1
|
Chi IJ, Tsai SJ, Chen CH, Yang AC. Identifying Distinct Developmental Patterns of Brain Complexity in Autism: A Cross-Sectional Cohort Analysis Using the Autism Brain Imaging Data Exchange. Psychiatry Clin Neurosci 2025. [PMID: 39797542 DOI: 10.1111/pcn.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/31/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025]
Abstract
AIM Autistic traits exhibit neurodiversity with varying behaviors across developmental stages. Brain complexity theory, illustrating the dynamics of neural activity, may elucidate the evolution of autistic traits over time. Our study explored the patterns of brain complexity in autistic individuals from childhood to adulthood. METHODS We analyzed functional magnetic resonance imaging data from 1087 autistic participants and neurotypical controls aged 6 to 30 years within the ABIDE I (Autism Brain Imaging Data Exchange) data set. Sample entropy was calculated to measure brain complexity among 90 brain regions, utilizing an automated anatomical labeling template for voxel parcellation. Participants were grouped using sliding age windows with partial overlaps. We assessed the average brain complexity of the entire brain and brain regions for both groups across age categories. Cluster analysis was conducted using generalized association plots to identify brain regions with similar developmental complexity trajectories. Finally, the relationship between brain region complexity and autistic traits was examined. RESULTS Autistic individuals may tend toward higher whole-brain complexity during adolescence and lower complexity during childhood and adulthood, indicating possible distinct developmental trajectories. However, these results do not remain after Bonferroni correction. Two clusters of brain regions were identified, each with unique patterns of complexity changes over time. Correlations between brain region complexity, age, and autistic traits were also identified. CONCLUSION The study revealed brain complexity trajectories in autistic individuals, providing insight into the neurodiversity of autism and suggesting that age-related changes in brain complexity could be a potential neurodevelopmental marker for the dynamic nature of autism.
Collapse
Affiliation(s)
- I-Jou Chi
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Houh Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Albert C Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
2
|
Halliday AR, Vucic SN, Georges B, LaRoche M, Mendoza Pardo MA, Swiggard LO, McDonald K, Olofsson M, Menon SN, Francis SM, Oberman LM, White T, van der Velpen IF. Heterogeneity and convergence across seven neuroimaging modalities: a review of the autism spectrum disorder literature. Front Psychiatry 2024; 15:1474003. [PMID: 39479591 PMCID: PMC11521827 DOI: 10.3389/fpsyt.2024.1474003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Background A growing body of literature classifies autism spectrum disorder (ASD) as a heterogeneous, complex neurodevelopmental disorder that often is identified prior to three years of age. We aim to provide a narrative review of key structural and functional properties that differentiate the neuroimaging profile of autistic youth from their typically developing (TD) peers across different neuroimaging modalities. Methods Relevant studies were identified by searching for key terms in PubMed, with the most recent search conducted on September 1, 2023. Original research papers were included if they applied at least one of seven neuroimaging modalities (structural MRI, functional MRI, DTI, MRS, fNIRS, MEG, EEG) to compare autistic children or those with a family history of ASD to TD youth or those without ASD family history; included only participants <18 years; and were published from 2013 to 2023. Results In total, 172 papers were considered for qualitative synthesis. When comparing ASD to TD groups, structural MRI-based papers (n = 26) indicated larger subcortical gray matter volume in ASD groups. DTI-based papers (n = 14) reported higher mean and radial diffusivity in ASD participants. Functional MRI-based papers (n = 41) reported a substantial number of between-network functional connectivity findings in both directions. MRS-based papers (n = 19) demonstrated higher metabolite markers of excitatory neurotransmission and lower inhibitory markers in ASD groups. fNIRS-based papers (n = 20) reported lower oxygenated hemoglobin signals in ASD. Converging findings in MEG- (n = 20) and EEG-based (n = 32) papers indicated lower event-related potential and field amplitudes in ASD groups. Findings in the anterior cingulate cortex, insula, prefrontal cortex, amygdala, thalamus, cerebellum, corpus callosum, and default mode network appeared numerous times across modalities and provided opportunities for multimodal qualitative analysis. Conclusions Comparing across neuroimaging modalities, we found significant differences between the ASD and TD neuroimaging profile in addition to substantial heterogeneity. Inconsistent results are frequently seen within imaging modalities, comparable study populations and research designs. Still, converging patterns across imaging modalities support various existing theories on ASD.
Collapse
Affiliation(s)
- Amanda R. Halliday
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Samuel N. Vucic
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Brianna Georges
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Madison LaRoche
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - María Alejandra Mendoza Pardo
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Liam O. Swiggard
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Kaylee McDonald
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Michelle Olofsson
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sahit N. Menon
- Noninvasive Neuromodulation Unit, Experimental Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Sunday M. Francis
- Noninvasive Neuromodulation Unit, Experimental Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Lindsay M. Oberman
- Noninvasive Neuromodulation Unit, Experimental Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Isabelle F. van der Velpen
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Proteau-Lemieux M, Knoth IS, Davoudi S, Martin CO, Bélanger AM, Fontaine V, Côté V, Agbogba K, Vachon K, Whitlock K, Biag HMB, Thurman AJ, Rosenfelt C, Tassone F, Frei J, Capano L, Abbeduto L, Jacquemont S, Hessl D, Hagerman RJ, Schneider A, Bolduc F, Anagnostou E, Lippe S. Specific EEG resting state biomarkers in FXS and ASD. J Neurodev Disord 2024; 16:53. [PMID: 39251926 PMCID: PMC11382468 DOI: 10.1186/s11689-024-09570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) and autism spectrum disorder (ASD) are neurodevelopmental conditions that often have a substantial impact on daily functioning and quality of life. FXS is the most common cause of inherited intellectual disability (ID) and the most common monogenetic cause of ASD. Previous literature has shown that electrophysiological activity measured by electroencephalogram (EEG) during resting state is perturbated in FXS and ASD. However, whether electrophysiological profiles of participants with FXS and ASD are similar remains unclear. The aim of this study was to compare EEG alterations found in these two clinical populations presenting varying degrees of cognitive and behavioral impairments. METHODS Resting state EEG signal complexity, alpha peak frequency (APF) and power spectral density (PSD) were compared between 47 participants with FXS (aged between 5-20), 49 participants with ASD (aged between 6-17), and 52 neurotypical (NT) controls with a similar age distribution using MANCOVAs with age as covariate when appropriate. MANCOVAs controlling for age, when appropriate, and nonverbal intelligence quotient (NVIQ) score were subsequently performed to determine the impact of cognitive functioning on EEG alterations. RESULTS Our results showed that FXS participants manifested decreased signal complexity and APF compared to ASD participants and NT controls, as well as altered power in the theta, alpha and low gamma frequency bands. ASD participants showed exaggerated beta power compared to FXS participants and NT controls, as well as enhanced low and high gamma power compared to NT controls. However, ASD participants did not manifest altered signal complexity or APF. Furthermore, when controlling for NVIQ, results of decreased complexity in higher scales and lower APF in FXS participants compared to NT controls and ASD participants were not replicated. CONCLUSIONS These findings suggest that signal complexity and APF might reflect cognitive functioning, while altered power in the low gamma frequency band might be associated with neurodevelopmental conditions, particularly FXS and ASD.
Collapse
Affiliation(s)
- Mélodie Proteau-Lemieux
- Department of Psychology, University of Montreal, Montreal, QC, Canada
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | - Inga Sophia Knoth
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | - Saeideh Davoudi
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | | | - Anne-Marie Bélanger
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | - Valérie Fontaine
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | - Valérie Côté
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | - Kristian Agbogba
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | | | | | - Hazel Maridith Barlahan Biag
- Department of Pediatrics and MIND Institute, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Angela John Thurman
- Department of Psychiatry and Behavioral Sciences and MIND Institute, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Cory Rosenfelt
- Department of Pediatric Neurology, University of Alberta, Edmonton, AB, Canada
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Julia Frei
- McMaster University of Ottawa, Ottawa, ON, Canada
| | - Lucia Capano
- Queen's University of Kingston, Kingston, ON, Canada
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences and MIND Institute, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Sébastien Jacquemont
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
- Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - David Hessl
- Department of Psychiatry and Behavioral Sciences and MIND Institute, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Randi Jenssen Hagerman
- Department of Pediatrics and MIND Institute, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Andrea Schneider
- Department of Pediatrics and MIND Institute, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Francois Bolduc
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Evdokia Anagnostou
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Holland Bloorview Research Center, Toronto, ON, Canada
| | - Sarah Lippe
- Department of Psychology, University of Montreal, Montreal, QC, Canada.
