1
|
Nobre AP, Nikolaev AR, Gauer G, van Leeuwen C, Wagemans J. Effects of Temporal Expectations on the Perception of Motion Gestalts. J Cogn Neurosci 2021; 33:853-871. [PMID: 33544060 DOI: 10.1162/jocn_a_01686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Gestalt psychology has traditionally ignored the role of attention in perception, leading to the view that autonomous processes create perceptual configurations that are then attended. More recent research, however, has shown that spatial attention influences a form of Gestalt perception: the coherence of random-dot kinematograms (RDKs). Using ERPs, we investigated whether temporal expectations exert analogous attentional effects on the perception of coherence level in RDKs. Participants were presented fixed-length sequences of RDKs and reported the coherence level of a target RDK. The target was indicated immediately after its appearance by a postcue. Target expectancy increased as the sequence progressed until target presentation; afterward, remaining RDKs were perceived without target expectancy. Expectancy influenced the amplitudes of ERP components P1 and N2. Crucially, expectancy interacted with coherence level at N2, but not at P1. Specifically, P1 amplitudes decreased linearly as a function of RDK coherence irrespective of expectancy, whereas N2 exhibited a quadratic dependence on coherence: larger amplitudes for RDKs with intermediate coherence levels, and only when they were expected. These results suggest that expectancy at early processing stages is an unspecific, general readiness for perception. At later stages, expectancy becomes stimulus specific and nonlinearly related to Gestalt coherence.
Collapse
Affiliation(s)
- Alexandre P Nobre
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Katholieke Universiteit Leuven
| | | | - Gustavo Gauer
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | |
Collapse
|
2
|
Abstract
High myopia (HM) was associated with impaired long-distance vision. Previous neuroimaging studies showed that abnormal visual experience leads to dysfunction in brain activity in HM even corrected. However, whether alterations in brain structure occur in HM remains unknown. In this study, we analyzed the difference in the whole-brain gray matter volume (GMV) and white matter volume between HM patients and healthy controls (HCs) using a voxel-based morphology method. A total of 82 HM patients (52 men and 30 women) and 58 HCs (28 men and 30 women), matched closely in terms of age and education, were enrolled in this study. All participants underwent MRI scans. The MRI data were processed using the SPM8 software. The relationship between the mean GMV values of the brain regions and clinical features, including refractive diopter and the mean retinal nerve fiber layer thickness, in the HM group were analyzed using Pearson’s correlation. Compared with HCs, HM patients showed significantly decreased GMV values in the right cuneus/lingual gyrus and the right thalamus. In contrast, HM groups showed higher GMV values in the brain stem, right parahippocampal gyrus/thalamus, left parahippocampal gyrus/thalamus, as well as the right and the left putamen. No significantly different white matter volume values were found between the two groups. Moreover, in the HM group, the mean retinal nerve fiber layer of the left eye showed a negative correlation with the mean GMV values of the brain stem (r=−0.218; P=0.049), right parahippocampal gyrus/thalamus (r=−0.262; P=0.017), left parahippocampal gyrus/thalamus (r=−0.249; P=0.024), and left putamen (r=−0.232; P=0.036). We found that HM patients showed an altered brain structure in the visual pathway regions and the limbic system, which may provide useful information to explore the neural mechanisms of impaired long-distance vision in HM.
Collapse
|
3
|
Coito A, Michel CM, Vulliemoz S, Plomp G. Directed functional connections underlying spontaneous brain activity. Hum Brain Mapp 2018; 40:879-888. [PMID: 30367722 DOI: 10.1002/hbm.24418] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/13/2018] [Accepted: 10/02/2018] [Indexed: 11/06/2022] Open
Abstract
Neuroimaging studies have shown that spontaneous brain activity is characterized as changing networks of coherent activity across multiple brain areas. However, the directionality of functional interactions between the most active regions in our brain at rest remains poorly understood. Here, we examined, at the whole-brain scale, the main drivers and directionality of interactions that underlie spontaneous human brain activity by applying directed functional connectivity analysis to electroencephalography (EEG) source signals. We found that the main drivers of electrophysiological activity were the posterior cingulate cortex (PCC), the medial temporal lobes (MTL), and the anterior cingulate cortex (ACC). Among those regions, the PCC was the strongest driver and had both the highest integration and segregation importance, followed by the MTL regions. The driving role of the PCC and MTL resulted in an effective directed interaction directed from posterior toward anterior brain regions. Our results strongly suggest that the PCC and MTL structures are the main drivers of electrophysiological spontaneous activity throughout the brain and suggest that EEG-based directed functional connectivity analysis is a promising tool to better understand the dynamics of spontaneous brain activity in healthy subjects and in various brain disorders.
