1
|
Song Y, Jiang W, Afridi SK, Wang T, Zhu F, Xu H, Nazir FH, Liu C, Wang Y, Long Y, Huang YWA, Qiu W, Tang C. Astrocyte-derived CHI3L1 signaling impairs neurogenesis and cognition in the demyelinated hippocampus. Cell Rep 2024; 43:114226. [PMID: 38733586 DOI: 10.1016/j.celrep.2024.114226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Cognitive dysfunction is a feature in multiple sclerosis (MS), a chronic inflammatory demyelinating disorder. A notable aspect of MS brains is hippocampal demyelination, which is closely associated with cognitive decline. However, the mechanisms underlying this phenomenon remain unclear. Chitinase-3-like (CHI3L1), secreted by activated astrocytes, has been identified as a biomarker for MS progression. Our study investigates CHI3L1's function within the demyelinating hippocampus and demonstrates a correlation between CHI3L1 expression and cognitive impairment in patients with MS. Activated astrocytes release CHI3L1 in reaction to induced demyelination, which adversely affects the proliferation and differentiation of neural stem cells and impairs dendritic growth, complexity, and spine formation in neurons. Our findings indicate that the astrocytic deletion of CHI3L1 can mitigate neurogenic deficits and cognitive dysfunction. We showed that CHI3L1 interacts with CRTH2/receptor for advanced glycation end (RAGE) by attenuating β-catenin signaling. The reactivation of β-catenin signaling can revitalize neurogenesis, which holds promise for therapy of inflammatory demyelination.
Collapse
Affiliation(s)
- Yanna Song
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University; 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University; 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Shabbir Khan Afridi
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tongtong Wang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Fan Zhu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University; 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University; 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Faisal Hayat Nazir
- Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chunxin Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University; 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University; 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Youming Long
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, Guangdong Province, China; Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, 250 Changgang East Road, Guangzhou 510260, Guangdong Province, China
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University; 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University; 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
2
|
Zhang C, Zhang K, Hu X, Cai X, Chen Y, Gao F, Wang G. Regional GABA levels modulate abnormal resting-state network functional connectivity and cognitive impairment in multiple sclerosis. Cereb Cortex 2024; 34:bhad535. [PMID: 38271282 DOI: 10.1093/cercor/bhad535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
More evidence shows that changes in functional connectivity with regard to brain networks and neurometabolite levels correlated to cognitive impairment in multiple sclerosis. However, the neurological basis underlying the relationship among neurometabolite levels, functional connectivity, and cognitive impairment remains unclear. For this purpose, we used a combination of magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging to study gamma-aminobutyric acid and glutamate concentrations in the posterior cingulate cortex, medial prefrontal cortex and left hippocampus, and inter-network functional connectivity in 29 relapsing-remitting multiple sclerosis patients and 34 matched healthy controls. Neuropsychological tests were used to evaluate the cognitive function. We found that relapsing-remitting multiple sclerosis patients demonstrated significantly reduced gamma-aminobutyric acid and glutamate concentrations and aberrant functional connectivity involving cognitive-related networks compared to healthy controls, and both alterations were associated with specific cognition decline. Moreover, mediation analyses indicated that decremented hippocampus gamma-aminobutyric acid levels in relapsing-remitting multiple sclerosis patients mediated the association between inter-network functional connectivity in various components of default mode network and verbal memory deficits. In summary, our findings shed new lights on the essential function of GABAergic system abnormalities in regulating network dysconnectivity and functional connectivity in relapsing-remitting multiple sclerosis patients, suggesting potential novel approach to treatment.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Kaihua Zhang
- School of Psychology, Shandong Normal University, Jinan 250358, China
| | - Xin Hu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Xianyun Cai
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yufan Chen
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
3
|
Morozumi T, Preziosa P, Meani A, Albergoni M, Margoni M, Pagani E, Filippi M, Rocca MA. Influence of cardiorespiratory fitness and MRI measures of neuroinflammation on hippocampal volume in multiple sclerosis. J Neurol Neurosurg Psychiatry 2023; 95:29-36. [PMID: 37468307 DOI: 10.1136/jnnp-2023-331482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND The hippocampus is a clinically relevant region where neurogenesis and neuroplasticity occur throughout the whole lifespan. Neuroinflammation and cardiorespiratory fitness (CRF) may influence hippocampal integrity by modulating the processes promoting neurogenesis and neuroprotection that contribute to the preservation of functions. This study aimed to investigate the effects of neuroinflammation and CRF on hippocampal volume in multiple sclerosis (MS) patients with relapsing-remitting (RR) and progressive (P) clinical phenotypes. The influence of neuroinflammation and CRF on brain, grey matter (GM) and thalamic volumes was also assessed to determine whether the effects were specific for the hippocampus. METHOD Brain 3T structural MRI scans and maximum oxygen consumption (VO2max), a proxy of CRF, were acquired from 81 MS patients (27 RR and 54 P) and 45 age-matched and sex-matched healthy controls. T2-hyperintense white matter lesion volume (T2-LV) and choroid plexuses volume (CPV) were quantified as neuroinflammatory measures. Associations of demographic, clinical, neuroinflammatory and CRF measures with normalised brain, GM, hippocampal and thalamic volumes in relapsing-remitting MS (RRMS) and progressive MS patients were assessed using Shapley and best subset selection regression. RESULTS For most volumetric measures, the largest portions of variance were explained by T2-LV (variable importance (VI)=9.4-39.4) and CPV (VI=4.5-26.2). VO2max explained the largest portion of variance of normalised hippocampal volume only in RRMS patients (VI=16.9) and was retained as relevant predictor (standardised β=0.374, p=0.023) with T2-LV (standardised β=-0.330, p=0.016). CONCLUSIONS A higher CRF may play a specific neuroprotective role on MS patients' hippocampal integrity, but only in the RR phase of the disease.