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada.
| |
Collapse
|
4
|
Park BY, Benkarim O, Weber CF, Kebets V, Fett S, Yoo S, Martino AD, Milham MP, Misic B, Valk SL, Hong SJ, Bernhardt BC. Connectome-wide structure-function coupling models implicate polysynaptic alterations in autism. Neuroimage 2024; 285:120481. [PMID: 38043839 DOI: 10.1016/j.neuroimage.2023.120481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/05/2023] Open
Abstract
Autism spectrum disorder (ASD) is one of the most common neurodevelopmental diagnoses. Although incompletely understood, structural and functional network alterations are increasingly recognized to be at the core of the condition. We utilized multimodal imaging and connectivity modeling to study structure-function coupling in ASD and probed mono- and polysynaptic mechanisms on structurally-governed network function. We examined multimodal magnetic resonance imaging data in 80 ASD and 61 neurotypical controls from the Autism Brain Imaging Data Exchange (ABIDE) II initiative. We predicted intrinsic functional connectivity from structural connectivity data in each participant using a Riemannian optimization procedure that varies the times that simulated signals can unfold along tractography-derived personalized connectomes. In both ASD and neurotypical controls, we observed improved structure-function prediction at longer diffusion time scales, indicating better modeling of brain function when polysynaptic mechanisms are accounted for. Prediction accuracy differences (∆prediction accuracy) were marked in transmodal association systems, such as the default mode network, in both neurotypical controls and ASD. Differences were, however, lower in ASD in a polysynaptic regime at higher simulated diffusion times. We compared regional differences in ∆prediction accuracy between both groups to assess the impact of polysynaptic communication on structure-function coupling. This analysis revealed that between-group differences in ∆prediction accuracy followed a sensory-to-transmodal cortical hierarchy, with an increased gap between controls and ASD in transmodal compared to sensory/motor systems. Multivariate associative techniques revealed that structure-function differences reflected inter-individual differences in autistic symptoms and verbal as well as non-verbal intelligence. Our network modeling approach sheds light on atypical structure-function coupling in autism, and suggests that polysynaptic network mechanisms are implicated in the condition and that these can help explain its wide range of associated symptoms.
Collapse
Affiliation(s)
- Bo-Yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Department of Data Science, Inha University, Incheon, South Korea; Department of Statistics and Data Science, Inha University, Incheon, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.
| | - Oualid Benkarim
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Clara F Weber
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Valeria Kebets
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Serena Fett
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Seulki Yoo
- Convergence Research Institute, Sungkyunkwan University, Suwon, South Korea
| | - Adriana Di Martino
- Center for the Developing Brain, Child Mind Institute, New York, United States
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, United States
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Sofie L Valk
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Seok-Jun Hong
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea; Center for the Developing Brain, Child Mind Institute, New York, United States; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Angulo-Ruiz BY, Ruiz-Martínez FJ, Rodríguez-Martínez EI, Ionescu A, Saldaña D, Gómez CM. Linear and Non-linear Analyses of EEG in a Group of ASD Children During Resting State Condition. Brain Topogr 2023; 36:736-749. [PMID: 37330940 PMCID: PMC10415465 DOI: 10.1007/s10548-023-00976-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
This study analyses the spontaneous electroencephalogram (EEG) brain activity of 14 children diagnosed with Autism Spectrum Disorder (ASD) compared to 18 children with normal development, aged 5-11 years. (i) Power Spectral Density (PSD), (ii) variability across trials (coefficient of variation: CV), and (iii) complexity (multiscale entropy: MSE) of the brain signal analysis were computed on the resting state EEG. PSD (0.5-45 Hz) and CV were averaged over different frequency bands (low-delta, delta, theta, alpha, low-beta, high-beta and gamma). MSE were calculated with a coarse-grained procedure on 67 time scales and divided into fine, medium and coarse scales. In addition, significant neurophysiological variables were correlated with behavioral performance data (Kaufman Brief Intelligence Test (KBIT) and Autism Spectrum Quotient (AQ)). Results show increased PSD fast frequency bands (high-beta and gamma), higher variability (CV) and lower complexity (MSE) in children with ASD when compared to typically developed children. These results suggest a more variable, less complex and, probably, less adaptive neural networks with less capacity to generate optimal responses in ASD children.
Collapse
Affiliation(s)
- Brenda Y. Angulo-Ruiz
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, C/ Camilo José Cela S/N 41018, Seville, Spain
| | - Francisco J. Ruiz-Martínez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, C/ Camilo José Cela S/N 41018, Seville, Spain
| | - Elena I. Rodríguez-Martínez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, C/ Camilo José Cela S/N 41018, Seville, Spain
| | - Anca Ionescu
- Département de Psychologie, Université de Montréal, Montréal, Canada
| | - David Saldaña
- Laboratorio de Diversidad, Cognición y Lenguaje, Departamento de Psicología Evolutiva y de la Educación, University of Seville, C/ Camilo José Cela S/N 41018, Seville, Spain
| | - Carlos M. Gómez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, C/ Camilo José Cela S/N 41018, Seville, Spain
| |
Collapse
|
6
|
Angulo-Ruiz BY, Muñoz V, Rodríguez-Martínez EI, Cabello-Navarro C, Gómez CM. Multiscale entropy of ADHD children during resting state condition. Cogn Neurodyn 2023; 17:869-891. [PMID: 37522046 PMCID: PMC10374506 DOI: 10.1007/s11571-022-09869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022] Open
Abstract
This present study aims to investigate neural mechanisms underlying ADHD compared to healthy children through the analysis of the complexity and the variability of the EEG brain signal using multiscale entropy (MSE), EEG signal standard deviation (SDs), as well as the mean, standard deviation (SDp) and coefficient of variation (CV) of absolute spectral power (PSD). For this purpose, a sample of children diagnosed with attention-deficit/hyperactivity disorder (ADHD) between 6 and 17 years old were selected based on the number of trials and diagnostic agreement, 32 for the open-eyes (OE) experimental condition and 25 children for the close-eyes (CE) experimental condition. Healthy control subjects were age- and gender-matched with the ADHD group. The MSE and SDs of resting-state EEG activity were calculated on 34 time scales using a coarse-grained procedure. In addition, the PSD was averaged in delta, theta, alpha, and beta frequency bands, and its mean, SDp, and CV were calculated. The results show that the MSE changes with age during development, increases as the number of scales increases and has a higher amplitude in controls than in ADHD. The absolute PSD results show CV differences between subjects in low and beta frequency bands, with higher variability values in the ADHD group. All these results suggest an increased EEG variability and reduced complexity in ADHD compared to controls. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09869-0.
