1
|
Cheng H, Sun G, Li M, Yin M, Chen H. Neuron loss and dysfunctionality in hippocampus explain aircraft noise induced working memory impairment: a resting-state fMRI study on military pilots. Biosci Trends 2019; 13:430-440. [PMID: 31611544 DOI: 10.5582/bst.2019.01190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Huijuan Cheng
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, Gansu, China
| | - Guodong Sun
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Regiment Medical Company, 96875 Army of PLA, Baoji, Shaanxi, China
| | - Mei Li
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Minhong Yin
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hao Chen
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Yi SY, Barnett BR, Yu JPJ. Preclinical neuroimaging of gene-environment interactions in psychiatric disease. Br J Radiol 2019; 92:20180885. [PMID: 30982323 PMCID: PMC6732909 DOI: 10.1259/bjr.20180885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/21/2019] [Accepted: 03/13/2019] [Indexed: 01/30/2023] Open
Abstract
Psychiatric disease is one of the leading causes of disability worldwide. Despite the global burden and need for accurate diagnosis and treatment of mental illness, psychiatric diagnosis remains largely based on patient-reported symptoms, allowing for immense symptomatic heterogeneity within a single disease. In renewed efforts towards improved diagnostic specificity and subsequent evaluation of treatment response, a greater understanding of the underlying of the neuropathology and neurobiology of neuropsychiatric disease is needed. However, dissecting these mechanisms of neuropsychiatric illness in clinical populations are problematic with numerous experimental hurdles limiting hypothesis-driven studies including genetic confounds, variable life experiences, different environmental exposures, therapeutic histories, as well as the inability to investigate deeper molecular changes in vivo . Preclinical models, where many of these confounding factors can be controlled, can serve as a crucial experimental bridge for studying the neurobiological origins of mental illness. Furthermore, although behavioral studies and molecular studies are relatively common in these model systems, focused neuroimaging studies are very rare and represent an opportunity to link the molecular changes in psychiatric illness with advanced quantitative neuroimaging studies. In this review, we present an overview of well-validated genetic and environmental models of psychiatric illness, discuss gene-environment interactions, and examine the potential role of neuroimaging towards understanding genetic, environmental, and gene-environmental contributions to psychiatric illness.
Collapse
Affiliation(s)
- Sue Y. Yi
- Neuroscience Training Program, University of Wisconsin–Madison, Wisconsin Institutes for Medical Research, Madison, USA
| | - Brian R. Barnett
- Neuroscience Training Program, University of Wisconsin–Madison, Wisconsin Institutes for Medical Research, Madison, USA
| | | |
Collapse
|
3
|
Zhang R, Kranz GS, Lee TM. Functional Connectome from Phase Synchrony at Resting State is a Neural Fingerprint. Brain Connect 2019; 9:519-528. [DOI: 10.1089/brain.2018.0657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ruibin Zhang
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Laboratory of Neuropsychology, Department of Psychology, The University of Hong Kong, Hong Kong, China
- Laboratory of Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong, China
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
- Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Georg S. Kranz
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Tatia M.C. Lee
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Laboratory of Neuropsychology, Department of Psychology, The University of Hong Kong, Hong Kong, China
- Institute of Clinical Neuropsychology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Pigoni A, Delvecchio G, Altamura AC, Soares JC, Fagnani C, Brambilla P. The role of genes and environment on brain alterations in Major Depressive Disorder: A review of twin studies: Special Section on "Translational and Neuroscience Studies in Affective Disorders". Section Editor, Maria Nobile MD, PhD. This Section of JAD focuses on the relevance of translational and neuroscience studies in providing a better understanding of the neural basis of affective disorders. The main aim is to briefly summaries relevant research findings in clinical neuroscience with particular regards to specific innovative topics in mood and anxiety disorders. J Affect Disord 2018; 234:346-350. [PMID: 29100658 DOI: 10.1016/j.jad.2017.10.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/11/2017] [Accepted: 10/22/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Although it has been consistently reported the important role of genetic and environmental risk factors on structural and functional alterations in Major Depressive Disorder (MDD), the mechanism and the magnitude of the interactions between specific genetic and/or environmental risk factors on brain structures in this disabling disorder are still elusive. Therefore, in the last two decades an increased interest has been devoted to neuroimaging investigations on monozygotic and dizygotic twin samples mainly because their intrinsic characteristics may help to separate the effects of genetic and environmental risk factors on clinical phenotypes, including MDD. METHODS In this context, the present review summarizes results from structural and functional Magnetic Resonance Imaging studies that investigated twin samples in correlation with MDD. RESULTS Overall the results confirmed that a) MDD is characterized by significant alterations in selective brain areas presiding over emotion recognition and evaluation, including amygdala, insula and prefrontal cortices, and b) both genetic and environmental risk factors play a key role in the pathophysiology of this disorder. LIMITATIONS Few MRI studies exploring MDD in twin samples. CONCLUSIONS The specific contribution of both aspects is still not fully elucidated especially because genes and environment have an impact on the same brain areas, which are particularly vulnerable in MDD. Expansion of the current twin sample sizes would help to clearly establish the potential relationship between risk factors and the development of MDD.
