1
|
Ding Q, Zhang S, Chen S, Chen J, Li X, Chen J, Peng Y, Chen Y, Chen K, Cai G, Xu G, Lan Y. The Effects of Intermittent Theta Burst Stimulation on Functional Brain Network Following Stroke: An Electroencephalography Study. Front Neurosci 2021; 15:755709. [PMID: 34744616 PMCID: PMC8569250 DOI: 10.3389/fnins.2021.755709] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022] Open
Abstract
Objective: Intermittent theta burst stimulation (iTBS) is a special form of repetitive transcranial magnetic stimulation (rTMS), which effectively increases cortical excitability and has been widely used as a neural modulation approach in stroke rehabilitation. As effects of iTBS are typically investigated by motor evoked potentials, how iTBS influences functional brain network following stroke remains unclear. Resting-state electroencephalography (EEG) has been suggested to be a sensitive measure for evaluating effects of rTMS on brain functional activity and network. Here, we used resting-state EEG to investigate the effects of iTBS on functional brain network in stroke survivors. Methods: We studied thirty stroke survivors (age: 63.1 ± 12.1 years; chronicity: 4.0 ± 3.8 months; UE FMA: 26.6 ± 19.4/66) with upper limb motor dysfunction. Stroke survivors were randomly divided into two groups receiving either Active or Sham iTBS over the ipsilesional primary motor cortex. Resting-state EEG was recorded at baseline and immediately after iTBS to assess the effects of iTBS on functional brain network. Results: Delta and theta bands interhemispheric functional connectivity were significantly increased after Active iTBS (P = 0.038 and 0.011, respectively), but were not significantly changed after Sham iTBS (P = 0.327 and 0.342, respectively). Delta and beta bands global efficiency were also significantly increased after Active iTBS (P = 0.013 and 0.0003, respectively), but not after Sham iTBS (P = 0.586 and 0.954, respectively). Conclusion: This is the first study that used EEG to investigate the acute neuroplastic changes after iTBS following stroke. Our findings for the first time provide evidence that iTBS modulates brain network functioning in stroke survivors. Acute increase in interhemispheric functional connectivity and global efficiency after iTBS suggest that iTBS has the potential to normalize brain network functioning following stroke, which can be utilized in stroke rehabilitation.
Collapse
Affiliation(s)
- Qian Ding
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shunxi Zhang
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Songbin Chen
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jixiang Chen
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaotong Li
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Junhui Chen
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuan Peng
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yujie Chen
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Kang Chen
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guiyuan Cai
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guangqing Xu
- Department of Rehabilitation Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Noda Y. Potential Neurophysiological Mechanisms of 1Hz-TMS to the Right Prefrontal Cortex for Depression: An Exploratory TMS-EEG Study in Healthy Participants. J Pers Med 2021; 11:jpm11020068. [PMID: 33498917 PMCID: PMC7910865 DOI: 10.3390/jpm11020068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The present study aimed to examine the acute neurophysiological effects of 1Hz transcranial magnetic stimulation (TMS) administered to the right dorsolateral prefrontal cortex (DLPFC) in healthy participants. METHODS TMS combined with simultaneous electroencephalography (EEG) recording was conducted for 21 healthy participants. For the right DLPFC, 1Hz-TMS (100 pulses/block × 17 sessions) was applied in the resting-state, while for the left DLPFC, 1Hz-TMS (100 pulses/block × 2 sessions) was administered during the verbal fluency tasks (VFTs). For TMS-EEG data, independent component analysis (ICA) was applied to extract TMS-evoked EEG potentials to calculate TMS-related power as well as TMS-related coherence from the F4 and F3 electrode sites during the resting-state and VFTs. RESULTS TMS-related power was significantly increased in alpha, beta, and gamma bands by 1Hz-TMS at the stimulation site during the resting-state, while TMS-related power was significantly increased in alpha and beta bands but not in the gamma band during the VFTs. On the other hand, TMS-related coherence in alpha and beta bands significantly increased but not in gamma band by 1Hz-TMS that was administered to the right DLPFC in resting-state, whereas there were no significant changes in coherence for all frequency bands by 1Hz-TMS that applied to the left DLPFC during the VFTs. CONCLUSIONS Collectively, 1Hz-repetitive TMS (rTMS) to the right DLPFC may rapidly neuromodulate EEG activity, which might be associated with a therapeutic mechanism for depression.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