Collapse
Affiliation(s)
- Tetsu Morozumi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Matteo Albergoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Neurorehabilitation Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Neurophysiology Service, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
4
|
Cacciaguerra L, Rocca MA, Filippi M. Understanding the Pathophysiology and Magnetic Resonance Imaging of Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Korean J Radiol 2023; 24:1260-1283. [PMID: 38016685 PMCID: PMC10700997 DOI: 10.3348/kjr.2023.0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 11/30/2023] Open
Abstract
Magnetic resonance imaging (MRI) has been extensively applied in the study of multiple sclerosis (MS), substantially contributing to diagnosis, differential diagnosis, and disease monitoring. MRI studies have significantly contributed to the understanding of MS through the characterization of typical radiological features and their clinical or prognostic implications using conventional MRI pulse sequences and further with the application of advanced imaging techniques sensitive to microstructural damage. Interpretation of results has often been validated by MRI-pathology studies. However, the application of MRI techniques in the study of neuromyelitis optica spectrum disorders (NMOSD) remains an emerging field, and MRI studies have focused on radiological correlates of NMOSD and its pathophysiology to aid in diagnosis, improve monitoring, and identify relevant prognostic factors. In this review, we discuss the main contributions of MRI to the understanding of MS and NMOSD, focusing on the most novel discoveries to clarify differences in the pathophysiology of focal inflammation initiation and perpetuation, involvement of normal-appearing tissue, potential entry routes of pathogenic elements into the CNS, and existence of primary or secondary mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Laura Cacciaguerra
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
5
|
Nwaubani P, Cercignani M, Colasanti A. In vivo quantitative imaging of hippocampal inflammation in autoimmune neuroinflammatory conditions: a systematic review. Clin Exp Immunol 2022; 210:24-38. [PMID: 35802780 PMCID: PMC9585553 DOI: 10.1093/cei/uxac058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/17/2022] [Accepted: 07/04/2022] [Indexed: 01/25/2023] Open
Abstract
The hippocampus is a morphologically complex region of the brain limbic system centrally involved in important cognitive, affective, and behavioural regulatory roles. It has exquisite vulnerability to neuroinflammatory processes, with some of its subregions found to be specific sites of neuroinflammatory pathology in ex-vivo studies. Optimizing neuroimaging correlates of hippocampal neuroinflammation would enable the direct study of functional consequences of hippocampal neuroinflammatory pathology, as well as the definition of therapeutic end-points for treatments targeting neuroinflammation, and their related affective or cognitive sequelae. However, in vivo traditional imaging of the hippocampus and its subregions is fraught with difficulties, due to methodological challenges deriving from its unique anatomical characteristics. The main objective of this review is to provide a current update on the characterization of quantitative neuroimaging correlates of hippocampal neuroinflammation by focusing on three prototypical autoimmune neuro-inflammatory conditions [multiple sclerosis (MS), systemic lupus erythematosus (SLE), and autoimmune encephalitis (AE)]. We focused on studies employing TSPO-targeting positron emission tomography (PET), quantitative magnetic resonance imaging (MRI), and spectroscopy techniques assumed to be sensitive to neuroinflammatory tissue changes. We found 18 eligible studies (14, 2, and 2 studies in MS, AE, and SLE, respectively). Across conditions, the largest effect was seen in TSPO PET and diffusion-weighted MRI studies. No study examined neuroinflammation-related changes at the hippocampal subfield level. Overall, results were largely inconsistent due to heterogeneous imaging methods, small sample sizes, and different population studies. We discuss how these data could inform future study design and conclude by suggesting further methodological directions aimed at improving the precision and sensitivity of neuroimaging techniques to characterize hippocampal neuroinflammatory pathology in the human brain.
Collapse
Affiliation(s)
- P Nwaubani
- Department of Clinical Neuroscience and Neuroimaging, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK
| | - M Cercignani
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - A Colasanti
- Correspondence: Alessandro Colasanti, Department of Clinical Neuroscience and Neuroimaging, Brighton and Sussex Medical School, University of Sussex, Trafford Centre for Medical Research, University of Sussex, Falmer, Brighton, BN1 4RY, UK.
| |
Collapse
|
6
|
Complement-associated loss of CA2 inhibitory synapses in the demyelinated hippocampus impairs memory. Acta Neuropathol 2021; 142:643-667. [PMID: 34170374 PMCID: PMC8423657 DOI: 10.1007/s00401-021-02338-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022]
Abstract
The complement system is implicated in synapse loss in the MS hippocampus, but the functional consequences of synapse loss remain poorly understood. Here, in post-mortem MS hippocampi with demyelination we find that deposits of the complement component C1q are enriched in the CA2 subfield, are linked to loss of inhibitory synapses and are significantly higher in MS patients with cognitive impairments compared to those with preserved cognitive functions. Using the cuprizone mouse model of demyelination, we corroborated that C1q deposits are highest within the demyelinated dorsal hippocampal CA2 pyramidal layer and co-localized with inhibitory synapses engulfed by microglia/macrophages. In agreement with the loss of inhibitory perisomatic synapses, we found that Schaffer collateral feedforward inhibition but not excitation was impaired in CA2 pyramidal neurons and accompanied by intrinsic changes and a reduced spike output. Finally, consistent with excitability deficits, we show that cuprizone-treated mice exhibit impaired encoding of social memories. Together, our findings identify CA2 as a critical circuit in demyelinated intrahippocampal lesions and memory dysfunctions in MS.
Collapse
|
7
|
Zheng F, Li Y, Zhuo Z, Duan Y, Cao G, Tian D, Zhang X, Li K, Zhou F, Huang M, Li H, Li Y, Zeng C, Zhang N, Sun J, Yu C, Han X, Hallar S, Barkhof F, Liu Y. Structural and functional hippocampal alterations in Multiple sclerosis and neuromyelitis optica spectrum disorder. Mult Scler 2021; 28:707-717. [PMID: 34379008 DOI: 10.1177/13524585211032800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Hippocampal involvement may differ between multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). OBJECTIVE To investigate the morphometric, diffusion and functional alterations in hippocampus in MS and NMOSD and the clinical significance. METHODS A total of 752 participants including 236 MS, 236 NMOSD and 280 healthy controls (HC) were included in this retrospective multi-center study. The hippocampus and subfield volumes, fractional anisotropy (FA) and mean diffusivity (MD), amplitude of low frequency fluctuation (ALFF) and degree centrality (DC) were analyzed, and their associations with clinical variables were investigated. RESULTS The hippocampus showed significantly lower volume, FA and greater MD in MS compared to NMOSD and HC (p < 0.05), while no abnormal ALFF or DC was identified in any group. Hippocampal subfields were affected in both diseases, though subiculum, presubiculum and fimbria showed significantly lower volume only in MS (p < 0.05). Significant correlations between diffusion alterations, several subfield volumes and clinical variables were observed in both diseases, especially in MS (R = -0.444 to 0.498, p < 0.05). FA and MD showed fair discriminative power between MS and HC, NMOSD and HC (AUC > 0.7). CONCLUSIONS Hippocampal atrophy and diffusion abnormalities were identified in MS and NMOSD, partly explaining how clinical disability and cognitive impairment are differentially affected.
