure, measurement and treatment of binocular vision in observers with strabismic, anisometropic and mixed amblyopia.
Collapse
Affiliation(s)
- Robert F Hess
- Department of Ophthalmology, McGill Vision Research, McGill University, Montreal, Canada
| | | | | |
Collapse
|
23
|
Global versus local: double dissociation between MT+ and V3A in motion processing revealed using continuous theta burst transcranial magnetic stimulation. Exp Brain Res 2014; 232:4035-41. [DOI: 10.1007/s00221-014-4084-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/23/2014] [Indexed: 11/25/2022]
|
24
|
Hamm LM, Black J, Dai S, Thompson B. Global processing in amblyopia: a review. Front Psychol 2014; 5:583. [PMID: 24987383 PMCID: PMC4060804 DOI: 10.3389/fpsyg.2014.00583] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/25/2014] [Indexed: 01/13/2023] Open
Abstract
Amblyopia is a neurodevelopmental disorder of the visual system that is associated with disrupted binocular vision during early childhood. There is evidence that the effects of amblyopia extend beyond the primary visual cortex to regions of the dorsal and ventral extra-striate visual cortex involved in visual integration. Here, we review the current literature on global processing deficits in observers with either strabismic, anisometropic, or deprivation amblyopia. A range of global processing tasks have been used to investigate the extent of the cortical deficit in amblyopia including: global motion perception, global form perception, face perception, and biological motion. These tasks appear to be differentially affected by amblyopia. In general, observers with unilateral amblyopia appear to show deficits for local spatial processing and global tasks that require the segregation of signal from noise. In bilateral cases, the global processing deficits are exaggerated, and appear to extend to specialized perceptual systems such as those involved in face processing.
Collapse
Affiliation(s)
- Lisa M Hamm
- Department of Optometry and Vision Science, University of Auckland Auckland, New Zealand
| | - Joanna Black
- Department of Optometry and Vision Science, University of Auckland Auckland, New Zealand
| | - Shuan Dai
- Department of Ophthalmology, Starship Children's Hospital Auckland, New Zealand ; Department of Ophthalmology, University of Auckland Auckland, New Zealand
| | - Benjamin Thompson
- Department of Optometry and Vision Science, University of Auckland Auckland, New Zealand ; Department of Optometry and Vision Science, University of Waterloo Waterloo, Canada
| |
Collapse
|
25
|
Duecker F, Frost MA, de Graaf TA, Graewe B, Jacobs C, Goebel R, Sack AT. The cortex-based alignment approach to TMS coil positioning. J Cogn Neurosci 2014; 26:2321-9. [PMID: 24702449 DOI: 10.1162/jocn_a_00635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
TMS allows noninvasive manipulation of brain activity in healthy participants and patients. The effectiveness of TMS experiments critically depends on precise TMS coil positioning, which is best for most brain areas when a frameless stereotactic system is used to target activation foci based on individual fMRI data. From a purely scientific perspective, individual fMRI-guided TMS is thus the method of choice to ensure optimal TMS efficiency. Yet, from a more practical perspective, such individual functional data are not always available, and therefore alternative TMS coil positioning approaches are often applied, for example, based on functional group data reported in Talairach coordinates. We here propose a novel method for TMS coil positioning that is based on functional group data, yet only requires individual anatomical data. We used cortex-based alignment (CBA) to transform individual anatomical data to an atlas brain that includes probabilistic group maps of two functional regions (FEF and hMT+/V5). Then, these functional group maps were back-transformed to the individual brain anatomy, preserving functional-anatomical correspondence. As a proof of principle, the resulting CBA-based functional targets in individual brain space were compared with individual FEF and hMT+/V5 hotspots as conventionally localized with individual fMRI data and with targets based on Talairach coordinates as commonly done in TMS research in case only individual anatomical data are available. The CBA-based approach significantly improved localization of functional brain areas compared with traditional Talairach-based targeting. Given the widespread availability of CBA schemes and preexisting functional group data, the proposed procedure is easy to implement and at no additional measurement costs. However, the accuracy of individual fMRI-guided TMS remains unparalleled, and the CBA-based approach should only be the method of choice when individual functional data cannot be obtained or experimental factors argue against it.