Collapse
Affiliation(s)
- Ana Coito
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Serge Vulliemoz
- Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland
| | - Gijs Plomp
- Perceptual Networks Group, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
4
|
Pascucci D, Hervais‐Adelman A, Plomp G. Gating by induced Α-Γ asynchrony in selective attention. Hum Brain Mapp 2018; 39:3854-3870. [PMID: 29797747 PMCID: PMC6866587 DOI: 10.1002/hbm.24216] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/17/2018] [Accepted: 05/06/2018] [Indexed: 11/09/2022] Open
Abstract
Visual selective attention operates through top-down mechanisms of signal enhancement and suppression, mediated by α-band oscillations. The effects of such top-down signals on local processing in primary visual cortex (V1) remain poorly understood. In this work, we characterize the interplay between large-scale interactions and local activity changes in V1 that orchestrates selective attention, using Granger-causality and phase-amplitude coupling (PAC) analysis of EEG source signals. The task required participants to either attend to or ignore oriented gratings. Results from time-varying, directed connectivity analysis revealed frequency-specific effects of attentional selection: bottom-up γ-band influences from visual areas increased rapidly in response to attended stimuli while distributed top-down α-band influences originated from parietal cortex in response to ignored stimuli. Importantly, the results revealed a critical interplay between top-down parietal signals and α-γ PAC in visual areas. Parietal α-band influences disrupted the α-γ coupling in visual cortex, which in turn reduced the amount of γ-band outflow from visual areas. Our results are a first demonstration of how directed interactions affect cross-frequency coupling in downstream areas depending on task demands. These findings suggest that parietal cortex realizes selective attention by disrupting cross-frequency coupling at target regions, which prevents them from propagating task-irrelevant information.
Collapse
Affiliation(s)
- David Pascucci
- Perceptual Networks Group, Department of PsychologyUniversity of FribourgFribourgSwitzerland
| | - Alexis Hervais‐Adelman
- Brain and Language Lab, Department of Clinical NeuroscienceUniversity of GenevaGenevaSwitzerland
- Max Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Gijs Plomp
- Perceptual Networks Group, Department of PsychologyUniversity of FribourgFribourgSwitzerland
- Functional Brain Mapping Lab, Department of Fundamental NeurosciencesUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
5
|
Comparison of Neuroplastic Responses to Cathodal Transcranial Direct Current Stimulation and Continuous Theta Burst Stimulation in Subacute Stroke. Arch Phys Med Rehabil 2018; 99:862-872.e1. [DOI: 10.1016/j.apmr.2017.10.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/20/2017] [Accepted: 10/28/2017] [Indexed: 11/22/2022]
|
6
|
Inhibitors of Histone Deacetylases Are Weak Activators of the FMR1 Gene in Fragile X Syndrome Cell Lines. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3582601. [PMID: 29209628 PMCID: PMC5676349 DOI: 10.1155/2017/3582601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/18/2017] [Accepted: 09/28/2017] [Indexed: 01/19/2023]
Abstract
Fragile X syndrome is the most common cause of inherited intellectual disability in humans. It is a result of CGG repeat expansion in the 5' untranslated region (5' UTR) of the FMR1 gene. This gene encodes the FMRP protein that is involved in neuronal development. Repeat expansion leads to heterochromatinization of the promoter, gene silencing, and the subsequent absence of FMRP. To date, there is no specific therapy for the syndrome. All treatments in clinic practice provide symptomatic therapy. The development of drug therapy for Fragile X syndrome treatment is connected with the search for inhibitors of enzymes that are responsible for heterochromatinization. Here, we report a weak transcriptional activity of the FMR1 gene and the absence of FMRP protein after Fragile X syndrome cell lines treatment with two FDA approved inhibitors of histone deacetylases, romidepsin and vorinostat. We demonstrate that romidepsin, an inhibitor of class I histone deacetylases, does not activate FMR1 expression in patient cell cultures, whereas vorinostat, an inhibitor of classes I and II histone deacetylases, activates a low level of FMR1 expression in some patient cell lines.