Collapse
Affiliation(s)
- Brenda Y. Angulo-Ruiz
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, C/Camilo José Cela S/N, 41018 Seville, Spain
| | - Vanesa Muñoz
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, C/Camilo José Cela S/N, 41018 Seville, Spain
| | - Elena I. Rodríguez-Martínez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, C/Camilo José Cela S/N, 41018 Seville, Spain
| | - Celia Cabello-Navarro
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, C/Camilo José Cela S/N, 41018 Seville, Spain
| | - Carlos M. Gómez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, C/Camilo José Cela S/N, 41018 Seville, Spain
| |
Collapse
|
7
|
Iinuma Y, Nobukawa S, Mizukami K, Kawaguchi M, Higashima M, Tanaka Y, Yamanishi T, Takahashi T. Enhanced temporal complexity of EEG signals in older individuals with high cognitive functions. Front Neurosci 2022; 16:878495. [PMID: 36213750 PMCID: PMC9533123 DOI: 10.3389/fnins.2022.878495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies suggest that the maintenance of cognitive function in the later life of older people is an essential factor contributing to mental wellbeing and physical health. Particularly, the risk of depression, sleep disorders, and Alzheimer's disease significantly increases in patients with mild cognitive impairment. To develop early treatment and prevention strategies for cognitive decline, it is necessary to individually identify the current state of cognitive function since the progression of cognitive decline varies among individuals. Therefore, the development of biomarkers that allow easier measurement of cognitive function in older individuals is relevant for hyperaged societies. One of the methods used to estimate cognitive function focuses on the temporal complexity of electroencephalography (EEG) signals. The characteristics of temporal complexity depend on the time scale, which reflects the range of neuron functional interactions. To capture the dynamics, composed of multiple time scales, multiscale entropy (MSE) analysis is effective for comprehensively assessing the neural activity underlying cognitive function in the brain. Thus, we hypothesized that EEG complexity analysis could serve to assess a wide range of cognitive functions in older adults. To validate our hypothesis, we divided older participants into two groups based on their cognitive function test scores: a high cognitive function group and a low cognitive function group, and applied MSE analysis to the measured EEG data of all participants. The results of the repeated-measures analysis of covariance using age and sex as a covariate in the MSE profile showed a significant difference between the high and low cognitive function groups (F = 10.18, p = 0.003) and the interaction of the group × electrodes (F = 3.93, p = 0.002). Subsequently, the results of the post-hoct-test showed high complexity on a slower time scale in the frontal, parietal, and temporal lobes in the high cognitive function group. This high complexity on a slow time scale reflects the activation of long-distance neural interactions among various brain regions to achieve high cognitive functions. This finding could facilitate the development of a tool for diagnosis of cognitive decline in older individuals.
Collapse
Affiliation(s)
- Yuta Iinuma
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Japan
| | - Sou Nobukawa
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan
- *Correspondence: Sou Nobukawa
| | - Kimiko Mizukami
- Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Megumi Kawaguchi
- Department of Nursing, Faculty of Medical Sciences, University of Fukui, Yoshida, Japan
| | | | | | | | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Yoshida, Japan
- Uozu Shinkei Sanatorium, Uozu, Japan
| |
Collapse
|
8
|
Han J, Jiang G, Ouyang G, Li X. A Multimodal Approach for Identifying Autism Spectrum Disorders in Children. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2003-2011. [PMID: 35853070 DOI: 10.1109/tnsre.2022.3192431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Identification of autism spectrum disorder (ASD) in children is challenging due to the complexity and heterogeneity of ASD. Currently, most existing methods mainly rely on a single modality with limited information and often cannot achieve satisfactory performance. To address this issue, this paper investigates from internal neurophysiological and external behavior perspectives simultaneously and proposes a new multimodal diagnosis framework for identifying ASD in children with fusion of electroencephalogram (EEG) and eye-tracking (ET) data. Specifically, we designed a two-step multimodal feature learning and fusion model based on a typical deep learning algorithm, stacked denoising autoencoder (SDAE). In the first step, two SDAE models are designed for feature learning for EEG and ET modality, respectively. Then, a third SDAE model in the second step is designed to perform multimodal fusion with learned EEG and ET features in a concatenated way. Our designed multimodal identification model can automatically capture correlations and complementarity from behavior modality and neurophysiological modality in a latent feature space, and generate informative feature representations with better discriminability and generalization for enhanced identification performance. We collected a multimodal dataset containing 40 ASD children and 50 typically developing (TD) children to evaluate our proposed method. Experimental results showed that our proposed method achieved superior performance compared with two unimodal methods and a simple feature-level fusion method, which has promising potential to provide an objective and accurate diagnosis to assist clinicians.
Collapse
|
9
|
Ando M, Nobukawa S, Kikuchi M, Takahashi T. Alteration of Neural Network Activity With Aging Focusing on Temporal Complexity and Functional Connectivity Within Electroencephalography. Front Aging Neurosci 2022; 14:793298. [PMID: 35185527 PMCID: PMC8855040 DOI: 10.3389/fnagi.2022.793298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022] Open
Abstract
With the aging process, brain functions, such as attention, memory, and cognitive functions, degrade over time. In a super-aging society, the alteration of neural activity owing to aging is considered crucial for interventions for the prevention of brain dysfunction. The complexity of temporal neural fluctuations with temporal scale dependency plays an important role in optimal brain information processing, such as perception and thinking. Complexity analysis is a useful approach for detecting cortical alteration in healthy individuals, as well as in pathological conditions, such as senile psychiatric disorders, resulting in changes in neural activity interactions among a wide range of brain regions. Multi-fractal (MF) and multi-scale entropy (MSE) analyses are known methods for capturing the complexity of temporal scale dependency of neural activity in the brain. MF and MSE analyses exhibit high accuracy in detecting changes in neural activity and are superior with regard to complexity detection when compared with other methods. In addition to complex temporal fluctuations, functional connectivity reflects the integration of information of brain processes in each region, described as mutual interactions of neural activity among brain regions. Thus, we hypothesized that the complementary relationship between functional connectivity and complexity could improve the ability to detect the alteration of spatiotemporal patterns observed on electroencephalography (EEG) with respect to aging. To prove this hypothesis, this study investigated the relationship between the complexity of neural activity and functional connectivity in aging based on EEG findings. Concretely, MF and MSE analyses were performed to evaluate the temporal complexity profiles, and phase lag index analyses assessing the unique profile of functional connectivity were performed based on the EEGs conducted for young and older participants. Subsequently, these profiles were combined through machine learning. We found that the complementary relationship between complexity and functional connectivity improves the classification accuracy among aging participants. Thus, the outcome of this study could be beneficial in formulating interventions for the prevention of age-related brain dysfunction.