Collapse
|
26
|
Long lasting effects of daily theta burst rTMS sessions in the human amblyopic cortex. Brain Stimul 2013; 6:860-7. [PMID: 23664756 DOI: 10.1016/j.brs.2013.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/29/2013] [Accepted: 04/06/2013] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND It has been reported that a single session of 1 Hz or 10 Hz repetitive transcranial magnetic stimulation (rTMS) of the visual cortex can temporarily improve contrast sensitivity in adults with amblyopia. More recently, continuous theta burst stimulation (cTBS) of the visual cortex has been found to improve contrast sensitivity in observers with normal vision. OBJECTIVE/HYPOTHESIS The aims of this study were to assess whether cTBS of the visual cortex could improve contrast sensitivity in adults with amblyopia and whether repeated sessions of cTBS would lead to more pronounced and/or longer lasting effects. METHODS cTBS was delivered to the visual cortex while patients viewed a high contrast stimulus with their non-amblyopic eye. This manipulation was designed to bias the effects of cTBS toward inputs from the amblyopic eye. Contrast sensitivity was measured before and after stimulation. The effects of one cTBS session were measured in five patients and the effects of five consecutive daily sessions were measured in four patients. Three patients were available for follow-up at varying intervals after the final session. RESULTS cTBS improved amblyopic eye contrast sensitivity to high spatial frequencies (P < 0.05) and there was a cumulative improvement across sessions with asymptotic improvement occurring after 2 daily sessions of stimulation. The contrast sensitivity improvements were stable over a period of up to 78 days. CONCLUSIONS These initial results in a small number of patients indicate the cTBS may allow for enduring visual function improvements in adults with amblyopia.
Collapse
|
27
|
|
28
|
Villeneuve MY, Thompson B, Hess RF, Casanova C. Pattern-motion selective responses in MT, MST and the pulvinar of humans. Eur J Neurosci 2012; 36:2849-58. [PMID: 22759086 DOI: 10.1111/j.1460-9568.2012.08205.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plaid stimuli are often used to investigate the mechanisms involved in the integration and segregation of motion information. Considering the perceptual importance of such mechanisms, only a very limited number of visual brain areas have been found to be specifically involved in motion integration. These are the human (h)MT+ complex, area V3 and the pulvinar. The hMT+ complex can be functionally subdivided into two separate areas, middle temporal area (MT) and medial superior temporal area (MST); however, it is currently unclear whether these distinct sub-regions have different responses to plaid stimuli. To address this issue we used functional magnetic resonance imaging to quantify the relative response of MT and MST to component and pattern motion. Participants viewed plaid stimuli that were constrained to result in the perception of either component motion (segregation of motion information) or pattern motion (integration of motion information). MT/MST segregation was achieved using a moving dot stimulus that allowed stimulation of each visual hemifield either in unison or separately. We found pattern motion selective responses in both MT and MST. Consistent with previous reports, activity indicative of pattern motion selectivity was also found in the pulvinar as well as in other extrastriate areas. These results demonstrate that MT, MST and the pulvinar are involved in the complex motion integration mechanisms that are triggered by plaid stimuli. This reinforces the concept that integrative computations take place in a distributed neuronal circuit both in cortical and sub-cortical networks.
Collapse
Affiliation(s)
- M Y Villeneuve
- Departments of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, QC, Canada.
| | | | | | | |
Collapse
|
29
|
Thompson B, Villeneuve MY, Casanova C, Hess RF. Abnormal cortical processing of pattern motion in amblyopia: evidence from fMRI. Neuroimage 2012; 60:1307-15. [PMID: 22285220 DOI: 10.1016/j.neuroimage.2012.01.078] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 12/29/2011] [Accepted: 01/14/2012] [Indexed: 10/14/2022] Open
Abstract
Converging evidence from human psychophysics and animal neurophysiology indicates that amblyopia is associated with abnormal function of area MT, a motion sensitive region of the extrastriate visual cortex. In this context, the recent finding that amblyopic eyes mediate normal perception of dynamic plaid stimuli was surprising, as neural processing and perception of plaids has been closely linked to MT function. One intriguing potential explanation for this discrepancy is that the amblyopic eye recruits alternative visual brain areas to support plaid perception. This is the hypothesis that we tested. We used functional magnetic resonance imaging (fMRI) to measure the response of the amblyopic visual cortex and thalamus to incoherent and coherent motion of plaid stimuli that were perceived normally by the amblyopic eye. We found a different pattern of responses within the visual cortex when plaids were viewed by amblyopic as opposed to non-amblyopic eyes. The non-amblyopic eyes of amblyopes and control eyes differentially activated the hMT+ complex when viewing incoherent vs. coherent plaid motion, consistent with the notion that this region is centrally involved in plaid perception. However, for amblyopic eye viewing, hMT+ activation did not vary reliably with motion type. In a sub-set of our participants with amblyopia we were able to localize MT and MST within the larger hMT+ complex and found a lack of plaid motion selectivity in both sub-regions. The response of the pulvinar and ventral V3 to plaid stimuli also differed under amblyopic vs. non-amblyopic eye viewing conditions, however the response of these areas did vary according to motion type. These results indicate that while the perception of the plaid stimuli was constant for both amblyopic and non-amblyopic viewing, the network of neural areas that supported this perception was different.
