1
|
Goodman AM, Allendorfer JB, Taylor GC, Philip NS, Correia S, Blum AS, Curt LaFrance W, Szaflarski JP. Altered fronto-limbic-motor response to stress differs between functional and epileptic seizures in a TBI model. Epilepsy Behav 2024; 157:109877. [PMID: 38917672 DOI: 10.1016/j.yebeh.2024.109877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND AND OBJECTIVES Psychogenic nonepileptic (functional) seizures (FS) clinically resemble epileptic seizures (ES) with both often preceded by traumatic brain injury (TBI). FS and ES emergence and occurrence after TBI may be linked to aberrant neurobehavioral stress responses. We hypothesized that neural activity signatures in response to a psychosocial stress task would differ between TBI + FS and TBI + ES after controlling for TBI status (TBI-only). METHODS In the current multicenter study, participants were recruited prospectively from Rhode Island Hospital, Providence Rhode Island Veterans Administration Medical Center, and the University of Alabama at Birmingham Medical Center. Previous diagnoses of TBI, ES, and FS were verified based on data collected from participants, medical chart and record review, and, where indicated, results of EEG and/or video-EEG confirmatory diagnosis. TBI + ES (N = 21) and TBI + FS (N = 21) were matched for age and sex and combined into an initial group (TBI + SZ; N = 42). A TBI-only group (N = 42) was age and sex matched to the TBI with seizures (TBI + SZ) group. All participants completed an fMRI control math task (CMT) and stress math task (SMT) based on the Montreal Imaging Stress Task (MIST). RESULTS The TBI + SZ group (n = 24 female) did not differ in mood or anxiety severity compared to TBI-only group (n = 24 female). However, TBI + FS group (n = 11 female) reported greater severity of these symptoms compared to TBI + ES (n = 13 female). The linear mixed effects analysis identified neural responses that differed between TBI-only and TBI + SZ during math performance within the left premotor cortex and during auditory feedback within bilateral prefrontal cortex and hippocampus/amygdala regions. Additionally, neural responses differed between TBI + ES and TBI + FS during math performance within the right dorsolateral prefrontal cortex and bilateral amygdala during auditory feedback within the supplementary motor area. All tests comparing neural stress responses to psychiatric symptom severity failed to reach significance. DISCUSSION Controlling for TBI and seizure status, these findings implicate specific nodes within frontal, limbic, and sensorimotor networks that may maintain functional neurological symptoms and possibly distinguish FS from ES. This study provides class II evidence of differences in neural responses to psychosocial stress between ES and FS after TBI.
Collapse
Affiliation(s)
- Adam M Goodman
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; UAB Epilepsy Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Department of Psychology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| | - Jane B Allendorfer
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; UAB Epilepsy Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Gabriella C Taylor
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; UAB Epilepsy Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Noah S Philip
- VA RR&D Center for Neurorestoration & Neurotechnology, VA Providence Healthcare System, Providence, RI, USA; Dept of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Stephen Correia
- VA RR&D Center for Neurorestoration & Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
| | - Andrew S Blum
- Dept of Neurology, Alpert Medical School of Brown University, Providence, RI, USA
| | - W Curt LaFrance
- VA RR&D Center for Neurorestoration & Neurotechnology, VA Providence Healthcare System, Providence, RI, USA; Dept of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA; Dept of Neurology, Alpert Medical School of Brown University, Providence, RI, USA; Division of Neuropsychiatry and Behavioral Neurology, Rhode Island Hospital, Providence, RI, USA
| | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; UAB Epilepsy Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Department of Neurosurgery, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| |
Collapse
|
2
|
