Sekihara K, Adachi Y, Kubota HK, Cai C, Nagarajan SS. Beamspace dual signal space projection (bDSSP): a method for selective detection of deep sources in MEG measurements.
J Neural Eng 2018. [PMID:
29526836 DOI:
10.1088/1741-2552/aab5bd]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE
Magnetoencephalography (MEG) has a well-recognized weakness at detecting deeper brain activities. This paper proposes a novel algorithm for selective detection of deep sources by suppressing interference signals from superficial sources in MEG measurements.
APPROACH
The proposed algorithm combines the beamspace preprocessing method with the dual signal space projection (DSSP) interference suppression method. A prerequisite of the proposed algorithm is prior knowledge of the location of the deep sources. The proposed algorithm first derives the basis vectors that span a local region just covering the locations of the deep sources. It then estimates the time-domain signal subspace of the superficial sources by using the projector composed of these basis vectors. Signals from the deep sources are extracted by projecting the row space of the data matrix onto the direction orthogonal to the signal subspace of the superficial sources.
MAIN RESULTS
Compared with the previously proposed beamspace signal space separation (SSS) method, the proposed algorithm is capable of suppressing much stronger interference from superficial sources. This capability is demonstrated in our computer simulation as well as experiments using phantom data.
SIGNIFICANCE
The proposed bDSSP algorithm can be a powerful tool in studies of physiological functions of midbrain and deep brain structures.
Collapse