Collapse
Affiliation(s)
- A Pigoni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - G Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - A C Altamura
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - J C Soares
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, TX, USA
| | - C Fagnani
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - P Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; IRCCS "E Medea" Scientific Institute, Bosisio Parini, LC, Italy.
| |
Collapse
|
5
|
Chen X, Zhang Q, Wang J, Liu J, Zhang W, Qi S, Xu H, Li C, Zhang J, Zhao H, Meng S, Li D, Lu H, Aschner M, Li B, Yin H, Chen J, Luo W. Cognitive and neuroimaging changes in healthy immigrants upon relocation to a high altitude: A panel study. Hum Brain Mapp 2017; 38:3865-3877. [PMID: 28480993 DOI: 10.1002/hbm.23635] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Cognitive and neuroimaging changes under chronic high-altitude exposure have never been followed up and dynamically assessed. OBJECTIVES To investigate the cognitive and brain structural/functional alterations associated with chronic high-altitude exposure. METHODS Sixty-nine college freshmen that were immigrating to Tibet were enrolled and followed up for two years. Neuropsychological tests, including verbal/visual memory and simple/recognition reaction time, were utilized to determine whether the subjects' cognitive function had changed in response to chronic high-altitude exposure. Structural magnetic resonance imaging (MRI) and resting-state functional MRI (rs-fMRI) were used to quantify brain gray matter (GM) volumes, regional homogeneity (ReHo) and functional connectivity (FC) alterations before and after exposure. Areas with changes in both GM and ReHo were used as seeds in the inter-regional FC analysis. RESULTS The subjects showed significantly lower accuracy in memory tests and longer reaction times after exposure, and neuroimaging analysis showed markedly decreased GM volumes and ReHo in the left putamen. FC analysis seeding of the left putamen showed significantly weakened FC with the superior temporal gyrus, anterior/middle cingulate gyrus and other brain regions. In addition, decreased ReHo was found in the superior temporal gyrus, superior parietal lobule, anterior cingulate gyrus and medial frontal gyrus, while increased ReHo was found in the hippocampus. Differences in ReHo/FC before and after high-altitude exposure in multiple regions were significantly correlated with the cognitive changes. CONCLUSION Cognitive functions such as working memory and psychomotor function are impaired during chronic high-altitude exposure. The putamen may play an important role in chronic hypoxia-induced cognitive impairment. Hum Brain Mapp 38:3865-3877, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoming Chen
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Qian Zhang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Jiye Wang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Jie Liu
- Department of Radiology, General Hospital of Tibet Military Region, Lhasa, China
| | - Wenbin Zhang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Shun Qi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Xu
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Li
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinsong Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Haitao Zhao
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shanshan Meng
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Dan Li
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Huanyu Lu
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York
| | - Bin Li
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingyuan Chen
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Environmental factors linked to depression vulnerability are associated with altered cerebellar resting-state synchronization. Sci Rep 2016; 6:37384. [PMID: 27892484 PMCID: PMC5124945 DOI: 10.1038/srep37384] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/28/2016] [Indexed: 11/14/2022] Open
Abstract
Hosting nearly eighty percent of all human neurons, the cerebellum is functionally connected to large regions of the brain. Accumulating data suggest that some cerebellar resting-state alterations may constitute a key candidate mechanism for depressive psychopathology. While there is some evidence linking cerebellar function and depression, two topics remain largely unexplored. First, the genetic or environmental roots of this putative association have not been elicited. Secondly, while different mathematical representations of resting-state fMRI patterns can embed diverse information of relevance for health and disease, many of them have not been studied in detail regarding the cerebellum and depression. Here, high-resolution fMRI scans were examined to estimate functional connectivity patterns across twenty-six cerebellar regions in a sample of 48 identical twins (24 pairs) informative for depression liability. A network-based statistic approach was employed to analyze cerebellar functional networks built using three methods: the conventional approach of filtered BOLD fMRI time-series, and two analytic components of this oscillatory activity (amplitude envelope and instantaneous phase). The findings indicate that some environmental factors may lead to depression vulnerability through alterations of the neural oscillatory activity of the cerebellum during resting-state. These effects may be observed particularly when exploring the amplitude envelope of fMRI oscillations.