Wu Q, Wang H, Liu X, Zhao Y, Zhang J. The Role of the Negative Regulation of Microglia-Mediated Neuroinflammation in Improving Emotional Behavior After Epileptic Seizures. Front Neurol 2022; 13:823908. [PMID: 35493845 PMCID: PMC9046666 DOI: 10.3389/fneur.2022.823908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveStudies have long shown that uncontrolled inflammatory responses in the brain play a key role in epilepsy pathogenesis. Microglias play an important role in epileptic-induced neuroinflammation, but their role after epileptic seizures is still poorly understood. Alleviating epilepsy and its comorbidities has become a key area of interest for pediatricians.MethodsA pilocarpine-induced rat model of epilepsy was established. The rats were randomly divided into four groups: a control group, epilepsy group, TLR4 inhibitor group (epilepsy+TAK-242), and NF-κB antagonist group (epilepsy+BAY11–7082).Results1. The results of TUNEL staining showed that the expression in rats in the epilepsy group was the most obvious and was significantly different from that in rats in the control, EP+BAY and EP+TAK groups. 2. The expression of TLR4 and NF-κB was highest in rats in the epilepsy group and was significantly different from that in rats in the control, EP+BAY and EP+TAK groups. 3. The fluorescence intensity and number of IBA-1-positive cells in rats in the epilepsy group were highest and significantly different from those in rats in the control, EP+BAY and EP+TAK groups. Western blot analysis of IBA-1 showed that the expression in rats in the epilepsy group was the highest and was statistically significant. 4. CD68 was the highest in rats in the epilepsy group and was statistically significant. 5. In the open-field experiment, the central region residence time of rats in the EP group was delayed, the central region movement distance traveled was prolonged, the total distance traveled was prolonged, and the average speed was increased. Compared with rats in the EP group, rats in the EP+BAY and EP+ TAK groups exhibited improvements to different degrees.ConclusionAt the tissue level, downregulation of the TLR4/NF-κB inflammatory pathway in epilepsy could inhibit microglial activation and the expression of the inflammatory factor CD68, could inhibit hyperphagocytosis, and inhibit the occurrence and exacerbation of epilepsy, thus improving cognitive and emotional disorders after epileptic seizures.
Collapse
|
3
|
Goodman AM, Allendorfer JB, LaFrance WC, Szaflarski JP. Precentral gyrus and insula responses to stress vary with duration to diagnosis in functional seizures. Epilepsia 2022; 63:865-879. [PMID: 35112346 DOI: 10.1111/epi.17179] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVE This study was undertaken to determine whether undiagnosed illness duration (time between functional seizures [FS] onset and diagnosis) is linked to differences in neural response and functional connectivity during processing of stressful experiences. METHODS Forty-nine participants with traumatic brain injury preceding the onset of FS confirmed by video-electroencephalography were recruited prospectively. Participants completed psychiatric symptom assessments before undergoing functional magnetic resonance imaging (fMRI) with an acute psychosocial stress task. Linear mixed effects (LME) analyses identified significant interactions between the factors of group (early vs. delayed diagnosis) and time lag to diagnosis on neural responses to stressful math performance and auditory feedback (corrected α = .05). Functional connectivity analysis utilized clusters from initial LME analyses as seed regions to determine significant interactions between these factors on network functional connectivity. RESULTS Demographic and psychiatric symptom measures were similar between early (n = 25) and delayed (n = 24) groups. Responses to stressful math performance within the left anterior insula and functional connectivity between the anterior insula seed region and a precentral gyrus cluster were significantly negatively correlated with time lag to diagnosis for the early but not the delayed FS diagnosis group. There was no correlation between fMRI findings and psychiatric symptoms. SIGNIFICANCE This study indicates that aberrant left anterior insula activation and its functional connectivity to the precentral gyrus underlie differences in processing of stressful experiences in patients with delayed FS diagnosis. Follow-up comparisons suggest changes are associated with undiagnosed illness duration rather than psychiatric comorbidities and indicate a potential mechanistic association between neuropathophysiology, response to stressful experiences, and functional neuroanatomy in FS.