Collapse
Affiliation(s)
- Fenglian Zheng
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuxin Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanmei Cao
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Decai Tian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, China/Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, China/Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Haiqing Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chun Zeng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ningnannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuemei Han
- Department of Neurology, China-Japan Union hospital of Jilin University, Changchun, China
| | - Sven Hallar
- Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland/Department of Surgical Sciences, Radiology, Uppsala University, Sweden/Faculty of Medicine of the University of Geneva, Switzerland/Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, The Netherlands/Queen Square Institute of Neurology and Center for Medical Image Computing, University College London, London, UK
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Lommers E, Guillemin C, Reuter G, Fouarge E, Delrue G, Collette F, Degueldre C, Balteau E, Maquet P, Phillips C. Voxel-Based quantitative MRI reveals spatial patterns of grey matter alteration in multiple sclerosis. Hum Brain Mapp 2020; 42:1003-1012. [PMID: 33155763 PMCID: PMC7856642 DOI: 10.1002/hbm.25274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/10/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
Despite robust postmortem evidence and potential clinical importance of gray matter (GM) pathology in multiple sclerosis (MS), assessing GM damage by conventional magnetic resonance imaging (MRI) remains challenging. This prospective cross‐sectional study aimed at characterizing the topography of GM microstructural and volumetric alteration in MS using, in addition to brain atrophy measures, three quantitative MRI (qMRI) parameters—magnetization transfer (MT) saturation, longitudinal (R1), and effective transverse (R2*) relaxation rates, derived from data acquired during a single scanning session. Our study involved 35 MS patients (14 relapsing–remitting MS; 21 primary or secondary progressive MS) and 36 age‐matched healthy controls (HC). The qMRI maps were computed and segmented in different tissue classes. Voxel‐based quantification (VBQ) and voxel‐based morphometry (VBM) statistical analyses were carried out using multiple linear regression models. In MS patients compared with HC, three configurations of GM microstructural/volumetric alterations were identified. (a) Co‐localization of GM atrophy with significant reduction of MT, R1, and/or R2*, usually observed in primary cortices. (b) Microstructural modifications without significant GM loss: hippocampus and paralimbic cortices, showing reduced MT and/or R1 values without significant atrophy. (c) Atrophy without significant change in microstructure, identified in deep GM nuclei. In conclusion, this quantitative multiparametric voxel‐based approach reveals three different spatially‐segregated combinations of GM microstructural/volumetric alterations in MS that might be associated with different neuropathology.
Collapse
Affiliation(s)
- Emilie Lommers
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium.,Clinical Neuroimmunology Unit, Neurology Department, CHU Liège, Liège, Belgium
| | - Camille Guillemin
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium.,Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | - Gilles Reuter
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium.,Neurosurgery Department, CHU Liège, Liège, Belgium
| | - Eve Fouarge
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium
| | - Gaël Delrue
- Clinical Neuroimmunology Unit, Neurology Department, CHU Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium.,Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | | | - Evelyne Balteau
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium
| | - Pierre Maquet
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium.,Clinical Neuroimmunology Unit, Neurology Department, CHU Liège, Liège, Belgium
| | - Christophe Phillips
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium.,GIGA - in silico medicine, University of Liège, Liège, Belgium
| |
Collapse
|
9
|
Jakimovski D, Bergsland N, Dwyer MG, Hagemeier J, Ramasamy DP, Szigeti K, Guttuso T, Lichter D, Hojnacki D, Weinstock-Guttman B, Benedict RHB, Zivadinov R. Long-standing multiple sclerosis neurodegeneration: volumetric magnetic resonance imaging comparison to Parkinson's disease, mild cognitive impairment, Alzheimer's disease, and elderly healthy controls. Neurobiol Aging 2020; 90:84-92. [PMID: 32147244 DOI: 10.1016/j.neurobiolaging.2020.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) exhibits neurodegeneration driven disability progression. We compared the extent of neurodegeneration among 112 long-standing MS patients, 37 Parkinson's disease (PD) patients, 34 amnestic mild cognitive impairment (aMCI) patients, 37 Alzheimer's disease (AD) patients, and 184 healthy controls. 3T MRI volumes of whole brain (WBV), white matter (WMV), gray matter (GMV), cortical (CV), deep gray matter (DGM), and nuclei-specific volumes of thalamus, caudate, putamen, globus pallidus, and hippocampus were derived with SIENAX and FIRST software. Аge and sex-adjusted analysis of covariance was used. WBV was not significantly different between diseases. MS had significantly lower WMV compared to other disease groups (p < 0.021). Only AD had smaller GMV and CV when compared to MS (both p < 0.001). MS had smaller DGM volume than PD and aMCI (p < 0.001 and p = 0.026, respectively) and lower thalamic volume when compared to all other neurodegenerative diseases (p < 0.008). Long-standing MS exhibits comparable global atrophy with lower WMV and thalamic volume when compared to other classical neurodegenerative diseases.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jesper Hagemeier
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Deepa P Ramasamy
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Kinga Szigeti
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Thomas Guttuso
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - David Lichter
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - David Hojnacki
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Ralph H B Benedict
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
10
|
Filippi M, Preziosa P, Rocca MA. Brain mapping in multiple sclerosis: Lessons learned about the human brain. Neuroimage 2019; 190:32-45. [DOI: 10.1016/j.neuroimage.2017.09.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 02/07/2023] Open
|
11
|
Chalah MA, Kauv P, Créange A, Hodel J, Lefaucheur JP, Ayache SS. Neurophysiological, radiological and neuropsychological evaluation of fatigue in multiple sclerosis. Mult Scler Relat Disord 2019; 28:145-152. [DOI: 10.1016/j.msard.2018.12.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
|
12
|
Rocca MA, Barkhof F, De Luca J, Frisén J, Geurts JJG, Hulst HE, Sastre-Garriga J, Filippi M. The hippocampus in multiple sclerosis. Lancet Neurol 2018; 17:918-926. [PMID: 30264730 DOI: 10.1016/s1474-4422(18)30309-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/18/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022]
Abstract
Some of the clinical manifestations of multiple sclerosis, such as memory impairment and depression, are, at least partly, related to involvement of the hippocampus. Pathological studies have shown extensive demyelination, neuronal damage, and synaptic abnormalities in the hippocampus of patients with multiple sclerosis, and improvements in MRI technology have provided novel ways to assess hippocampal involvement in vivo. It is now accepted that clinical manifestations related to the hippocampus are due not only to focal hippocampal damage, but also to disconnection of the hippocampus from several brain networks. Evidence suggests anatomical and functional subspecialisation of the different hippocampal subfields, resulting in variability between regions in the extent to which damage and repair occur. The hippocampus also has important roles in plasticity and neurogenesis, both of which potentially contribute to functional preservation and restoration. These findings underline the importance of evaluation of the hippocampus not only to improve understanding of the clinical manifestations of multiple sclerosis, but also as a potential future target for treatment.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC-location VUmc, Amsterdam, Netherlands; Institute of Neurology and Institute of Healthcare Engineering, UCL Institute of Neurology, London, UK
| | - John De Luca
- Kessler Foundation, West Orange, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institute, Sweden
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC-location VUmc, Amsterdam, Netherlands
| | - Hanneke E Hulst
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC-location VUmc, Amsterdam, Netherlands
| | - Jaume Sastre-Garriga
- Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Massimo Filippi
- Neuroimaging Research Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| | | |
Collapse
|
13
|
Longoni G, Brown RA, Aubert-Broche B, Grover SA, Branson HM, Fetco D, Bar-Or A, Marrie RA, Motl RW, Collins DL, Narayanan S, Arnold DL, Banwell B, Yeh EA. Physical activity and dentate gyrus volume in pediatric acquired demyelinating syndromes. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 5:e499. [PMID: 30211252 PMCID: PMC6131051 DOI: 10.1212/nxi.0000000000000499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/19/2018] [Indexed: 01/18/2023]
Abstract
Objective To assess the association between daily moderate-to-vigorous physical activity (MVPA) and dentate gyrus volume (DGv) in pediatric patients with acquired demyelinating syndromes (ADSs) of the CNS. Methods Cross-sectional analysis of accelerometry (7 days) and research protocol MRI data from 12 pediatric MS and 18 children with monophasic ADS (monoADS). Total brain and DGv were quantified using standardized methods. The association of daily minutes of MVPA with normalized DGv (nDGv) was assessed using multivariable generalized linear models. Results Median (interquartile range) MVPA was lower in MS patients [9.5 (14)] and exhibited less variation than in monoADS patients [24.5 (47)]. nDGv did not differ significantly between groups [mean nDGv (SD) [cm3]: MS 0.34 (0.1); monoADS 0.4 (0.1); p = 0.100]. In the monoADS group, every 1-minute increase in MVPA was associated with a 2.4-mm3 increase in nDGv (p = 0.0017), an association that was independent of age at incident demyelination, time from incident demyelination, sex, and brain white matter T2 lesion volume. No significant association was found between MVPA and nDGv (−2.6 mm3/min, p = 0.16) in the MS group. Conclusions Higher MVPA associates with greater nDGv in children who have recovered from monophasic demyelination. Larger studies are required to determine whether MVPA can promote regional brain development, or limit tissue damage, in youth with MS.