Collapse
Affiliation(s)
- Momo Ando
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Japan
| | - Sou Nobukawa
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Japan
- Department of Computer Science, Chiba Institute of Technology, Narashino, Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- *Correspondence: Sou Nobukawa
| | - Mitsuru Kikuchi
- Department of Psychiatry and Behavioral Science, Kanazawa University, Ishikawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Neuropsychiatry, University of Fukui, Yoshida, Japan
- Uozu Shinkei Sanatorium, Uozu, Japan
| |
Collapse
|
10
|
Papaioannou A, Kalantzi E, Papageorgiou CC, Korombili K, Bokou A, Pehlivanidis A, Papageorgiou CC, Papaioannou G. Differences in Performance of ASD and ADHD Subjects Facing Cognitive Loads in an Innovative Reasoning Experiment. Brain Sci 2021; 11:1531. [PMID: 34827530 PMCID: PMC8615740 DOI: 10.3390/brainsci11111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
We aim to investigate whether EEG dynamics differ in adults with ASD (Autism Spectrum Disorders) and ADHD (attention-deficit/hyperactivity disorder) compared with healthy subjects during the performance of an innovative cognitive task, Aristotle's valid and invalid syllogisms, and how these differences correlate with brain regions and behavioral data for each subject. We recorded EEGs from 14 scalp electrodes (channels) in 21 adults with ADHD, 21 with ASD, and 21 healthy, normal subjects. The subjects were exposed in a set of innovative cognitive tasks (inducing varying cognitive loads), Aristotle's two types of syllogism mentioned above. A set of 39 questions were given to participants related to valid-invalid syllogisms as well as a separate set of questionnaires, in order to collect a number of demographic and behavioral data, with the aim of detecting shared information with values of a feature extracted from EEG, the multiscale entropy (MSE), in the 14 channels ('brain regions'). MSE, a nonlinear information-theoretic measure of complexity, was computed to extract a feature that quantifies the complexity of the EEG. Behavior-Partial Least Squares Correlation, PLSC, is the method to detect the correlation between two sets of data, brain, and behavioral measures. -PLSC, a variant of PLSC, was applied to build a functional connectivity of the brain regions involved in the reasoning tasks. Graph-theoretic measures were used to quantify the complexity of the functional networks. Based on the results of the analysis described in this work, a mixed 14 × 2 × 3 ANOVA showed significant main effects of group factor and brain region* syllogism factor, as well as a significant brain region* group interaction. There are significant differences between the means of MSE (complexity) values at the 14 channels of the members of the 'pathological' groups of participants, i.e., between ASD and ADHD, while the difference in means of MSE between both ASD and ADHD and that of the control group is not significant. In conclusion, the valid-invalid type of syllogism generates significantly different complexity values, MSE, between ASD and ADHD. The complexity of activated brain regions of ASD participants increased significantly when switching from a valid to an invalid syllogism, indicating the need for more resources to 'face' the task escalating difficulty in ASD subjects. This increase is not so evident in both ADHD and control. Statistically significant differences were found also in the behavioral response of ASD and ADHD, compared with those of control subjects, based on the principal brain and behavior saliences extracted by PLSC. Specifically, two behavioral measures, the emotional state and the degree of confidence of participants in answering questions in Aristotle's valid-invalid syllogisms, and one demographic variable, age, statistically and significantly discriminate the three groups' ASD. The seed-PLC generated functional connectivity networks for ASD, ADHD, and control, were 'projected' on the regions of the Default Mode Network (DMN), the 'reference' connectivity, of which the structural changes were found significant in distinguishing the three groups. The contribution of this work lies in the examination of the relationship between brain activity and behavioral responses of healthy and 'pathological' participants in the case of cognitive reasoning of the type of Aristotle's valid and invalid syllogisms, using PLSC, a machine learning approach combined with MSE, a nonlinear method of extracting a feature based on EEGs that captures a broad spectrum of EEGs linear and nonlinear characteristics. The results seem promising in adopting this type of reasoning, in the future, after further enhancements and experimental tests, as a supplementary instrument towards examining the differences in brain activity and behavioral responses of ASD and ADHD patients. The application of the combination of these two methods, after further elaboration and testing as new and complementary to the existing ones, may be considered as a tool of analysis in helping detecting more effectively such types of disorders.
Collapse
Affiliation(s)
- Anastasia Papaioannou
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National University of Athens, 11528 Athens, Greece; (E.K.); (K.K.); (A.B.); (A.P.); (C.C.P.)
- Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS” (UMHRI), University Mental Health, Papagou, 15601 Athens, Greece
| | - Eva Kalantzi
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National University of Athens, 11528 Athens, Greece; (E.K.); (K.K.); (A.B.); (A.P.); (C.C.P.)
| | | | - Kalliopi Korombili
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National University of Athens, 11528 Athens, Greece; (E.K.); (K.K.); (A.B.); (A.P.); (C.C.P.)
| | - Anastasia Bokou
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National University of Athens, 11528 Athens, Greece; (E.K.); (K.K.); (A.B.); (A.P.); (C.C.P.)
| | - Artemios Pehlivanidis
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National University of Athens, 11528 Athens, Greece; (E.K.); (K.K.); (A.B.); (A.P.); (C.C.P.)
| | - Charalabos C. Papageorgiou
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National University of Athens, 11528 Athens, Greece; (E.K.); (K.K.); (A.B.); (A.P.); (C.C.P.)
- Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS” (UMHRI), University Mental Health, Papagou, 15601 Athens, Greece
| | - George Papaioannou
- Center for Research of Nonlinear Systems (CRANS), Department of Mathematics, University of Patras, 26500 Patra, Greece;
| |
Collapse
|
11
|
Shen K, McFadden A, McIntosh AR. Signal complexity indicators of health status in clinical EEG. Sci Rep 2021; 11:20192. [PMID: 34642403 PMCID: PMC8511087 DOI: 10.1038/s41598-021-99717-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Brain signal variability changes across the lifespan in both health and disease, likely reflecting changes in information processing capacity related to development, aging and neurological disorders. While signal complexity, and multiscale entropy (MSE) in particular, has been proposed as a biomarker for neurological disorders, most observations of altered signal complexity have come from studies comparing patients with few to no comorbidities against healthy controls. In this study, we examined whether MSE of brain signals was distinguishable across patient groups in a large and heterogeneous set of clinical-EEG data. Using a multivariate analysis, we found unique timescale-dependent differences in MSE across various neurological disorders. We also found MSE to differentiate individuals with non-brain comorbidities, suggesting that MSE is sensitive to brain signal changes brought about by metabolic and other non-brain disorders. Such changes were not detectable in the spectral power density of brain signals. Our findings suggest that brain signal complexity may offer complementary information to spectral power about an individual's health status and is a promising avenue for clinical biomarker development.
Collapse
Affiliation(s)
- Kelly Shen
- Rotman Research Institute, Baycrest Centre, 3560 Bathurst Street, Toronto, ON, M6A 2E1, Canada.
| | - Alison McFadden
- Rotman Research Institute, Baycrest Centre, 3560 Bathurst Street, Toronto, ON, M6A 2E1, Canada
| | - Anthony R McIntosh
- Rotman Research Institute, Baycrest Centre, 3560 Bathurst Street, Toronto, ON, M6A 2E1, Canada
- University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Papaioannou AG, Kalantzi E, Papageorgiou CC, Korombili K, Βokou A, Pehlivanidis A, Papageorgiou CC, Papaioannou G. Complexity analysis of the brain activity in Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD) due to cognitive loads/demands induced by Aristotle's type of syllogism/reasoning. A Power Spectral Density and multiscale entropy (MSE) analysis. Heliyon 2021; 7:e07984. [PMID: 34611558 PMCID: PMC8477216 DOI: 10.1016/j.heliyon.2021.e07984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/13/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE We aim to investigate whether EEG dynamics differ in adults with ASD (Autism Spectrum Disorders), ADHD (attention-deficit/hyperactivity disorder), compared with healthy subjects during the performance of an innovative cognitive task: Aristotle's valid and invalid syllogisms. We follow the Neuroanatomical differences type of criterion in assessing the results of our study in supporting or not the dual-process theory of Kahneman, 2011) (Systems I & II of thinking). METHOD We recorded EEGs from 14 scalp electrodes in 30 adults with ADHD, 30 with ASD and 24 healthy, normal subjects. The subjects were exposed in a set of innovative cognitive tasks (inducing varying cognitive loads), the Aristotle's four types of syllogism mentioned above. The multiscale entropy (MSE), a nonlinear information-theoretic measure or tool was computed to extract features that quantify the complexity of the EEG. RESULTS The dynamics of the curves of the grand average of MSE values of the ADHD and ASD participants was significantly in higher levels for the majority of time scales, than the healthy subjects over a number of brain regions (electrodes locations), during the performance of both valid and invalid types of syllogism. This result is seemingly not in accordance of the broadly accepted 'theory' of complexity loss in 'pathological' subjects, but actually this is not the case as explained in the text. ADHD subjects are engaged in System II of thinking, for both Valid and Invalid syllogism, ASD and Control in System I for valid and invalid syllogism, respectively. A surprising and 'provocative' result of this paper, as shown in the next sections, is that the Complexity-variability of ASD and ADHD subjects, when they face Aristotle's types of syllogisms, is higher than that of the control subjects. An explanation is suggested as described in the text. Also, in the case of invalid type of Aristotelian syllogisms, the linguistic and visuo-spatial systems are both engaged ONLY in the temporal and occipital regions of the brain, respectively, of ADHD subjects. In the case of valid type, both above systems are engaged in the temporal and occipital regions of the brain, respectively, of both ASD and ADHD subjects, while in the control subjects only the visuo-spatial type is engaged (Goel et al., 2000; Knauff, 2007). CONCLUSION Based on the results of the analysis described in this work, the differences in the EEG complexity between the three groups of participants lead to the conclusion that cortical information processing is changed in ASD and ADHD adults, therefore their level of cortical activation may be insufficient to meet the peculiar cognitive demand of Aristotle's reasoning. SIGNIFICANCE The present paper suggest that MSE, is a powerful and efficient nonlinear measure in detecting neural dysfunctions in adults with ASD and ADHD characteristics, when they are called on to perform in a very demanding as well as innovative set of cognitive tasks, that can be considered as a new diagnostic 'benchmark' in helping detecting more effectively such type of disorders. A linear measure alone, as the typical PSD, is not capable in making such a distinction. The work contributes in shedding light on the neural mechanisms of syllogism/reasoning of Aristotelian type, as well as toward understanding how humans reason logically and why 'pathological' subjects deviate from the norms of formal logic.