Collapse
Affiliation(s)
- Adam M Goodman
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - W Curt LaFrance
- Providence Veterans Affairs Medical Center, Rhode Island Hospital, Brown University, Providence, Rhode Island, USA
| | | |
Collapse
|
4
|
Abstract
Human neuroimaging has had a major impact on the biological understanding of epilepsy and the relationship between pathophysiology, seizure management, and outcomes. This review highlights notable recent advancements in hardware, sequences, methods, analyses, and applications of human neuroimaging techniques utilized to assess epilepsy. These structural, functional, and metabolic assessments include magnetic resonance imaging (MRI), positron emission tomography (PET), and magnetoencephalography (MEG). Advancements that highlight non-invasive neuroimaging techniques used to study the whole brain are emphasized due to the advantages these provide in clinical and research applications. Thus, topics range across presurgical evaluations, understanding of epilepsy as a network disorder, and the interactions between epilepsy and comorbidities. New techniques and approaches are discussed which are expected to emerge into the mainstream within the next decade and impact our understanding of epilepsies. Further, an increasing breadth of investigations includes the interplay between epilepsy, mental health comorbidities, and aberrant brain networks. In the final section of this review, we focus on neuroimaging studies that assess bidirectional relationships between mental health comorbidities and epilepsy as a model for better understanding of the commonalities between both conditions.
Collapse
Affiliation(s)
- Adam M. Goodman
- Department of Neurology, UAB Epilepsy Center, University of Alabama At Birmingham, 312 Civitan International Research Center, Birmingham, AL 35294 USA
| | - Jerzy P. Szaflarski
- Department of Neurology, UAB Epilepsy Center, University of Alabama At Birmingham, 312 Civitan International Research Center, Birmingham, AL 35294 USA
| |
Collapse
|
5
|
Goodman AM, Diggs MD, Balachandran N, Kakulamarri PS, Oster RA, Allendorfer JB, Szaflarski JP. Repeatability of Neural and Autonomic Responses to Acute Psychosocial Stress. Front Neurosci 2020; 14:585509. [PMID: 33328855 PMCID: PMC7732671 DOI: 10.3389/fnins.2020.585509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/05/2020] [Indexed: 11/13/2022] Open
Abstract
FMRI Montreal Imaging Stress Tasks (MIST) have been shown to activate endocrine and autonomic stress responses that are mediated by a prefrontal cortex (PFC)-hippocampus-amygdala circuit. However, the stability of the neurobehavioral responses over time and the ability to monitor response to clinical interventions has yet to be validated. The objective of this study was to compare the fMRI and physiologic responses to acute psychosocial stress in healthy volunteers during initial and follow-up visits approximately 13 weeks later, simulating a typical duration of clinical intervention. We hypothesized that responses to stress would remain highly conserved across the 2 visits in the absence of an intervention. 15 healthy volunteers completed a variant of control math task (CMT) and stress math task (SMT) conditions based on MIST. Neural responses were modeled using an event-related design with estimates for math performance and auditory feedback for each task condition. For each visit, measures of stress reactivity included differential fMRI and heart rate (SMT-CMT), as well as salivary alpha-amylase before and after scanning sessions. The results revealed that differential fMRI, as well as increased heart rate and salivary alpha-amylase from before and after scanning remained similar between visits. Intraclass correlation coefficient (ICC) values revealed areas of reliable task-dependent BOLD fMRI signal response across visits for peaks of clusters for the main effect of condition (SMT vs CMT) within dorsal anterior cingulate cortex (ACC), insula, and hippocampus regions during math performance and within subgenual ACC, posterior cingulate cortex, dorsolateral PFC regions during auditory feedback. Given that the neurobehavioral response to acute stress remained highly conserved across visits in the absence of an intervention, this study confirms the utility for MIST for assessing longitudinal changes in controlled trials that can identify underlying neurobiological mechanisms involved in mediating the efficacy of stress-reduction interventions.