Collapse
|
7
|
Schmitt A, van Leeuwen C, Lachmann T. Connections are not enough for membership: Letter/non-letter distinction persists through phonological association learning. Acta Psychol (Amst) 2017; 176:85-91. [PMID: 28407502 DOI: 10.1016/j.actpsy.2017.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 03/16/2017] [Accepted: 03/29/2017] [Indexed: 11/29/2022] Open
Abstract
In compound, hierarchical stimuli (also known as Navon figures), a Global Precedence Effect (GPE) can reliably be observed for both letters and non-letters. However, when presentation conditions sufficiently resemble those of reading, the GPE for letters has occasionally been found to disappear. We corroborate this effect in a study with a large group of participants. In addition, in-between two sessions, participants were trained in associating the non-letters with either phonological or non-phonological sounds. We reasoned that learning distinctive phonological associations might be akin to the acquisition of letter knowledge. This might eliminate the GPE also for the non-letters. However, the GPE persisted for the trained non-letters in both conditions. The large number of participants in this study revealed additional effects in the letter condition, which enabled further insights in the processing dissociation between letters and non-letter shapes.
Collapse
Affiliation(s)
- Andreas Schmitt
- University of Kaiserslautern, Center for Cognitive Science, Kaiserslautern, Germany
| | - Cees van Leeuwen
- University of Leuven, Leuven, Belgium; University of Kaiserslautern, Center for Cognitive Science, Kaiserslautern, Germany
| | - Thomas Lachmann
- University of Kaiserslautern, Center for Cognitive Science, Kaiserslautern, Germany.
| |
Collapse
|
8
|
Ronconi L, Bertoni S, Bellacosa Marotti R. The neural origins of visual crowding as revealed by event-related potentials and oscillatory dynamics. Cortex 2016; 79:87-98. [DOI: 10.1016/j.cortex.2016.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/20/2015] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
|
9
|
Early recurrence and ongoing parietal driving during elementary visual processing. Sci Rep 2015; 5:18733. [PMID: 26692466 PMCID: PMC4686934 DOI: 10.1038/srep18733] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/25/2015] [Indexed: 11/29/2022] Open
Abstract
Visual stimuli quickly activate a broad network of brain areas that often show reciprocal structural connections between them. Activity at short latencies (<100 ms) is thought to represent a feed-forward activation of widespread cortical areas, but fast activation combined with reciprocal connectivity between areas in principle allows for two-way, recurrent interactions to occur at short latencies after stimulus onset. Here we combined EEG source-imaging and Granger-causal modeling with high temporal resolution to investigate whether recurrent and top-down interactions between visual and attentional brain areas can be identified and distinguished at short latencies in humans. We investigated the directed interactions between widespread occipital, parietal and frontal areas that we localized within participants using fMRI. The connectivity results showed two-way interactions between area MT and V1 already at short latencies. In addition, the results suggested a large role for lateral parietal cortex in coordinating visual activity that may be understood as an ongoing top-down allocation of attentional resources. Our results support the notion that indirect pathways allow early, evoked driving from MT to V1 to highlight spatial locations of motion transients, while influence from parietal areas is continuously exerted around stimulus onset, presumably reflecting task-related attentional processes.
Collapse
|
10
|
Lachmann T, Schmitt A, Braet W, van Leeuwen C. Letters in the forest: global precedence effect disappears for letters but not for non-letters under reading-like conditions. Front Psychol 2014; 5:705. [PMID: 25101012 PMCID: PMC4102249 DOI: 10.3389/fpsyg.2014.00705] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/19/2014] [Indexed: 11/13/2022] Open
Abstract
Normally skilled reading involves special processing strategies for letters, which are habitually funneled into an abstract letter code. On the basis of previous studies we argue that this habit leads to the preferred usage of an analytic strategy for the processing of letters, while non-letters are preferably processed via a holistic strategy. The well-known global precedence effect (GPE) seems to contradict to this assumption, since, with compound, hierarchical figures, including letter items, faster responses are observed to the global than to the local level of the figure, as well as an asymmetric interference effect from global to local level. We argue that with letters these effects depend on presentation conditions; only when they elicit the processing strategies automatized for reading, an analytic strategy for letters in contrast to non-letters is to be expected. We compared the GPE for letters and non-letters in central viewing, with the global stimulus size close to the functional visual field in whole word reading (6.5° of visual angle) and local stimuli close to the critical size for fluent reading of individual letters (0.5° of visual angle). Under these conditions, the GPE remained robust for non-letters. For letters, however, it disappeared: letters showed no overall response time advantage for the global level and symmetric congruence effects (local-to-global as well as global-to-local interference). We interpret these results as according to the view that reading is based on resident analytic visual processing strategies for letters.