Collapse
Affiliation(s)
- B Thompson
- Department of Optometry and Vision Science, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | |
Collapse
|
30
|
Guzman-Lopez J, Silvanto J, Seemungal B. Visual motion adaptation increases the susceptibility of area V5/MT to phosphene induction by transcranial magnetic stimulation. Clin Neurophysiol 2011; 122:1951-5. [DOI: 10.1016/j.clinph.2011.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 11/15/2022]
|
31
|
Guzman-Lopez J, Silvanto J, Yousif N, Nousi S, Quadir S, Seemungal BM. Probing V5/MT excitability with transcranial magnetic stimulation following visual motion adaptation to random and coherent motion. Ann N Y Acad Sci 2011; 1233:200-7. [DOI: 10.1111/j.1749-6632.2011.06179.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
The fastest (and simplest), the earliest: The locus of processing of rapid forms of motion aftereffect. Neuropsychologia 2011; 49:2929-34. [DOI: 10.1016/j.neuropsychologia.2011.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/26/2011] [Accepted: 06/17/2011] [Indexed: 11/18/2022]
|
33
|
Stochastic resonance effects reveal the neural mechanisms of transcranial magnetic stimulation. J Neurosci 2011; 31:3143-7. [PMID: 21368025 DOI: 10.1523/jneurosci.4863-10.2011] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a popular method for studying causal relationships between neural activity and behavior. However, its mode of action remains controversial, and so far there is no framework to explain its wide range of facilitatory and inhibitory behavioral effects. While some theoretical accounts suggest that TMS suppresses neuronal processing, other competing accounts propose that the effects of TMS result from the addition of noise to neuronal processing. Here we exploited the stochastic resonance phenomenon to distinguish these theoretical accounts and determine how TMS affects neuronal processing. Specifically, we showed that online TMS can induce stochastic resonance in the human brain. At low intensity, TMS facilitated the detection of weak motion signals, but with higher TMS intensities and stronger motion signals, we found only impairment in detection. These findings suggest that TMS acts by adding noise to neuronal processing, at least in an online TMS protocol. Importantly, such stochastic resonance effects may also explain why TMS parameters that under normal circumstances impair behavior can induce behavioral facilitations when the stimulated area is in an adapted or suppressed state.
Collapse
|
34
|
Thakral PP, Slotnick SD. Disruption of MT impairs motion processing. Neurosci Lett 2010; 490:226-30. [PMID: 21195742 DOI: 10.1016/j.neulet.2010.12.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/20/2010] [Accepted: 12/25/2010] [Indexed: 11/30/2022]
Abstract
Functional magnetic resonance imaging (fMRI) studies have associated motion processing with cortical region MT+, which includes sub-region MT that preferentially processes motion in the contralateral visual field. Transcranial magnetic stimulation (TMS) has been used to temporarily disrupt MT+ which impaired motion perception, suggesting this region is necessary for motion processing. In the present study, we used fMRI guided TMS to disrupt MT and determine whether this sub-region is necessary for motion processing. On an individual participant basis, MT was localized in each hemisphere using motion related fMRI activity on the posterior bank of the ascending limb of the inferior temporal sulcus. In the first experiment, 1 Hz TMS of left MT preferentially impaired motion detection in the contralateral versus ipsilateral visual field. In the second experiment, single-pulse TMS of MT impaired motion processing to a greater degree than color processing. These results provide convergent evidence that sub-region MT is necessary for motion processing.