Collapse
Affiliation(s)
- Giulia Longoni
- Division of Neurology, Department of Neurosciences and Mental Health (G.L., S.A.G., E.A.Y.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics (G.L., H.M.B., E.A.Y.), the University of Toronto, Toronto, ON, Canada; McConnell Brain Imaging Centre (R.A.B., B.A.-B., D.F., D.L.C., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Division of Medical Imaging (H.M.B.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Physical Therapy (R.W.M.), University of Alabama at Birmingham, Birmingham, AL; Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada; and Division of Neurology (B.B.), the Children's Hospital of Philadelphia, Perelman School of Medicine (A.B.-O.), University of Pennsylvania, Philadelphia, PA
| | - Robert A Brown
- Division of Neurology, Department of Neurosciences and Mental Health (G.L., S.A.G., E.A.Y.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics (G.L., H.M.B., E.A.Y.), the University of Toronto, Toronto, ON, Canada; McConnell Brain Imaging Centre (R.A.B., B.A.-B., D.F., D.L.C., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Division of Medical Imaging (H.M.B.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Physical Therapy (R.W.M.), University of Alabama at Birmingham, Birmingham, AL; Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada; and Division of Neurology (B.B.), the Children's Hospital of Philadelphia, Perelman School of Medicine (A.B.-O.), University of Pennsylvania, Philadelphia, PA
| | - Berengere Aubert-Broche
- Division of Neurology, Department of Neurosciences and Mental Health (G.L., S.A.G., E.A.Y.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics (G.L., H.M.B., E.A.Y.), the University of Toronto, Toronto, ON, Canada; McConnell Brain Imaging Centre (R.A.B., B.A.-B., D.F., D.L.C., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Division of Medical Imaging (H.M.B.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Physical Therapy (R.W.M.), University of Alabama at Birmingham, Birmingham, AL; Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada; and Division of Neurology (B.B.), the Children's Hospital of Philadelphia, Perelman School of Medicine (A.B.-O.), University of Pennsylvania, Philadelphia, PA
| | - Stephanie A Grover
- Division of Neurology, Department of Neurosciences and Mental Health (G.L., S.A.G., E.A.Y.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics (G.L., H.M.B., E.A.Y.), the University of Toronto, Toronto, ON, Canada; McConnell Brain Imaging Centre (R.A.B., B.A.-B., D.F., D.L.C., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Division of Medical Imaging (H.M.B.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Physical Therapy (R.W.M.), University of Alabama at Birmingham, Birmingham, AL; Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada; and Division of Neurology (B.B.), the Children's Hospital of Philadelphia, Perelman School of Medicine (A.B.-O.), University of Pennsylvania, Philadelphia, PA
| | - Helen M Branson
- Division of Neurology, Department of Neurosciences and Mental Health (G.L., S.A.G., E.A.Y.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics (G.L., H.M.B., E.A.Y.), the University of Toronto, Toronto, ON, Canada; McConnell Brain Imaging Centre (R.A.B., B.A.-B., D.F., D.L.C., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Division of Medical Imaging (H.M.B.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Physical Therapy (R.W.M.), University of Alabama at Birmingham, Birmingham, AL; Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada; and Division of Neurology (B.B.), the Children's Hospital of Philadelphia, Perelman School of Medicine (A.B.-O.), University of Pennsylvania, Philadelphia, PA
| | - Dumitru Fetco
- Division of Neurology, Department of Neurosciences and Mental Health (G.L., S.A.G., E.A.Y.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics (G.L., H.M.B., E.A.Y.), the University of Toronto, Toronto, ON, Canada; McConnell Brain Imaging Centre (R.A.B., B.A.-B., D.F., D.L.C., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Division of Medical Imaging (H.M.B.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Physical Therapy (R.W.M.), University of Alabama at Birmingham, Birmingham, AL; Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada; and Division of Neurology (B.B.), the Children's Hospital of Philadelphia, Perelman School of Medicine (A.B.-O.), University of Pennsylvania, Philadelphia, PA
| | - Amit Bar-Or
- Division of Neurology, Department of Neurosciences and Mental Health (G.L., S.A.G., E.A.Y.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics (G.L., H.M.B., E.A.Y.), the University of Toronto, Toronto, ON, Canada; McConnell Brain Imaging Centre (R.A.B., B.A.-B., D.F., D.L.C., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Division of Medical Imaging (H.M.B.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Physical Therapy (R.W.M.), University of Alabama at Birmingham, Birmingham, AL; Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada; and Division of Neurology (B.B.), the Children's Hospital of Philadelphia, Perelman School of Medicine (A.B.-O.), University of Pennsylvania, Philadelphia, PA
| | - Ruth Ann Marrie
- Division of Neurology, Department of Neurosciences and Mental Health (G.L., S.A.G., E.A.Y.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics (G.L., H.M.B., E.A.Y.), the University of Toronto, Toronto, ON, Canada; McConnell Brain Imaging Centre (R.A.B., B.A.-B., D.F., D.L.C., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Division of Medical Imaging (H.M.B.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Physical Therapy (R.W.M.), University of Alabama at Birmingham, Birmingham, AL; Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada; and Division of Neurology (B.B.), the Children's Hospital of Philadelphia, Perelman School of Medicine (A.B.-O.), University of Pennsylvania, Philadelphia, PA
| | - Robert W Motl
- Division of Neurology, Department of Neurosciences and Mental Health (G.L., S.A.G., E.A.Y.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics (G.L., H.M.B., E.A.Y.), the University of Toronto, Toronto, ON, Canada; McConnell Brain Imaging Centre (R.A.B., B.A.-B., D.F., D.L.C., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Division of Medical Imaging (H.M.B.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Physical Therapy (R.W.M.), University of Alabama at Birmingham, Birmingham, AL; Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada; and Division of Neurology (B.B.), the Children's Hospital of Philadelphia, Perelman School of Medicine (A.B.-O.), University of Pennsylvania, Philadelphia, PA
| | - D Louis Collins
- Division of Neurology, Department of Neurosciences and Mental Health (G.L., S.A.G., E.A.Y.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics (G.L., H.M.B., E.A.Y.), the University of Toronto, Toronto, ON, Canada; McConnell Brain Imaging Centre (R.A.B., B.A.-B., D.F., D.L.C., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Division of Medical Imaging (H.M.B.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Physical Therapy (R.W.M.), University of Alabama at Birmingham, Birmingham, AL; Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada; and Division of Neurology (B.B.), the Children's Hospital of Philadelphia, Perelman School of Medicine (A.B.-O.), University of Pennsylvania, Philadelphia, PA