Collapse
Affiliation(s)
- Anastasia G. Papaioannou
- 1 Department of Psychiatry, National University of Athens, Medical School, Eginition Hospital, Athens, Greece
- University Mental Health, Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS”, (UMHRI), Athens, Greece
| | - Eva Kalantzi
- 1 Department of Psychiatry, National University of Athens, Medical School, Eginition Hospital, Athens, Greece
| | | | - Kalliopi Korombili
- 1 Department of Psychiatry, National University of Athens, Medical School, Eginition Hospital, Athens, Greece
| | - Anastasia Βokou
- 1 Department of Psychiatry, National University of Athens, Medical School, Eginition Hospital, Athens, Greece
| | - Artemios Pehlivanidis
- 1 Department of Psychiatry, National University of Athens, Medical School, Eginition Hospital, Athens, Greece
| | - Charalabos C. Papageorgiou
- 1 Department of Psychiatry, National University of Athens, Medical School, Eginition Hospital, Athens, Greece
- University Mental Health, Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS”, (UMHRI), Athens, Greece
| | - George Papaioannou
- Center for Research of Nonlinear Systems (CRANS), Department of Mathematics, University of Patras, Patra, Greece
| |
Collapse
|
13
|
Shafer RL, Lewis MH, Newell KM, Bodfish JW. Atypical neural processing during the execution of complex sensorimotor behavior in autism. Behav Brain Res 2021; 409:113337. [PMID: 33933522 PMCID: PMC8188828 DOI: 10.1016/j.bbr.2021.113337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 04/02/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022]
Abstract
Stereotyped behavior is rhythmic, repetitive movement that is essentially invariant in form. Stereotypy is common in several clinical disorders, such as autism spectrum disorders (ASD), where it is considered maladaptive. However, it also occurs early in typical development (TD) where it is hypothesized to serve as the foundation on which complex, adaptive motor behavior develops. This transition from stereotyped to complex movement in TD is thought to be supported by sensorimotor integration. Stereotypy in clinical disorders may persist due to deficits in sensorimotor integration. The present study assessed whether differences in sensorimotor processing may limit the expression of complex motor behavior in individuals with ASD and contribute to the clinical stereotypy observed in this population. Adult participants with ASD and TD performed a computer-based stimulus-tracking task in the presence and absence of visual feedback. Electroencephalography was recorded during the task. Groups were compared on motor performance (root mean square error), motor complexity (sample entropy), and neural complexity (multiscale sample entropy of the electroencephalography signal) in the presence and absence of visual feedback. No group differences were found for motor performance or motor complexity. The ASD group demonstrated greater neural complexity and greater differences between feedback conditions than TD individuals, specifically in signals relevant to sensorimotor processing. Motor performance and motor complexity correlated with clinical stereotypy in the ASD group. These findings support the hypothesis that individuals with ASD have differences in sensorimotor processing when executing complex motor behavior and that stereotypy is associated with low motor complexity.
Collapse
Affiliation(s)
- Robin L Shafer
- Vanderbilt Brain Institute, Vanderbilt University, 6133 Medical Research Building III, 465 21(st) Avenue South, Nashville, TN, 37232, USA.
| | - Mark H Lewis
- Department of Psychiatry, University of Florida College of Medicine, PO Box 100256, L4-100 McKnight Brain Institute, 1149 Newell Drive, Gainesville, FL, 3261, USA.
| | - Karl M Newell
- Department of Kinesiology, University of Georgia, G3 Aderhold Hall, 110 Carlton Street, Athens, GA, 30602, USA.
| | - James W Bodfish
- Vanderbilt Brain Institute, Vanderbilt University, 6133 Medical Research Building III, 465 21(st) Avenue South, Nashville, TN, 37232, USA; Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 8310 Medical Center East, 1215 21(st) Avenue South, Nashville, TN, 37232, USA.
| |
Collapse
|
14
|
Dumas G, Fairhurst MT. Reciprocity and alignment: quantifying coupling in dynamic interactions. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210138. [PMID: 34040790 PMCID: PMC8113897 DOI: 10.1098/rsos.210138] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent accounts of social cognition focus on how we do things together, suggesting that becoming aligned relies on a reciprocal exchange of information. The next step is to develop richer computational methods that quantify the degree of coupling and describe the nature of the information exchange. We put forward a definition of coupling, comparing it to related terminology and detail, available computational methods and the level of organization to which they pertain, presenting them as a hierarchy from weakest to richest forms of coupling. The rationale is that a temporally coherent link between two dynamical systems at the lowest level of organization sustains mutual adaptation and alignment at the highest level. Postulating that when we do things together, we do so dynamically over time and we argue that to determine and measure instances of true reciprocity in social exchanges is key. Along with this computationally rich definition of coupling, we present challenges for the field to be tackled by a diverse community working towards a dynamic account of social cognition.
Collapse
Affiliation(s)
- Guillaume Dumas
- CHU Sainte-Justine Research Center, Department of Psychiatry, University of Montreal, Quebec, Canada
- Mila – Quebec Artificial Intelligence Institute, University of Montreal, Quebec, Canada
| | - Merle T. Fairhurst
- Institute of Psychology, Faculty of Human Sciences, Bundeswehr University, Munich, Germany
- Faculty of Philosophy and Munich Center for Neuroscience, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
15
|
Hu Z, Liu L, Wang M, Jia G, Li H, Si F, Dong M, Qian Q, Niu H. Disrupted signal variability of spontaneous neural activity in children with attention-deficit/hyperactivity disorder. BIOMEDICAL OPTICS EXPRESS 2021; 12:3037-3049. [PMID: 34168913 PMCID: PMC8194629 DOI: 10.1364/boe.418921] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 05/08/2023]
Abstract
Brain signal variability (BSV) has shown to be powerful in characterizing human brain development and neuropsychiatric disorders. Multiscale entropy (MSE) is a novel method for quantifying the variability of brain signal, and helps elucidate complex dynamic pathological mechanisms in children with attention-deficit/hyperactivity disorder (ADHD). Here, multiple-channel resting-state functional near-infrared spectroscopy (fNIRS) imaging data were acquired from 42 children with ADHD and 41 healthy controls (HCs) and then BSV was calculated for each participant based on the MSE analysis. Compared with HCs, ADHD group exhibited reduced BSV in both high-order and primary brain functional networks, e.g., the default mode, frontoparietal, attention and visual networks. Intriguingly, the BSV aberrations negatively correlated with ADHD symptoms in the frontoparietal network and negatively correlated with reaction time variability in the frontoparietal, default mode, somatomotor and attention networks. This study demonstrates a wide alternation in the moment-to-moment variability of spontaneous brain signal in children with ADHD, and highlights the potential for using MSE metric as a disease biomarker.