Collapse
Affiliation(s)
- Preston P Thakral
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| | | |
Collapse
|
35
|
Waterston ML, Pack CC. Improved discrimination of visual stimuli following repetitive transcranial magnetic stimulation. PLoS One 2010; 5:e10354. [PMID: 20442776 PMCID: PMC2860988 DOI: 10.1371/journal.pone.0010354] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 03/30/2010] [Indexed: 11/18/2022] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) at certain frequencies increases thresholds for motor-evoked potentials and phosphenes following stimulation of cortex. Consequently rTMS is often assumed to introduce a “virtual lesion” in stimulated brain regions, with correspondingly diminished behavioral performance. Methodology/Principal Findings Here we investigated the effects of rTMS to visual cortex on subjects' ability to perform visual psychophysical tasks. Contrary to expectations of a visual deficit, we find that rTMS often improves the discrimination of visual features. For coarse orientation tasks, discrimination of a static stimulus improved consistently following theta-burst stimulation of the occipital lobe. Using a reaction-time task, we found that these improvements occurred throughout the visual field and lasted beyond one hour post-rTMS. Low-frequency (1 Hz) stimulation yielded similar improvements. In contrast, we did not find consistent effects of rTMS on performance in a fine orientation discrimination task. Conclusions/Significance Overall our results suggest that rTMS generally improves or has no effect on visual acuity, with the nature of the effect depending on the type of stimulation and the task. We interpret our results in the context of an ideal-observer model of visual perception.
Collapse
|
36
|
Koivisto M, Mäntylä T, Silvanto J. The role of early visual cortex (V1/V2) in conscious and unconscious visual perception. Neuroimage 2010; 51:828-34. [PMID: 20188199 DOI: 10.1016/j.neuroimage.2010.02.042] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/11/2010] [Accepted: 02/14/2010] [Indexed: 10/19/2022] Open
Abstract
A "late" period of activity in striate cortex (V1) in response to extrastriate feedback has been proposed to act as a marker of visual awareness. It is not clear, however, whether such recurrent activity is associated exclusively with aware perception or whether it is necessary also for unaware visual processing. We investigated the role of the "late" V1 activity in both aware and unaware visual motion perception. Participants were asked to make a forced-choice direction discrimination judgment on a coherently moving random-dot display and additionally rate their subjective awareness of the stimulus. Transcranial magnetic stimulation (TMS) was applied over the early visual cortex (V1/V2) either 20, 40, 60, 80, or 100 ms after motion offset. Visual awareness was impaired at an "early" (20 ms) and a "late" (60 ms) stimulation time window. Participants' forced-choice direction discrimination performance on "unaware" trials was above chance in No TMS baseline condition. Importantly, this performance was impaired by TMS over V1/V2 at the "late" time window. In a second experiment we show that the critical time window of V5/MT falls between the "early" and "late" time windows of V1/V2 activity. The results indicate that recurrent extrastriate-V1 activity is necessary for both aware and unaware perception.
Collapse
Affiliation(s)
- Mika Koivisto
- Centre for Cognitive Neuroscience, University of Turku, 20014 Turku, Finland.
| | | | | |
Collapse
|
37
|
Transcranial magnetic stimulation reveals the content of visual short-term memory in the visual cortex. Neuroimage 2010; 50:1683-9. [PMID: 20079448 PMCID: PMC3221046 DOI: 10.1016/j.neuroimage.2010.01.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/04/2010] [Accepted: 01/07/2010] [Indexed: 11/29/2022] Open
Abstract
Cortical areas involved in sensory analysis are also believed to be involved in short-term storage of that sensory information. Here we investigated whether transcranial magnetic stimulation (TMS) can reveal the content of visual short-term memory (VSTM) by bringing this information to visual awareness. Subjects were presented with two random-dot displays (moving either to the left or to the right) and they were required to maintain one of these in VSTM. In Experiment 1, TMS was applied over the motion-selective area V5/MT+ above phosphene threshold during the maintenance phase. The reported phosphene contained motion features of the memory item, when the phosphene spatially overlapped with memory item. Specifically, phosphene motion was enhanced when the memory item moved in the same direction as the subjects' V5/MT+ baseline phosphene, whereas it was reduced when the motion direction of the memory item was incongruent with that of the baseline V5/MT+ phosphene. There was no effect on phosphene reports when there was no spatial overlap between the phosphene and the memory item. In Experiment 2, VSTM maintenance did not influence the appearance of phosphenes induced from the lateral occipital region. These interactions between VSTM maintenance and phosphene appearance demonstrate that activity in V5/MT+ reflects the motion qualities of items maintained in VSTM. Furthermore, these results also demonstrate that information in VSTM can modulate the pattern of visual activation reaching awareness, providing evidence for the view that overlapping neuronal populations are involved in conscious visual perception and VSTM.