| | - Sridar Narayanan
- Division of Neurology, Department of Neurosciences and Mental Health (G.L., S.A.G., E.A.Y.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics (G.L., H.M.B., E.A.Y.), the University of Toronto, Toronto, ON, Canada; McConnell Brain Imaging Centre (R.A.B., B.A.-B., D.F., D.L.C., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Division of Medical Imaging (H.M.B.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Physical Therapy (R.W.M.), University of Alabama at Birmingham, Birmingham, AL; Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada; and Division of Neurology (B.B.), the Children's Hospital of Philadelphia, Perelman School of Medicine (A.B.-O.), University of Pennsylvania, Philadelphia, PA
| | - Douglas L Arnold
- Division of Neurology, Department of Neurosciences and Mental Health (G.L., S.A.G., E.A.Y.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics (G.L., H.M.B., E.A.Y.), the University of Toronto, Toronto, ON, Canada; McConnell Brain Imaging Centre (R.A.B., B.A.-B., D.F., D.L.C., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Division of Medical Imaging (H.M.B.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Physical Therapy (R.W.M.), University of Alabama at Birmingham, Birmingham, AL; Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada; and Division of Neurology (B.B.), the Children's Hospital of Philadelphia, Perelman School of Medicine (A.B.-O.), University of Pennsylvania, Philadelphia, PA
| | - Brenda Banwell
- Division of Neurology, Department of Neurosciences and Mental Health (G.L., S.A.G., E.A.Y.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics (G.L., H.M.B., E.A.Y.), the University of Toronto, Toronto, ON, Canada; McConnell Brain Imaging Centre (R.A.B., B.A.-B., D.F., D.L.C., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Division of Medical Imaging (H.M.B.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Physical Therapy (R.W.M.), University of Alabama at Birmingham, Birmingham, AL; Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada; and Division of Neurology (B.B.), the Children's Hospital of Philadelphia, Perelman School of Medicine (A.B.-O.), University of Pennsylvania, Philadelphia, PA
| | - E Ann Yeh
- Division of Neurology, Department of Neurosciences and Mental Health (G.L., S.A.G., E.A.Y.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics (G.L., H.M.B., E.A.Y.), the University of Toronto, Toronto, ON, Canada; McConnell Brain Imaging Centre (R.A.B., B.A.-B., D.F., D.L.C., S.N., D.L.A.), Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Division of Medical Imaging (H.M.B.), the Hospital for Sick Children, Toronto, ON, Canada; Department of Physical Therapy (R.W.M.), University of Alabama at Birmingham, Birmingham, AL; Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada; and Division of Neurology (B.B.), the Children's Hospital of Philadelphia, Perelman School of Medicine (A.B.-O.), University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
14
|
Cacciaguerra L, Pagani E, Mesaros S, Dackovic J, Dujmovic-Basuroski I, Drulovic J, Valsasina P, Filippi M, Rocca MA. Dynamic volumetric changes of hippocampal subfields in clinically isolated syndrome patients: A 2-year MRI study. Mult Scler 2018; 25:1232-1242. [DOI: 10.1177/1352458518787347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background:Different subregional patterns of hippocampal involvement have been observed in diverse multiple sclerosis (MS) phenotypes.Objective:To evaluate the occurrence of regional hippocampal variations in clinically isolated syndrome (CIS) patients, their relationships with focal white matter (WM) lesions, and their prognostic implications.Methods:Brain dual-echo and three-dimensional (3D) T1-weighted scans were acquired from 14 healthy controls and 36 CIS patients within 2 months from clinical onset and after 3, 12, and 24 months. Radial distance distribution was assessed using 3D parametric surface mesh models. A cognitive screening was also performed.Results:Patients showed clusters of reduced radial distance in the Cornu Ammonis 1 from month 3, progressively extending to the subiculum, negatively correlated with ipsilateral T2 and T1 lesion volume. Increased radial distance appeared in the right dentate gyrus after 3 ( p < 0.05), 12, and 24 ( p < 0.001) months, and in the left one after 3 and 24 months ( p < 0.001), positively correlated with lesional measures. Hippocampal volume variations were more pronounced in patients converting to MS after 24 months and did not correlate with cognitive performance.Conclusion:Regional hippocampal changes occur in CIS, are more pronounced in patients converting to MS, and are modulated by focal WM lesions.
Collapse
Affiliation(s)
- Laura Cacciaguerra
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy/Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Sharlota Mesaros
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Dackovic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Jelena Drulovic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Paola Valsasina
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy/Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Assunta Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy/Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
15
|
Sumowski JF, Benedict R, Enzinger C, Filippi M, Geurts JJ, Hamalainen P, Hulst H, Inglese M, Leavitt VM, Rocca MA, Rosti-Otajarvi EM, Rao S. Cognition in multiple sclerosis: State of the field and priorities for the future. Neurology 2018; 90:278-288. [PMID: 29343470 PMCID: PMC5818015 DOI: 10.1212/wnl.0000000000004977] [Citation(s) in RCA: 364] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022] Open
Abstract
Cognitive decline is recognized as a prevalent and debilitating symptom of multiple sclerosis (MS), especially deficits in episodic memory and processing speed. The field aims to (1) incorporate cognitive assessment into standard clinical care and clinical trials, (2) utilize state-of-the-art neuroimaging to more thoroughly understand neural bases of cognitive deficits, and (3) develop effective, evidence-based, clinically feasible interventions to prevent or treat cognitive dysfunction, which are lacking. There are obstacles to these goals. Our group of MS researchers and clinicians with varied expertise took stock of the current state of the field, and we identify several important practical and theoretical challenges, including key knowledge gaps and methodologic limitations related to (1) understanding and measurement of cognitive deficits, (2) neuroimaging of neural bases and correlates of deficits, and (3) development of effective treatments. This is not a comprehensive review of the extensive literature, but instead a statement of guidelines and priorities for the field. For instance, we provide recommendations for improving the scientific basis and methodologic rigor for cognitive rehabilitation research. Toward this end, we call for multidisciplinary collaborations toward development of biologically based theoretical models of cognition capable of empirical validation and evidence-based refinement, providing the scientific context for effective treatment discovery.