Collapse
Affiliation(s)
- Zhenyan Hu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Zhenyan Hu and Lu Liu contributed equally to this research
| | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
- Zhenyan Hu and Lu Liu contributed equally to this research
| | - Mengjing Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Gaoding Jia
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Haimei Li
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Feifei Si
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Min Dong
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Qiujin Qian
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - HaiJing Niu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
16
|
Al-Jawahiri R, Jones M, Milne E. Spontaneous neural activity relates to psychiatric traits in 16p11.2 CNV carriers: An analysis of EEG spectral power and multiscale entropy. J Psychiatr Res 2021; 136:610-618. [PMID: 33158556 DOI: 10.1016/j.jpsychires.2020.10.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/28/2022]
Abstract
Copy number variations (CNV) at the 16p11.2 chromosomal region are rare high-risk CNVs associated with various clinical features and psychiatric disorders including intellectual disability, developmental delays, and autism spectrum disorder. No study to date has investigated whether spontaneous neural activity is altered for 16p11.2 CNV carriers and whether this relates to psychiatric traits. The aim of this study is to examine the impact of 16p11.2 deletions (del) and duplications (dup) on spontaneous neural activity and its relationship to psychiatric problems. EEG was previously collected as part of the Simons Searchlight initiative. Using spectral power (delta, theta, alpha, and beta frequency bands), complexity index (CI), and multiscale entropy analysis techniques, we analyzed frontal resting-state EEG data collected from 22 16p11.2 del carriers, 14 dup carriers, and 13 controls. We then examined associations between neural activity and psychiatric traits, measured with the Child Behavior Checklist. Results indicated that EEG entropy was higher for del and dup compared to controls, respectively, at all timescales. CI was also higher for del and dup compared to controls. Theta power of 16p11.2 dup carriers was higher than controls. A strong association was found between entropy at higher timescales and anxiety problems. In addition, a strong correlation was found between theta power and pervasive developmental problems. Atypical spontaneous neural activity is implicated in 16p11.2 CNVs. With higher entropy or theta power, psychiatric traits increase in severity. Our findings provide evidence of the link between genotype, neural activity, and phenotypes in 16p11.2 CNVs.
Collapse
Affiliation(s)
- Reem Al-Jawahiri
- Department of Psychology, University of Sheffield, United Kingdom.
| | - Myles Jones
- Department of Psychology, University of Sheffield, United Kingdom
| | - Elizabeth Milne
- Department of Psychology, University of Sheffield, United Kingdom
| |
Collapse
|
17
|
Early screening of autism spectrum disorder using cry features. PLoS One 2020; 15:e0241690. [PMID: 33301502 PMCID: PMC7728261 DOI: 10.1371/journal.pone.0241690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 10/19/2020] [Indexed: 12/05/2022] Open
Abstract
The increase in the number of children with autism and the importance of early autism intervention has prompted researchers to perform automatic and early autism screening. Consequently, in the present paper, a cry-based screening approach for children with Autism Spectrum Disorder (ASD) is introduced which would provide both early and automatic screening. During the study, we realized that ASD specific features are not necessarily observable in all children with ASD and in all instances collected from each child. Therefore, we proposed a new classification approach to be able to determine such features and their corresponding instances. To test the proposed approach a set of data relating to children between 18 to 53 months which had been recorded using high-quality voice recording devices and typical smartphones at various locations such as homes and daycares was studied. Then, after preprocessing, the approach was used to train a classifier, using data for 10 boys with ASD and 10 Typically Developed (TD) boys. The trained classifier was tested on the data of 14 boys and 7 girls with ASD and 14 TD boys and 7 TD girls. The sensitivity, specificity, and precision of the proposed approach for boys were 85.71%, 100%, and 92.85%, respectively. These measures were 71.42%, 100%, and 85.71% for girls, respectively. It was shown that the proposed approach outperforms the common classification methods. Furthermore, it demonstrated better results than the studies which used voice features for screening ASD. To pilot the practicality of the proposed approach for early autism screening, the trained classifier was tested on 57 participants between 10 to 18 months. These 57 participants consisted of 28 boys and 29 girls and the results were very encouraging for the use of the approach in early ASD screening.
Collapse
|
18
|
Deterministic characteristics of spontaneous activity detected by multi-fractal analysis in a spiking neural network with long-tailed distributions of synaptic weights. Cogn Neurodyn 2020; 14:829-836. [PMID: 33101534 DOI: 10.1007/s11571-020-09605-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/13/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022] Open
Abstract
Cortical neural networks maintain autonomous electrical activity called spontaneous activity that represents the brain's dynamic internal state even in the absence of sensory stimuli. The spatio-temporal complexity of spontaneous activity is strongly related to perceptual, learning, and cognitive brain functions; multi-fractal analysis can be utilized to evaluate the complexity of spontaneous activity. Recent studies have shown that the deterministic dynamic behavior of spontaneous activity especially reflects the topological neural network characteristics and changes of neural network structures. However, it remains unclear whether multi-fractal analysis, recently widely utilized for neural activity, is effective for detecting the complexity of the deterministic dynamic process. To verify this point, we focused on the log-normal distribution of excitatory postsynaptic potentials (EPSPs) to evaluate the multi-fractality of spontaneous activity in a spiking neural network with a log-normal distribution of EPSPs. We found that the spiking activities exhibited multi-fractal characteristics. Moreover, to investigate the presence of a deterministic process in the spiking activity, we conducted a surrogate data analysis against the time-series of spiking activity. The results showed that the spontaneous spiking activity included the deterministic dynamic behavior. Overall, the combination of multi-fractal analysis and surrogate data analysis can detect deterministic complex neural activity. The multi-fractal analysis of neural activity used in this study could be widely utilized for brain modeling and evaluation methods for signals obtained by neuroimaging modalities.
Collapse
|
19
|
Liu M, Liu X, Hildebrandt A, Zhou C. Individual Cortical Entropy Profile: Test-Retest Reliability, Predictive Power for Cognitive Ability, and Neuroanatomical Foundation. Cereb Cortex Commun 2020; 1:tgaa015. [PMID: 34296093 PMCID: PMC8153045 DOI: 10.1093/texcom/tgaa015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
The entropy profiles of cortical activity have become novel perspectives to investigate individual differences in behavior. However, previous studies have neglected foundational aspects of individual entropy profiles, that is, the test-retest reliability, the predictive power for cognitive ability in out-of-sample data, and the underlying neuroanatomical basis. We explored these issues in a large young healthy adult dataset (Human Connectome Project, N = 998). We showed the whole cortical entropy profile from resting-state functional magnetic resonance imaging is a robust personalized measure, while subsystem profiles exhibited heterogeneous reliabilities. The limbic network exhibited lowest reliability. We tested the out-of-sample predictive power for general and specific cognitive abilities based on reliable cortical entropy profiles. The default mode and visual networks are most crucial when predicting general cognitive ability. We investigated the anatomical features underlying cross-region and cross-individual variations in cortical entropy profiles. Cortical thickness and structural connectivity explained spatial variations in the group-averaged entropy profile. Cortical folding and myelination in the attention and frontoparietal networks determined predominantly individual cortical entropy profile. This study lays foundations for brain-entropy-based studies on individual differences to understand cognitive ability and related pathologies. These findings broaden our understanding of the associations between neural structures, functional dynamics, and cognitive ability.