3
|
Noh NA. Exploring Cortical Plasticity and Oscillatory Brain Dynamics via Transcranial Magnetic Stimulation and Resting-State Electroencephalogram. Malays J Med Sci 2016; 23:5-16. [PMID: 27660540 DOI: 10.21315/mjms2016.23.4.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 01/08/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive, non-pharmacological technique that is able to modulate cortical activity beyond the stimulation period. The residual aftereffects are akin to the plasticity mechanism of the brain and suggest the potential use of TMS for therapy. For years, TMS has been shown to transiently improve symptoms of neuropsychiatric disorders, but the underlying neural correlates remain elusive. Recently, there is evidence that altered connectivity of brain network dynamics is the mechanism underlying symptoms of various neuropsychiatric illnesses. By combining TMS and electroencephalography (EEG), the functional connectivity patterns among brain regions, and the causal link between function or behaviour and a specific brain region can be determined. Nonetheless, the brain network connectivity are highly complex and involve the dynamics interplay among multitude of brain regions. In this review article, we present previous TMS-EEG co-registration studies, which explore the functional connectivity patterns of human cerebral cortex. We argue the possibilities of neural correlates of long-term potentiation/depression (LTP-/LTD)-like mechanisms of synaptic plasticity that drive the TMS aftereffects as shown by the dissociation between EEG and motor evoked potentials (MEP) cortical output. Here, we also explore alternative explanations that drive the EEG oscillatory modulations post TMS. The precise knowledge of the neurophysiological mechanisms underlying TMS will help characterise disturbances in oscillatory patterns, and the altered functional connectivity in neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Nor Azila Noh
- Department of Medical Science I, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Pandan Indah, 55100 Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
NOH NA, FUGGETTA G, MANGANOTTI P. Theta-burst Transcranial Magnetic Stimulation Alters the Functional Topography of the Cortical Motor Network. Malays J Med Sci 2015; 22:36-44. [PMID: 27006636 PMCID: PMC4795523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a non-invasive tool that is able to modulate the electrical activity of the brain depending upon its protocol of stimulation. Theta burst stimulation (TBS) is a high-frequency TMS protocol that is able to induce prolonged plasticity changes in the brain. The induction of plasticity-like effects by TBS is useful in both experimental and therapeutic settings; however, the underlying neural mechanisms of this modulation remain unclear. The aim of this study was to investigate the effects of continuous TBS (cTBS) on the intrahemispheric and interhemispheric functional connectivity of the resting and active brain. METHODS A total of 26 healthy humans were randomly divided into two groups that received either real cTBS or sham (control) over the left primary motor cortex. Surface electroencephalogram (EEG) was used to quantify the changes of neural oscillations after cTBS at rest and after a choice reaction time test. The cTBS-induced EEG oscillations were computed using spectral analysis of event-related coherence (ERCoh) of theta (4-7.5 Hz), low alpha (8-9.5 Hz), high alpha (10-12.5 Hz), low beta (13-19.5 Hz), and high beta (20-30 Hz) brain rhythms. RESULTS We observed a global decrease in functional connectivity of the brain in the cTBS group when compared to sham in the low beta brain rhythm at rest and high beta brain rhythm during the active state. In particular, EEG spectral analysis revealed that high-frequency beta, a cortically generated brain rhythm, was the most sensitive band that was modulated by cTBS. CONCLUSION Overall, our findings suggest that cTBS, a TMS protocol that mimics the mechanism of long-term depression of synaptic plasticity, modulates motor network oscillations primarily at the cortical level and might interfere with cortical information coding.