Collapse
Affiliation(s)
- James F Sumowski
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH.
| | - Ralph Benedict
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| | - Christian Enzinger
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| | - Massimo Filippi
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| | - Jeroen J Geurts
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| | - Paivi Hamalainen
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| | - Hanneke Hulst
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| | - Matilde Inglese
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| | - Victoria M Leavitt
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| | - Maria A Rocca
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| | - Eija M Rosti-Otajarvi
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| | - Stephen Rao
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| |
Collapse
|
16
|
Planche V, Koubiyr I, Romero JE, Manjon JV, Coupé P, Deloire M, Dousset V, Brochet B, Ruet A, Tourdias T. Regional hippocampal vulnerability in early multiple sclerosis: Dynamic pathological spreading from dentate gyrus to CA1. Hum Brain Mapp 2018; 39:1814-1824. [PMID: 29331060 DOI: 10.1002/hbm.23970] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Whether hippocampal subfields are differentially vulnerable at the earliest stages of multiple sclerosis (MS) and how this impacts memory performance is a current topic of debate. METHOD We prospectively included 56 persons with clinically isolated syndrome (CIS) suggestive of MS in a 1-year longitudinal study, together with 55 matched healthy controls at baseline. Participants were tested for memory performance and scanned with 3 T MRI to assess the volume of 5 distinct hippocampal subfields using automatic segmentation techniques. RESULTS At baseline, CA4/dentate gyrus was the only hippocampal subfield with a volume significantly smaller than controls (p < .01). After one year, CA4/dentate gyrus atrophy worsened (-6.4%, p < .0001) and significant CA1 atrophy appeared (both in the stratum-pyramidale and the stratum radiatum-lacunosum-moleculare, -5.6%, p < .001 and -6.2%, p < .01, respectively). CA4/dentate gyrus volume at baseline predicted CA1 volume one year after CIS (R2 = 0.44 to 0.47, p < .001, with age, T2 lesion-load, and global brain atrophy as covariates). The volume of CA4/dentate gyrus at baseline was associated with MS diagnosis during follow-up, independently of T2-lesion load and demographic variables (p < .05). Whereas CA4/dentate gyrus volume was not correlated with memory scores at baseline, CA1 atrophy was an independent correlate of episodic verbal memory performance one year after CIS (ß = 0.87, p < .05). CONCLUSION The hippocampal degenerative process spread from dentate gyrus to CA1 at the earliest stage of MS. This dynamic vulnerability is associated with MS diagnosis after CIS and will ultimately impact hippocampal-dependent memory performance.
Collapse
Affiliation(s)
- Vincent Planche
- Univ. Bordeaux, Bordeaux, F-33000, France.,Inserm U1215 - Neurocentre Magendie, Bordeaux, F-33000, France.,CHU de Bordeaux, Bordeaux, F-33000, France
| | - Ismail Koubiyr
- Univ. Bordeaux, Bordeaux, F-33000, France.,Inserm U1215 - Neurocentre Magendie, Bordeaux, F-33000, France
| | - José E Romero
- Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, España
| | - José V Manjon
- Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, España
| | - Pierrick Coupé
- Laboratoire Bordelais de Recherche en Informatique, UMR CNRS 5800, PICTURA, Talence, F-33405, France
| | | | - Vincent Dousset
- Univ. Bordeaux, Bordeaux, F-33000, France.,Inserm U1215 - Neurocentre Magendie, Bordeaux, F-33000, France.,CHU de Bordeaux, Bordeaux, F-33000, France
| | - Bruno Brochet
- Univ. Bordeaux, Bordeaux, F-33000, France.,Inserm U1215 - Neurocentre Magendie, Bordeaux, F-33000, France.,CHU de Bordeaux, Bordeaux, F-33000, France
| | - Aurélie Ruet
- Univ. Bordeaux, Bordeaux, F-33000, France.,Inserm U1215 - Neurocentre Magendie, Bordeaux, F-33000, France.,CHU de Bordeaux, Bordeaux, F-33000, France
| | - Thomas Tourdias
- Univ. Bordeaux, Bordeaux, F-33000, France.,Inserm U1215 - Neurocentre Magendie, Bordeaux, F-33000, France.,CHU de Bordeaux, Bordeaux, F-33000, France
| |
Collapse
|
17
|
Cao G, Edden RAE, Gao F, Li H, Gong T, Chen W, Liu X, Wang G, Zhao B. Reduced GABA levels correlate with cognitive impairment in patients with relapsing-remitting multiple sclerosis. Eur Radiol 2017; 28:1140-1148. [PMID: 28986640 DOI: 10.1007/s00330-017-5064-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/18/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To investigate if brain gamma-aminobutyric acid (GABA) levels in patients with relapsing-remitting multiple sclerosis (RRMS) are abnormal compared with healthy controls, and their relationship to cognitive function in RRMS. METHODS Twenty-eight RRMS patients and twenty-six healthy controls underwent magnetic resonance spectroscopy (MRS) at 3-T to detect GABA signals from posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC) and left hippocampus using the 'MEGAPoint Resolved Spectroscopy Sequence' (MEGA-PRESS) technique. All subjects also underwent a cognitive assessment. RESULTS In RRMS patients, GABA+ were lower in the PCC (p = 0.036) and left hippocampus (p = 0.039) compared with controls, decreased GABA+ in the PCC and left hippocampus were associated with specific cognitive functions (r = -0.452, p = 0.016 and r = 0.451, p = 0.016 respectively); GABA+ in the mPFC were not significantly decreased or related to any cognitive scores (p > 0.05). CONCLUSIONS This study demonstrates that abnormalities of the GABAergic system may be present in the pathogenesis of RRMS and suggests a potential link between regional GABA levels and cognitive impairment in patients with RRMS. KEY POINTS • GABA levels may decrease in patients with RRMS. • Lower GABA levels correlated with worse cognitive performance in patients with RRMS. • Dysfunctional GABAergic neurotransmission may have a role in cognitive impairment in RRMS.