Collapse
Affiliation(s)
- Mianxin Liu
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Xinyang Liu
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Andrea Hildebrandt
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Department of Physics, Zhejiang University, 310000 Hangzhou, China
| |
Collapse
|
20
|
Furutani N, Nariya Y, Takahashi T, Ito H, Yoshimura Y, Hiraishi H, Hasegawa C, Ikeda T, Kikuchi M. Neural Decoding of Multi-Modal Imagery Behavior Focusing on Temporal Complexity. Front Psychiatry 2020; 11:746. [PMID: 32848924 PMCID: PMC7406828 DOI: 10.3389/fpsyt.2020.00746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Mental imagery behaviors of various modalities include visual, auditory, and motor behaviors. Their alterations are pathologically involved in various psychiatric disorders. Results of earlier studies suggest that imagery behaviors are correlated with the modulated activities of the respective modality-specific regions and the additional activities of supramodal imagery-related regions. Additionally, despite the availability of complexity analysis in the neuroimaging field, it has not been used for neural decoding approaches. Therefore, we sought to characterize neural oscillation related to multimodal imagery through complexity-based neural decoding. For this study, we modified existing complexity measures to characterize the time evolution of temporal complexity. We took magnetoencephalography (MEG) data of eight healthy subjects as they performed multimodal imagery and non-imagery tasks. The MEG data were decomposed into amplitude and phase of sub-band frequencies by Hilbert-Huang transform. Subsequently, we calculated the complexity values of each reconstructed time series, along with raw data and band power for comparison, and applied these results as inputs to decode visual perception (VP), visual imagery (VI), motor execution (ME), and motor imagery (MI) functions. Consequently, intra-subject decoding with the complexity yielded a characteristic sensitivity map for each task with high decoding accuracy. The map is inverted in the occipital regions between VP and VI and in the central regions between ME and MI. Additionally, replacement of the labels into two classes as imagery and non-imagery also yielded better classification performance and characteristic sensitivity with the complexity. It is particularly interesting that some subjects showed characteristic sensitivities not only in modality-specific regions, but also in supramodal regions. These analyses indicate that two-class and four-class classifications each provided better performance when using complexity than when using raw data or band power as input. When inter-subject decoding was used with the same model, characteristic sensitivity maps were also obtained, although their decoding performance was lower. Results of this study underscore the availability of complexity measures in neural decoding approaches and suggest the possibility of a modality-independent imagery-related mechanism. The use of time evolution of temporal complexity in neural decoding might extend our knowledge of the neural bases of hierarchical functions in the human brain.
Collapse
Affiliation(s)
- Naoki Furutani
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yuta Nariya
- Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Haruka Ito
- General course, Sundai-Kofu High School, Kofu, Japan
| | - Yuko Yoshimura
- Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Hirotoshi Hiraishi
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Takashi Ikeda
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.,Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
21
|
Zhang SQ, Fleischer J, Al-Kateb H, Mito Y, Amarillo I, Shinawi M. Intragenic CNTN4 copy number variants associated with a spectrum of neurobehavioral phenotypes. Eur J Med Genet 2019; 63:103736. [PMID: 31422286 DOI: 10.1016/j.ejmg.2019.103736] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/26/2019] [Accepted: 08/11/2019] [Indexed: 12/12/2022]
Abstract
Deletions and duplications involving the CNTN4 gene, which encodes for the contactin 4 protein, have been reported in children with autism spectrum disorder (ASD) and other neurodevelopmental phenotypes. In this study, we performed clinical and genetic characterization of three individuals from unrelated families with copy number variants (CNV) (one deletion and two duplications) within CNTN4. The patients exhibited cognitive delay (3/3), growth restriction (3/3), motor delay (2/3), and febrile seizure/epilepsy (2/3). In contrast to previous reports, all probands presented with speech apraxia or delay with no diagnosis of ASD. Parental studies for the proband with the deletion and one of the 2 probands with the duplication revealed paternal origin of the CNTN4 CNV. Interestingly, previously documented CNV involving this gene were mostly inherited from unaffected fathers, raising questions regarding reduced penetrance and potential parent-of-origin effect. Our findings are compared with previously reported patients and patients in the DECIPHER database. The speech impairment in the three probands suggests a role for CNTN4 in language development. We discuss potential factors contributing to phenotypic heterogeneity and reduced penetrance and attempt to find possible genotype-phenotype correlation. Larger cohorts are needed for comprehensive and unbiased phenotyping and molecular characterization that may lead to better understanding of the underlying mechanisms of reduced penetrance, variable expressivity, and potential parent-of-origin effect of copy number variants encompassing CNTN4.
Collapse
Affiliation(s)
| | - Julie Fleischer
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA; Southern Illinois University, Springfield, IL, USA
| | - Hussam Al-Kateb
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yoshiko Mito
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ina Amarillo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
22
|
Hasegawa C, Takahashi T, Yoshimura Y, Nobukawa S, Ikeda T, Saito DN, Kumazaki H, Minabe Y, Kikuchi M. Developmental Trajectory of Infant Brain Signal Variability: A Longitudinal Pilot Study. Front Neurosci 2018; 12:566. [PMID: 30154695 PMCID: PMC6102372 DOI: 10.3389/fnins.2018.00566] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/27/2018] [Indexed: 11/13/2022] Open
Abstract
The infant brain shows rapid neural network development that considerably influences cognitive and behavioral abilities in later life. Reportedly, this neural development process can be indexed by estimating neural signal complexity. However, the precise developmental trajectory of brain signal complexity during infancy remains elusive. This study was conducted to ascertain the trajectory of magnetoencephalography (MEG) signal complexity from 2 months to 3 years of age in five infants using multiscale entropy (MSE), which captures signal complexity at multiple temporal scales. Analyses revealed scale-dependent developmental trajectories. Specifically, signal complexity predominantly increased from 5 to 15 months of age at higher temporal scales, whereas the complexity at lower temporal scales was constant across age, except in one infant who showed decreased complexity. Despite a small sample size limiting this study’s power, this is the first report of a longitudinal investigation of changes in brain signal complexity during early infancy and is unique in its application of MSE analysis of longitudinal MEG data during infancy. The results of this pilot study may serve to further our understanding of the longitudinal changes in the neural dynamics of the developing infant brain.
Collapse
Affiliation(s)
- Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | | | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan.,Faculty of Education, Kanazawa University, Kanazawa, Japan
| | - Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, Narashino, Japan
| | - Takashi Ikeda
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Daisuke N Saito
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Hirokazu Kumazaki
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Yoshio Minabe
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
23
|
Kuntzelman K, Jack Rhodes L, Harrington LN, Miskovic V. A practical comparison of algorithms for the measurement of multiscale entropy in neural time series data. Brain Cogn 2018; 123:126-135. [PMID: 29562207 DOI: 10.1016/j.bandc.2018.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 01/22/2023]
Abstract
There is a broad family of statistical methods for capturing time series regularity, with increasingly widespread adoption by the neuroscientific community. A common feature of these methods is that they permit investigators to quantify the entropy of brain signals - an index of unpredictability/complexity. Despite the proliferation of algorithms for computing entropy from neural time series data there is scant evidence concerning their relative stability and efficiency. Here we evaluated several different algorithmic implementations (sample, fuzzy, dispersion and permutation) of multiscale entropy in terms of their stability across sessions, internal consistency and computational speed, accuracy and precision using a combination of electroencephalogram (EEG) and synthetic 1/ƒ noise signals. Overall, we report fair to excellent internal consistency and longitudinal stability over a one-week period for the majority of entropy estimates, with several caveats. Computational timing estimates suggest distinct advantages for dispersion and permutation entropy over other entropy estimates. Considered alongside the psychometric evidence, we suggest several ways in which researchers can maximize computational resources (without sacrificing reliability), especially when working with high-density M/EEG data or multivoxel BOLD time series signals.
Collapse
Affiliation(s)
- Karl Kuntzelman
- Department of Psychology, State University of New York at Binghamton, USA; Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, USA
| | - L Jack Rhodes
- Department of Psychology, State University of New York at Binghamton, USA
| | | | - Vladimir Miskovic
- Department of Psychology, State University of New York at Binghamton, USA.
| |
Collapse
|
24
|
Otto-Meyer S, Krizman J, White-Schwoch T, Kraus N. Children with autism spectrum disorder have unstable neural responses to sound. Exp Brain Res 2018; 236:733-743. [DOI: 10.1007/s00221-017-5164-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/26/2017] [Indexed: 12/20/2022]
|
25
|
The Potential Application of Multiscale Entropy Analysis of Electroencephalography in Children with Neurological and Neuropsychiatric Disorders. ENTROPY 2017; 19:e19080428. [PMID: 33535366 DOI: 10.3390/e19080428] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 01/25/2023]
Abstract
Electroencephalography (EEG) is frequently used in functional neurological assessment of children with neurological and neuropsychiatric disorders. Multiscale entropy (MSE) can reveal complexity in both short and long time scales and is more feasible in the analysis of EEG. Entropy-based estimation of EEG complexity is a powerful tool in investigating the underlying disturbances of neural networks of the brain. Most neurological and neuropsychiatric disorders in childhood affect the early stage of brain development. The analysis of EEG complexity may show the influences of different neurological and neuropsychiatric disorders on different regions of the brain during development. This article aims to give a brief summary of current concepts of MSE analysis in pediatric neurological and neuropsychiatric disorders. Studies utilizing MSE or its modifications for investigating neurological and neuropsychiatric disorders in children were reviewed. Abnormal EEG complexity was shown in a variety of childhood neurological and neuropsychiatric diseases, including autism, attention deficit/hyperactivity disorder, Tourette syndrome, and epilepsy in infancy and childhood. MSE has been shown to be a powerful method for analyzing the non-linear anomaly of EEG in childhood neurological diseases. Further studies are needed to show its clinical implications on diagnosis, treatment, and outcome prediction.