Collapse
Affiliation(s)
- Thomas Lachmann
- Center for Cognitive Science, Cognitive and Developmental Psychology Unit, University of Kaiserslautern Kaiserslautern, Germany
| | - Andreas Schmitt
- Center for Cognitive Science, Cognitive and Developmental Psychology Unit, University of Kaiserslautern Kaiserslautern, Germany
| | - Wouter Braet
- Center for Cognitive Science, Cognitive and Developmental Psychology Unit, University of Kaiserslautern Kaiserslautern, Germany
| | - Cees van Leeuwen
- Center for Cognitive Science, Cognitive and Developmental Psychology Unit, University of Kaiserslautern Kaiserslautern, Germany ; Experimental Psychology Unit, University of Leuven Leuven, Belgium
| |
Collapse
|
11
|
Roos A, Jones G, Howells FM, Stein DJ, Donald KA. Structural brain changes in prenatal methamphetamine-exposed children. Metab Brain Dis 2014; 29:341-9. [PMID: 24553878 DOI: 10.1007/s11011-014-9500-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
Abstract
The global use of methamphetamine (MA) has increased substantially in recent years, but the effect of MA on brain structure in prenatally exposed children is understudied. Here we aimed to investigate potential changes in brain volumes and cortical thickness of children with prenatal MA-exposure compared to unexposed controls. Eighteen 6-year old children with MA-exposure during pregnancy and 18 healthy controls matched for age, gender and socio-economic background underwent structural imaging. Brain volumes and cortical thickness were assessed using Freesurfer and compared using ANOVA. Left putamen volume was significantly increased, and reduced cortical thickness was observed in the left hemisphere of the inferior parietal, parsopercularis and precuneus areas of MA-exposed children compared to controls. Compared to control males, prenatal MA-exposed males had greater volumes in striatal and associated areas, whereas MA-exposed females predominantly had greater cortical thickness compared to control females. In utero exposure to MA results in changes in the striatum of the developing child. In addition, changes within the striatal, frontal, and parietal areas are in part gender dependent.
Collapse
Affiliation(s)
- Annerine Roos
- MRC Unit on Anxiety & Stress Disorders, Department of Psychiatry, Stellenbosch University, P.O. Box 19063, Tygerberg, 7505, Cape Town, South Africa,
| | | | | | | | | |
Collapse
|
12
|
Plomp G, Roinishvili M, Chkonia E, Kapanadze G, Kereselidze M, Brand A, Herzog MH. Electrophysiological evidence for ventral stream deficits in schizophrenia patients. Schizophr Bull 2013; 39:547-54. [PMID: 22258884 PMCID: PMC3627769 DOI: 10.1093/schbul/sbr175] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Schizophrenic patients suffer from many deficits including visual, attentional, and cognitive ones. Visual deficits are of particular interest because they are at the fore-end of information processing and can provide clear examples of interactions between sensory, perceptual, and higher cognitive functions. Visual deficits in schizophrenic patients are often attributed to impairments in the dorsal (where) rather than the ventral (what) stream of visual processing. We used a visual-masking paradigm in which patients and matched controls discriminated small vernier offsets. We analyzed the evoked electroencephalography (EEG) responses and applied distributed electrical source imaging techniques to estimate activity differences between conditions and groups throughout the brain. Compared with controls, patients showed strongly reduced discrimination accuracy, confirming previous work. The behavioral deficits corresponded to pronounced decreases in the evoked EEG response at around 200 ms after stimulus onset. At this latency, patients showed decreased activity for targets in left parietal cortex (dorsal stream), but the decrease was most pronounced in lateral occipital cortex (in the ventral stream). These deficiencies occurred at latencies that reflect object processing and fine shape discriminations. We relate the reduced ventral stream activity to deficient top-down processing of target stimuli and provide a framework for relating the commonly observed dorsal stream deficiencies with the currently observed ventral stream deficiencies.