Collapse
Affiliation(s)
- Nor Azila NOH
- Department of Medical Science, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Pandan Indah, 55100, Kuala Lumpur, Malaysia
| | - Giorgio FUGGETTA
- College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, United Kingdom
| | - Paolo MANGANOTTI
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Clinical Neurology, G.B. Rossi Hospital, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Effect of High-Frequency Repetitive Transcranial Magnetic Stimulation on Brain Excitability in Severely Brain-Injured Patients in Minimally Conscious or Vegetative State. Brain Stimul 2013; 6:913-21. [DOI: 10.1016/j.brs.2013.06.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/30/2013] [Accepted: 06/30/2013] [Indexed: 11/18/2022] Open
|
6
|
Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Pascual-Leone A. Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders? Neuropharmacology 2012; 64:566-78. [PMID: 22749945 DOI: 10.1016/j.neuropharm.2012.06.020] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 02/07/2023]
Abstract
Cognitive impairment is a core symptom of many neuropsychiatric diseases and a key contributor to the patient's quality of life. However, an effective therapeutic strategy has yet to be developed. Noninvasive brain stimulation techniques, namely transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), are promising techniques that are under investigation for a variety of otherwise treatment-resistant neuropsychiatric diseases. Notably, these tools can induce alterations in neural networks subserving cognitive operations and thus may provide a means for cognitive restoration. The purpose of this article is to review the available evidence concerning cognitive enhancing properties of noninvasive brain stimulation in neuropsychiatry. We specifically focus on major depression, Alzheimer's disease, schizophrenia, autism and attention deficit hyperactivity disorder (ADHD), where cognitive dysfunction is a major symptom and some studies have been completed with promising results. We provide a critical assessment of the available research and suggestions to guide future efforts. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Asli Demirtas-Tatlidede
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey.
| | | | | |
Collapse
|
7
|
Noh NA, Fuggetta G, Manganotti P, Fiaschi A. Long lasting modulation of cortical oscillations after continuous theta burst transcranial magnetic stimulation. PLoS One 2012; 7:e35080. [PMID: 22496893 PMCID: PMC3319628 DOI: 10.1371/journal.pone.0035080] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 03/13/2012] [Indexed: 11/18/2022] Open
Abstract
Transcranial magnetic theta burst stimulation (TBS) differs from other high-frequency rTMS protocols because it induces plastic changes up to an hour despite lower stimulus intensity and shorter duration of stimulation. However, the effects of TBS on neuronal oscillations remain unclear. In this study, we used electroencephalography (EEG) to investigate changes of neuronal oscillations after continuous TBS (cTBS), the protocol that emulates long-term depression (LTD) form of synaptic plasticity. We randomly divided 26 healthy humans into two groups receiving either Active or Sham cTBS as control over the left primary motor cortex (M1). Post-cTBS aftereffects were assessed with behavioural measurements at rest using motor evoked potentials (MEPs) and at active state during the execution of a choice reaction time (RT) task in combination with continuous electrophysiological recordings. The cTBS-induced EEG oscillations were assessed using event-related power (ERPow), which reflected regional oscillatory activity of neural assemblies of θ (4-7.5 Hz), low α (8-9.5 Hz), µ (10-12.5 Hz), low β (13-19.5 Hz), and high β (20-30 Hz) brain rhythms. Results revealed 20-min suppression of MEPs and at least 30-min increase of ERPow modulation, suggesting that besides MEPs, EEG has the potential to provide an accurate cortical readout to assess cortical excitability and to investigate the interference of cortical oscillations in the human brain post-cTBS. We also observed a predominant modulation of β frequency band, supporting the hypothesis that cTBS acts more on cortical level. Theta oscillations were also modulated during rest implying the involvement of independent cortical theta generators over the motor network post cTBS. This work provided more insights into the underlying mechanisms of cTBS, providing a possible link between synchronised neural oscillations and LTD in humans.
Collapse
Affiliation(s)
- Nor Azila Noh
- School of Psychology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, United Kingdom
- Department of Basic Medical Sciences 1, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia (USIM), Level 13, Menara B, Persiaran MPAJ, Pandan Indah, Kuala Lumpur, Malaysia
| | - Giorgio Fuggetta
- School of Psychology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, United Kingdom
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Clinical Neurology, G.B. Rossi Hospital, University of Verona, Verona, Italy
- * E-mail:
| | - Paolo Manganotti
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Clinical Neurology, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Antonio Fiaschi
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Clinical Neurology, G.B. Rossi Hospital, University of Verona, Verona, Italy
| |
Collapse
|