Collapse
|
26
|
Torres EB, Mistry S, Caballero C, Whyatt CP. Stochastic Signatures of Involuntary Head Micro-movements Can Be Used to Classify Females of ABIDE into Different Subtypes of Neurodevelopmental Disorders. Front Integr Neurosci 2017. [PMID: 28638324 PMCID: PMC5461345 DOI: 10.3389/fnint.2017.00010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The approximate 5:1 male to female ratio in clinical detection of Autism Spectrum Disorder (ASD) prevents research from characterizing the female phenotype. Current open access repositories [such as those in the Autism Brain Imaging Data Exchange (ABIDE I-II)] contain large numbers of females to help begin providing a new characterization of females on the autistic spectrum. Here we introduce new methods to integrate data in a scale-free manner from continuous biophysical rhythms of the nervous systems and discrete (ordinal) observational scores. Methods: New data-types derived from image-based involuntary head motions and personalized statistical platform were combined with a data-driven approach to unveil sub-groups within the female cohort. Further, to help refine the clinical DSM-based ASD vs. Asperger's Syndrome (AS) criteria, distributional analyses of ordinal score data from Autism Diagnostic Observation Schedule (ADOS)-based criteria were used on both the female and male phenotypes. Results: Separate clusters were automatically uncovered in the female cohort corresponding to differential levels of severity. Specifically, the AS-subgroup emerged as the most severely affected with an excess level of noise and randomness in the involuntary head micro-movements. Extending the methods to characterize males of ABIDE revealed ASD-males to be more affected than AS-males. A thorough study of ADOS-2 and ADOS-G scores provided confounding results regarding the ASD vs. AS male comparison, whereby the ADOS-2 rendered the AS-phenotype worse off than the ASD-phenotype, while ADOS-G flipped the results. Females with AS scored higher on severity than ASD-females in all ADOS test versions and their scores provided evidence for significantly higher severity than males. However, the statistical landscapes underlying female and male scores appeared disparate. As such, further interpretation of the ADOS data seems problematic, rather suggesting the critical need to develop an entirely new metric to measure social behavior in females. Conclusions: According to the outcome of objective, data-driven analyses and subjective clinical observation, these results support the proposition that the female phenotype is different. Consequently the “social behavioral male ruler” will continue to mask the female autistic phenotype. It is our proposition that new observational behavioral tests ought to contain normative scales, be statistically sound and combined with objective data-driven approaches to better characterize the females across the human lifespan.
Collapse
Affiliation(s)
- Elizabeth B Torres
- Department of Psychology, Rutgers UniversityPiscataway, NJ, United States.,Computer Science Department and Rutgers Center for Cognitive Science, Center for Biomedical Imaging and ModelingNew Brunswick, NJ, United States
| | - Sejal Mistry
- Department of Biomathematics, Rutgers UniversityPiscataway, NJ, United States
| | - Carla Caballero
- Department of Psychology, Rutgers UniversityPiscataway, NJ, United States.,Computer Science Department and Rutgers Center for Cognitive Science, Center for Biomedical Imaging and ModelingNew Brunswick, NJ, United States
| | - Caroline P Whyatt
- Department of Psychology, Rutgers UniversityPiscataway, NJ, United States.,Computer Science Department and Rutgers Center for Cognitive Science, Center for Biomedical Imaging and ModelingNew Brunswick, NJ, United States
| |
Collapse
|
27
|
Hasegawa C, Ikeda T, Yoshimura Y, Hiraishi H, Takahashi T, Furutani N, Hayashi N, Minabe Y, Hirata M, Asada M, Kikuchi M. Mu rhythm suppression reflects mother-child face-to-face interactions: a pilot study with simultaneous MEG recording. Sci Rep 2016; 6:34977. [PMID: 27721481 PMCID: PMC5056356 DOI: 10.1038/srep34977] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/21/2016] [Indexed: 11/09/2022] Open
Abstract
Spontaneous face-to-face interactions between mothers and their children play crucial roles in the development of social minds; however, these inter-brain dynamics are still unclear. In this pilot study, we measured MEG mu suppression during face-to-face spontaneous non-linguistic interactions between mothers and their children with autism spectrum disorder (ASD) using the MEG hyperscanning system (i.e., simultaneous recording). The results demonstrated significant correlations between the index of mu suppression (IMS) in the right precentral area and the traits (or severity) of ASD in 13 mothers and 8 children (MEG data from 5 of the children could not be obtained due to motion noise). In addition, higher IMS values (i.e., strong mu suppression) in mothers were associated with higher IMS values in their children. To evaluate the behavioral contingency between mothers and their children, we calculated cross correlations between the magnitude of the mother and child head-motion during MEG recordings. As a result, in mothers whose head motions tended to follow her child's head motion, the magnitudes of mu suppression in the mother's precentral area were large. Further studies with larger sample sizes, including typically developing children, are necessary to generalize this result to typical interactions between mothers and their children.
Collapse
Affiliation(s)
- Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Takashi Ikeda
- Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.,Department of Neurosurgery, Osaka University Medical School, Suita, 565-0871, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Hirotoshi Hiraishi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.,Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Naoki Furutani
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Norio Hayashi
- School of Radiological Technology, Gunma Prefectural College of Health Sciences, Maebashi, 371-0052, Japan
| | - Yoshio Minabe
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.,Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Masayuki Hirata
- Department of Neurosurgery, Osaka University Medical School, Suita, 565-0871, Japan
| | - Minoru Asada
- Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.,Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| |
Collapse
|
28
|
Miskovic V, Owens M, Kuntzelman K, Gibb BE. Charting moment-to-moment brain signal variability from early to late childhood. Cortex 2016; 83:51-61. [PMID: 27479615 DOI: 10.1016/j.cortex.2016.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/20/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023]
Abstract
Large-scale brain signals exhibit rich intermittent patterning, reflecting the fact that the cortex actively eschews fixed points in favor of itinerant wandering with frequent state transitions. Fluctuations in endogenous cortical activity occur at multiple time scales and index a dynamic repertoire of network states that are continuously explored, even in the absence of external sensory inputs. Here, we quantified such moment-to-moment brain signal variability at rest in a large, cross-sectional sample of children ranging in age from seven to eleven years. Our findings revealed a monotonic rise in the complexity of electroencephalogram (EEG) signals as measured by sample entropy, from the youngest to the oldest age cohort, across a range of time scales and spatial regions. From year to year, the greatest changes in intraindividual brain signal variability were recorded at electrodes covering the anterior cortical zones. These results provide converging evidence concerning the age-dependent expansion of functional cortical network states during a critical developmental period ranging from early to late childhood.
Collapse
Affiliation(s)
- Vladimir Miskovic
- Center for Affective Science, State University of New York at Binghamton, USA.
| | - Max Owens
- Center for Affective Science, State University of New York at Binghamton, USA
| | - Karl Kuntzelman
- Center for Affective Science, State University of New York at Binghamton, USA
| | - Brandon E Gibb
- Center for Affective Science, State University of New York at Binghamton, USA
| |
Collapse
|