Collapse
Affiliation(s)
- Guanmei Cao
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, 250021, Shandong, China
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- FM Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, 21287, USA
| | - Fei Gao
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, 250021, Shandong, China
| | - Hao Li
- Air Force General Hospital PLA, Beijing, 100142, China
| | - Tao Gong
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, 250021, Shandong, China
| | | | - Xiaohui Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Guangbin Wang
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, 250021, Shandong, China.
| | - Bin Zhao
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, 250021, Shandong, China
| |
Collapse
|
18
|
Planche V, Ruet A, Charré‐Morin J, Deloire M, Brochet B, Tourdias T. Pattern separation performance is decreased in patients with early multiple sclerosis. Brain Behav 2017; 7:e00739. [PMID: 28828205 PMCID: PMC5561305 DOI: 10.1002/brb3.739] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/19/2017] [Accepted: 04/20/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Hippocampal-dependent memory impairment is frequent and occurs early during the course of multiple sclerosis (MS). While mechanisms responsible for episodic memory dysfunction in patients with MS remain largely unknown, dentate gyrus structure has been suggested as particularly vulnerable at the early stage of the disease. If true, we hypothesized that the pattern separation component of episodic memory (a function known to be critically dependent to dentate gyrus function) would be impaired in patients with early MS (PweMS). METHODS Thirty eight participants (19 PweMS and 19 healthy controls matched on age, gender and education level) were tested with a behavioral pattern separation task and also for information processing speed and visuospatial episodic memory. RESULTS We report a significant decrease in pattern separation performance in PweMS compared to healthy controls (27.07 vs. 40.01, p = .030 after Holm-Bonferroni correction, d = 1.02) together with a significantly higher pattern completion rate (56.11 vs. 40.95, p = .004 after Holm-Bonferroni correction, d = 1.07) while no difference was found among groups for information processing speed and "global" visuospatial episodic memory regarding learning, long-term recall or recognition. CONCLUSION Our results suggest that behavioral pattern separation task can detect subtle memory decline in patients with MS and argue for early dentate gyrus dysfunction during the course of the disease.
Collapse
Affiliation(s)
- Vincent Planche
- University of BordeauxBordeauxFrance
- Neurocentre MagendieInserm U1215BordeauxFrance
- CHU de Clermont‐FerrandClermont‐FerrandFrance
| | - Aurélie Ruet
- University of BordeauxBordeauxFrance
- Neurocentre MagendieInserm U1215BordeauxFrance
- CHU de BordeauxBordeauxFrance
| | | | | | - Bruno Brochet
- University of BordeauxBordeauxFrance
- Neurocentre MagendieInserm U1215BordeauxFrance
- CHU de BordeauxBordeauxFrance
| | - Thomas Tourdias
- University of BordeauxBordeauxFrance
- Neurocentre MagendieInserm U1215BordeauxFrance
- CHU de BordeauxBordeauxFrance
| |
Collapse
|
19
|
Selective dentate gyrus disruption causes memory impairment at the early stage of experimental multiple sclerosis. Brain Behav Immun 2017; 60:240-254. [PMID: 27847283 DOI: 10.1016/j.bbi.2016.11.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/07/2016] [Accepted: 11/12/2016] [Indexed: 11/21/2022] Open
Abstract
Memory impairment is an early and disabling manifestation of multiple sclerosis whose anatomical and biological substrates are still poorly understood. We thus investigated whether memory impairment encountered at the early stage of the disease could be explained by a differential vulnerability of particular hippocampal subfields. By using experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, we identified that early memory impairment was associated with selective alteration of the dentate gyrus as pinpointed in vivo with diffusion-tensor-imaging (DTI). Neuromorphometric analyses and electrophysiological recordings confirmed dendritic degeneration, alteration in glutamatergic synaptic transmission and impaired long-term synaptic potentiation selectively in the dentate gyrus, but not in CA1, together with a more severe pattern of microglial activation in this subfield. Systemic injections of the microglial inhibitor minocycline prevented DTI, morphological, electrophysiological and behavioral impairments in EAE-mice. Furthermore, daily infusions of minocycline specifically within the dentate gyrus were sufficient to prevent memory impairment in EAE-mice while infusions of minocycline within CA1 were inefficient. We conclude that early memory impairment in EAE is due to a selective disruption of the dentate gyrus associated with microglia activation. These results open new pathophysiological, imaging, and therapeutic perspectives for memory impairment in multiple sclerosis.
Collapse
|
20
|
Rocca MA, Battaglini M, Benedict RHB, De Stefano N, Geurts JJG, Henry RG, Horsfield MA, Jenkinson M, Pagani E, Filippi M. Brain MRI atrophy quantification in MS: From methods to clinical application. Neurology 2016; 88:403-413. [PMID: 27986875 DOI: 10.1212/wnl.0000000000003542] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/18/2016] [Indexed: 01/06/2023] Open
Abstract
Patients with the main clinical phenotypes of multiple sclerosis (MS) manifest varying degrees of brain atrophy beyond that of normal aging. Assessment of atrophy helps to distinguish clinically and cognitively deteriorating patients and predicts those who will have a less-favorable clinical outcome over the long term. Atrophy can be measured from brain MRI scans, and many technological improvements have been made over the last few years. Several software tools, with differing requirements on technical ability and levels of operator intervention, are currently available and have already been applied in research or clinical trial settings. Despite this, the measurement of atrophy in routine clinical practice remains an unmet need. After a short summary of the pathologic substrates of brain atrophy in MS, this review attempts to guide the clinician towards a better understanding of the methods currently used for quantifying brain atrophy in this condition. Important physiologic factors that affect brain volume measures are also considered. Finally, the most recent research on brain atrophy in MS is summarized, including whole brain and various compartments thereof (i.e., white matter, gray matter, selected CNS structures). Current methods provide sufficient precision for cohort studies, but are not adequate for confidently assessing changes in individual patients over the scale of months or a few years.