Collapse
Affiliation(s)
- Gijs Plomp
- Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015, Lausanne, Switzerland.
| | - Maya Roinishvili
- Vision Research Laboratory, Life Science Research Center, Tbilisi, Georgia
| | - Eka Chkonia
- Department of Psychiatry, Tbilisi State Medical University, Tbilisi, Georgia
| | | | - Maia Kereselidze
- Department of Psychiatry, Tbilisi State Medical University, Tbilisi, Georgia
| | - Andreas Brand
- Klinikum Bremen-Ost, Center for Psychiatry and Psychotherapy, Bremen, Germany
| | - Michael H. Herzog
- Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Source space analysis of event-related dynamic reorganization of brain networks. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:452503. [PMID: 23097678 PMCID: PMC3477559 DOI: 10.1155/2012/452503] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/05/2012] [Accepted: 08/10/2012] [Indexed: 01/21/2023]
Abstract
How the brain works is nowadays synonymous with how different parts of the brain work together and the derivation of mathematical descriptions for the functional connectivity patterns that can be objectively derived from data of different neuroimaging techniques. In most cases static networks are studied, often relying on resting state recordings. Here, we present a quantitative study of dynamic reconfiguration of connectivity for event-related experiments. Our motivation is the development of a methodology that can be used for personalized monitoring of brain activity. In line with this motivation, we use data with visual stimuli from a typical subject that participated in different experiments that were previously analyzed with traditional methods. The earlier studies identified well-defined changes in specific brain areas at specific latencies related to attention, properties of stimuli, and tasks demands. Using a recently introduced methodology, we track the event-related changes in network organization, at source space level, thus providing a more global and complete view of the stages of processing associated with the regional changes in activity. The results suggest the time evolving modularity as an additional brain code that is accessible with noninvasive means and hence available for personalized monitoring and clinical applications.
Collapse
|
14
|
Perez C, Peyrin C, Cavézian C, Coubard O, Caetta F, Raz N, Levin N, Doucet G, Andersson F, Obadia M, Gout O, Héran F, Savatovsky J, Chokron S. An FMRI investigation of the cortical network underlying detection and categorization abilities in hemianopic patients. Brain Topogr 2012; 26:264-77. [PMID: 22878845 DOI: 10.1007/s10548-012-0244-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 07/21/2012] [Indexed: 10/28/2022]
Abstract
The current study aims to investigate visual scene perception and its neuro-anatomical correlates for stimuli presented in the central visual field of patients with homonymous hemianopia, and thereby to assess the effect of a right or a left occipital lesion on brain reorganization. Fourteen healthy participants, three left brain damaged (LBD) patients with right homonymous hemianopia and five right brain damaged (RBD) patients with left homonymous hemianopia performed a visual detection task (i.e. "Is there an image on the screen?") and a categorization task (i.e. "Is it an image of a highway or a city?") during a block-designed functional magnetic resonance imaging recording session. Cerebral activity analyses of the posterior areas-the occipital lobe in particular-highlighted bi-hemispheric activation during the detection task but more lateralized, left occipital lobe activation during the categorization task in healthy participants. Conversely, in patients, the same network of activity was observed in both tasks. However, LBD patients showed a predominant activation in their right hemisphere (occipital lobe and posterior temporal areas) whereas RBD patients showed a more bilateral activation (in the occipital lobes). Overall, our preliminary findings suggest a specific pattern of cerebral activation depending on the task instruction in healthy participants and cerebral reorganization of the posterior areas following brain injury in hemianopic patients which could depend upon the side of the occipital lesion.
Collapse
Affiliation(s)
- Céline Perez
- Laboratoire de Psychologie et NeuroCognition, UMR 5105 CNRS- UPMF, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Plomp G, Mercier MR, Otto TU, Blanke O, Herzog MH. Non-retinotopic feature integration decreases response-locked brain activity as revealed by electrical neuroimaging. Neuroimage 2009; 48:405-14. [DOI: 10.1016/j.neuroimage.2009.06.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 11/16/2022] Open
|