Collapse
|
7
|
Minen MT, Begasse De Dhaem O, Kroon Van Diest A, Powers S, Schwedt TJ, Lipton R, Silbersweig D. Migraine and its psychiatric comorbidities. J Neurol Neurosurg Psychiatry 2016; 87:741-9. [PMID: 26733600 DOI: 10.1136/jnnp-2015-312233] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/26/2015] [Indexed: 11/04/2022]
Abstract
Migraine is a highly prevalent and disabling neurological disorder associated with a wide range of psychiatric comorbidities. In this manuscript, we provide an overview of the link between migraine and several comorbid psychiatric disorders, including depression, anxiety and post-traumatic stress disorder. We present data on psychiatric risk factors for migraine chronification. We discuss the evidence, theories and methods, such as brain functional imaging, to explain the pathophysiological links between migraine and psychiatric disorders. Finally, we provide an overview of the treatment considerations for treating migraine with psychiatric comorbidities. In conclusion, a review of the literature demonstrates the wide variety of psychiatric comorbidities with migraine. However, more research is needed to elucidate the neurocircuitry underlying the association between migraine and the comorbid psychiatric conditions and to determine the most effective treatment for migraine with psychiatric comorbidity.
Collapse
Affiliation(s)
- Mia Tova Minen
- Department of Neurology, NYU Langone Medical Center, New York, New York, USA
| | | | - Ashley Kroon Van Diest
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Medical Center, Cincinnati, Ohio, USA
| | - Scott Powers
- Cincinnati Children's Medical Center, Headache Center, Office for Clinical and Translational Research, Center for Child Behavior and Nutrition Research and Training, Pediatrics, Cincinnati, Ohio, USA
| | | | - Richard Lipton
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David Silbersweig
- Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Han K, Chapman SB, Krawczyk DC. Altered Amygdala Connectivity in Individuals with Chronic Traumatic Brain Injury and Comorbid Depressive Symptoms. Front Neurol 2015; 6:231. [PMID: 26581959 PMCID: PMC4631949 DOI: 10.3389/fneur.2015.00231] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/19/2015] [Indexed: 01/04/2023] Open
Abstract
Depression is one of the most common psychiatric conditions in individuals with chronic traumatic brain injury (TBI). Though depression has detrimental effects in TBI and network dysfunction is a "hallmark" of TBI and depression, there have not been any prior investigations of connectivity-based neuroimaging biomarkers for comorbid depression in TBI. We utilized resting-state functional magnetic resonance imaging to identify altered amygdala connectivity in individuals with chronic TBI (8 years post-injury on average) exhibiting comorbid depressive symptoms (N = 31), relative to chronic TBI individuals having minimal depressive symptoms (N = 23). Connectivity analysis of these participant sub-groups revealed that the TBI-plus-depressive symptoms group showed relative increases in amygdala connectivity primarily in the regions that are part of the salience, somatomotor, dorsal attention, and visual networks (p voxel < 0.01, p cluster < 0.025). Relative increases in amygdala connectivity in the TBI-plus-depressive symptoms group were also observed within areas of the limbic-cortical mood-regulating circuit (the left dorsomedial and right dorsolateral prefrontal cortices and thalamus) and the brainstem. Further analysis revealed that spatially dissociable patterns of correlation between amygdala connectivity and symptom severity according to subtypes (Cognitive and Affective) of depressive symptoms (p voxel < 0.01, p cluster < 0.025). Taken together, these results suggest that amygdala connectivity may be a potentially effective neuroimaging biomarker for comorbid depressive symptoms in chronic TBI.
Collapse
Affiliation(s)
- Kihwan Han
- Center for BrainHealth®, School of Behavioral and Brain Sciences, University of Texas at Dallas , Dallas, TX , USA
| | - Sandra B Chapman
- Center for BrainHealth®, School of Behavioral and Brain Sciences, University of Texas at Dallas , Dallas, TX , USA
| | - Daniel C Krawczyk
- Center for BrainHealth®, School of Behavioral and Brain Sciences, University of Texas at Dallas , Dallas, TX , USA ; Department of Psychiatry, University of Texas Southwestern Medical Center , Dallas, TX , USA
| |
Collapse
|