Collapse
Affiliation(s)
- Maria A Rocca
- From the Neuroimaging Research Unit (M.A.R., E.P., M.F.), Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan; Department of Medicine, Surgery and Neuroscience (M.B., N.D.S.), University of Siena, Italy; Department of Neurology (R.H.B.B.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York; Department of Anatomy and Neuroscience (J.J.G.G.), Section of Clinical Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (R.G.H.), University of California, San Francisco; Xinapse Systems Ltd. (M.A.H.), Colchester, Essex, UK; and FMRIB Centre (M.J.), Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Marco Battaglini
- From the Neuroimaging Research Unit (M.A.R., E.P., M.F.), Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan; Department of Medicine, Surgery and Neuroscience (M.B., N.D.S.), University of Siena, Italy; Department of Neurology (R.H.B.B.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York; Department of Anatomy and Neuroscience (J.J.G.G.), Section of Clinical Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (R.G.H.), University of California, San Francisco; Xinapse Systems Ltd. (M.A.H.), Colchester, Essex, UK; and FMRIB Centre (M.J.), Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Ralph H B Benedict
- From the Neuroimaging Research Unit (M.A.R., E.P., M.F.), Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan; Department of Medicine, Surgery and Neuroscience (M.B., N.D.S.), University of Siena, Italy; Department of Neurology (R.H.B.B.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York; Department of Anatomy and Neuroscience (J.J.G.G.), Section of Clinical Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (R.G.H.), University of California, San Francisco; Xinapse Systems Ltd. (M.A.H.), Colchester, Essex, UK; and FMRIB Centre (M.J.), Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Nicola De Stefano
- From the Neuroimaging Research Unit (M.A.R., E.P., M.F.), Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan; Department of Medicine, Surgery and Neuroscience (M.B., N.D.S.), University of Siena, Italy; Department of Neurology (R.H.B.B.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York; Department of Anatomy and Neuroscience (J.J.G.G.), Section of Clinical Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (R.G.H.), University of California, San Francisco; Xinapse Systems Ltd. (M.A.H.), Colchester, Essex, UK; and FMRIB Centre (M.J.), Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Jeroen J G Geurts
- From the Neuroimaging Research Unit (M.A.R., E.P., M.F.), Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan; Department of Medicine, Surgery and Neuroscience (M.B., N.D.S.), University of Siena, Italy; Department of Neurology (R.H.B.B.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York; Department of Anatomy and Neuroscience (J.J.G.G.), Section of Clinical Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (R.G.H.), University of California, San Francisco; Xinapse Systems Ltd. (M.A.H.), Colchester, Essex, UK; and FMRIB Centre (M.J.), Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Roland G Henry
- From the Neuroimaging Research Unit (M.A.R., E.P., M.F.), Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan; Department of Medicine, Surgery and Neuroscience (M.B., N.D.S.), University of Siena, Italy; Department of Neurology (R.H.B.B.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York; Department of Anatomy and Neuroscience (J.J.G.G.), Section of Clinical Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (R.G.H.), University of California, San Francisco; Xinapse Systems Ltd. (M.A.H.), Colchester, Essex, UK; and FMRIB Centre (M.J.), Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Mark A Horsfield
- From the Neuroimaging Research Unit (M.A.R., E.P., M.F.), Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan; Department of Medicine, Surgery and Neuroscience (M.B., N.D.S.), University of Siena, Italy; Department of Neurology (R.H.B.B.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York; Department of Anatomy and Neuroscience (J.J.G.G.), Section of Clinical Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (R.G.H.), University of California, San Francisco; Xinapse Systems Ltd. (M.A.H.), Colchester, Essex, UK; and FMRIB Centre (M.J.), Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Mark Jenkinson
- From the Neuroimaging Research Unit (M.A.R., E.P., M.F.), Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan; Department of Medicine, Surgery and Neuroscience (M.B., N.D.S.), University of Siena, Italy; Department of Neurology (R.H.B.B.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York; Department of Anatomy and Neuroscience (J.J.G.G.), Section of Clinical Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (R.G.H.), University of California, San Francisco; Xinapse Systems Ltd. (M.A.H.), Colchester, Essex, UK; and FMRIB Centre (M.J.), Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Elisabetta Pagani
- From the Neuroimaging Research Unit (M.A.R., E.P., M.F.), Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan; Department of Medicine, Surgery and Neuroscience (M.B., N.D.S.), University of Siena, Italy; Department of Neurology (R.H.B.B.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York; Department of Anatomy and Neuroscience (J.J.G.G.), Section of Clinical Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (R.G.H.), University of California, San Francisco; Xinapse Systems Ltd. (M.A.H.), Colchester, Essex, UK; and FMRIB Centre (M.J.), Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Massimo Filippi
- From the Neuroimaging Research Unit (M.A.R., E.P., M.F.), Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan; Department of Medicine, Surgery and Neuroscience (M.B., N.D.S.), University of Siena, Italy; Department of Neurology (R.H.B.B.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York; Department of Anatomy and Neuroscience (J.J.G.G.), Section of Clinical Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (R.G.H.), University of California, San Francisco; Xinapse Systems Ltd. (M.A.H.), Colchester, Essex, UK; and FMRIB Centre (M.J.), Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
| |
Collapse
|
21
|
Zimmermann N, Goulart Corrêa D, Tukamoto G, Netto T, Batista Pereira D, Paz Fonseca R, Gasparetto EL. Brain morphology and cortical thickness variations in systemic lupus erythematosus patients: Differences among neurological, psychiatric, and nonneuropsychiatric manifestations. J Magn Reson Imaging 2016; 46:150-158. [PMID: 27862544 DOI: 10.1002/jmri.25538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/18/2016] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To determine whether systemic lupus erythematosus (SLE) affecting subcortical white matter volumes, deep gray matter volumes, and cortical thickness differ between groups of SLE patients with psychiatric (P-SLE), neurological (N-SLE), or nonneuropsychiatric (non-NPSLE) presentations. MATERIALS AND METHODS Sixty-seven participants were divided into three groups (P-SLE [n = 19], N-SLE [n = 12], and non-NPSLE [n = 36]) and examined with a 1.5T MRI scanner. The images were segmented in FreeSurfer software into volumetric and cortical thickness measures using T1 3D magnetization prepared rapid gradient echo-weighted imaging. For comparative analyses of volume, multivariate analyses of covariance (MANCOVA) were applied followed by Bonferroni post-hoc tests, with age as a covariate. For cortical thickness analyses, the groups were compared with the Query Design Estimate Contrast tool adjusted for age. RESULTS Globus pallidus volumes in both left (P ≤ 0.01) and right (P ≤ 0.05) hemispheres were larger in the N-SLE group than in the non-NPSLE group, and the left GP volume was greater in the N-SLE group than in the P-SLE group (P ≤ 0.05) (MANCOVA, post-hoc Bonferroni). The P-SLE group presented with thinning of cortical areas relative to the N-SLE (predominantly in the left parietal and right frontal and parietal regions) (P ≤ 0.05) and non-NPSLE (predominantly in parietal and occipital regions) (P ≤ 0.05) groups, whereas the N-SLE group presented with thickening of cortical areas (mostly right frontal and left parietal regions) relative to the non-NPSLE (P ≤ 0.05) and P-SLE groups. CONCLUSION N-SLE patients had greater local volumes and cortical thicknesses than the other two groups, whereas P-SLE patients presented with decreased volumes and cortical thinning. These findings provide evidence of distinct neuroanatomical abnormalities in neurological versus psychiatric manifestations of SLE. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 3 J. MAGN. RESON. IMAGING 2017;46:150-158.
Collapse
Affiliation(s)
- Nicolle Zimmermann
- Federal University of Rio de Janeiro, Department of Radiology, Rio de Janeiro, Brazil
| | - Diogo Goulart Corrêa
- Federal University of Rio de Janeiro, Department of Radiology, Rio de Janeiro, Brazil
| | - Gustavo Tukamoto
- Clínica de Diagnóstico Por Imagem, Multi-imagem, DASA, Rio de Janeiro, Brazil
| | - Tania Netto
- Federal University of Rio de Janeiro, Department of Radiology, Rio de Janeiro, Brazil
| | - Denis Batista Pereira
- Federal University of Rio de Janeiro, Department of Radiology, Rio de Janeiro, Brazil
| | - Rochele Paz Fonseca
- Pontifical Catholic University of Rio Grande do Sul, Department of Psychology, Porto Alegre, Brazil
| | | |
Collapse
|
22
|
Leocani L, Rocca MA, Comi G. MRI and neurophysiological measures to predict course, disability and treatment response in multiple sclerosis. Curr Opin Neurol 2016; 29:243-53. [DOI: 10.1097/wco.0000000000000333] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|