Collapse
|
38
|
Caspers S, Zilles K, Laird AR, Eickhoff SB. ALE meta-analysis of action observation and imitation in the human brain. Neuroimage 2010; 50:1148-67. [PMID: 20056149 DOI: 10.1016/j.neuroimage.2009.12.112] [Citation(s) in RCA: 939] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/23/2009] [Accepted: 12/24/2009] [Indexed: 11/29/2022] Open
Abstract
Over the last decade, many neuroimaging studies have assessed the human brain networks underlying action observation and imitation using a variety of tasks and paradigms. Nevertheless, questions concerning which areas consistently contribute to these networks irrespective of the particular experimental design and how such processing may be lateralized remain unresolved. The current study aimed at identifying cortical areas consistently involved in action observation and imitation by combining activation likelihood estimation (ALE) meta-analysis with probabilistic cytoarchitectonic maps. Meta-analysis of 139 functional magnetic resonance and positron emission tomography experiments revealed a bilateral network for both action observation and imitation. Additional subanalyses for different effectors within each network revealed highly comparable activation patterns to the overall analyses on observation and imitation, respectively, indicating an independence of these findings from potential confounds. Conjunction analysis of action observation and imitation meta-analyses revealed a bilateral network within frontal premotor, parietal, and temporo-occipital cortex. The most consistently rostral inferior parietal area was PFt, providing evidence for a possible homology of this region to macaque area PF. The observation and imitation networks differed particularly with respect to the involvement of Broca's area: whereas both networks involved a caudo-dorsal part of BA 44, activation during observation was most consistent in a more rostro-dorsal location, i.e., dorsal BA 45, while activation during imitation was most consistent in a more ventro-caudal aspect, i.e., caudal BA 44. The present meta-analysis thus summarizes and amends previous descriptions of the human brain networks related to action observation and imitation.
Collapse
Affiliation(s)
- Svenja Caspers
- Institute of Neuroscience and Medicine (INM-2), Research Centre Jülich, Jülich, Germany.
| | | | | | | |
Collapse
|
39
|
Baker DH, Graf EW. Contextual effects in speed perception may occur at an early stage of processing. Vision Res 2009; 50:193-201. [PMID: 19925820 DOI: 10.1016/j.visres.2009.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 11/29/2022]
Abstract
How does nearby motion affect the perceived speed of a target region? When a central drifting Gabor patch is surrounded by translating noise, its speed can be misperceived over a fourfold range. Typically, when a surround moves in the same direction, perceived centre speed is reduced; for opposite-direction surrounds it increases. Measuring this illusion for a variety of surround properties reveals that the motion context effects are a saturating function of surround speed (Experiment I) and contrast (Experiment II). Our analyses indicate that the effects are consistent with a subtractive process, rather than with speed being averaged over area. In Experiment III we exploit known properties of the motion system to ask where these surround effects impact. Using 2D plaid stimuli, we find that surround-induced shifts in perceived speed of one plaid component produce substantial shifts in perceived plaid direction. This indicates that surrounds exert their influence early in processing, before pattern motion direction is computed. These findings relate to ongoing investigations of surround suppression for direction discrimination, and are consistent with single-cell findings of direction-tuned suppressive and facilitatory interactions in primary visual cortex (V1).
Collapse
Affiliation(s)
- Daniel H Baker
- School of Psychology, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | | |
Collapse
|
40
|
Cattaneo Z, Vecchi T, Pascual-Leone A, Silvanto J. Contrasting early visual cortical activation states causally involved in visual imagery and short-term memory. Eur J Neurosci 2009; 30:1393-400. [DOI: 10.1111/j.1460-9568.2009.06911.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|