Collapse
Affiliation(s)
- Adam M Goodman
- Department of Neurology, University of Alabama at Birmingham (UAB) Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael David Diggs
- Department of Neurology, University of Alabama at Birmingham (UAB) Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Neha Balachandran
- Department of Neurology, University of Alabama at Birmingham (UAB) Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Pranav S Kakulamarri
- Department of Neurology, University of Alabama at Birmingham (UAB) Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert A Oster
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Jane B Allendorfer
- Department of Neurology, University of Alabama at Birmingham (UAB) Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham (UAB) Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Balachandran N, Goodman AM, Allendorfer JB, Martin AN, Tocco K, Vogel V, LaFrance WC, Szaflarski JP. Relationship between neural responses to stress and mental health symptoms in psychogenic nonepileptic seizures after traumatic brain injury. Epilepsia 2020; 62:107-119. [PMID: 33238045 DOI: 10.1111/epi.16758] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To utilize traumatic brain injury (TBI) as a model for investigating functioning during acute stress experiences in psychogenic nonepileptic seizures (PNES) and to identify neural mechanisms underlying the link between changes in processing of stressful experiences and mental health symptoms in PNES. METHODS We recruited 94 participants: 50 with TBI only (TBI-only) and 44 with TBI and PNES (TBI + PNES). Participants completed mood (Beck Depression Inventory-II), anxiety (Beck Anxiety Inventory), and posttraumatic stress disorder (PTSD) symptom (PTSD Checklist-Specific Event) assessments before undergoing functional magnetic resonance imaging during an acute psychosocial stress task. Linear mixed-effects analyses identified clusters of significant interactions between group and neural responses to stressful math performance and stressful auditory feedback conditions within limbic brain regions (volume-corrected α = .05). Spearman rank correlation tests compared mean cluster signals to symptom assessments (false discovery rate-corrected α = .05). RESULTS Demographic and TBI-related measures were similar between groups; TBI + PNES demonstrated worse clinical symptom severity compared to TBI-only. Stressful math performance induced relatively greater reactivity within dorsomedial prefrontal cortex (PFC) and right hippocampal regions and relatively reduced reactivity within left hippocampal and dorsolateral PFC regions for TBI + PNES compared to TBI-only. Stressful auditory feedback induced relatively reduced reactivity within ventral PFC, cingulate, hippocampal, and amygdala regions for TBI + PNES compared to TBI-only. Changes in responses to stressful math within hippocampal and dorsal PFC regions were correlated with increased mood, anxiety, and PTSD symptom severity. SIGNIFICANCE Corticolimbic functions underlying processing of stressful experiences differ between patients with TBI + PNES and those with TBI-only. Relationships between these neural responses and symptom assessments suggest potential pathophysiologic mechanisms in PNES.
Collapse
Affiliation(s)
- Neha Balachandran
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Departments of Neurobiology and Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adam M Goodman
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jane B Allendorfer
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amber N Martin
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Krista Tocco
- Providence Veterans Administration Medical Center, Rhode Island Hospital, Brown University, Providence, RI, USA
| | - Valerie Vogel
- Providence Veterans Administration Medical Center, Rhode Island Hospital, Brown University, Providence, RI, USA
| | - W Curt LaFrance
- Providence Veterans Administration Medical Center, Rhode Island Hospital, Brown University, Providence, RI, USA
| | - Jerzy P Szaflarski
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
7
|
FMRI response to acute psychological stress differentiates patients with psychogenic non-epileptic seizures from healthy controls - A biochemical and neuroimaging biomarker study. NEUROIMAGE-CLINICAL 2019; 24:101967. [PMID: 31446314 PMCID: PMC6718876 DOI: 10.1016/j.nicl.2019.101967] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 11/24/2022]
Abstract
We investigated psychological stress response in the brain regions involved in emotion-motor-executive control in psychogenic non-epileptic seizures (PNES). 12 PNES patients and 12 healthy controls (HCs) underwent stress task and resting state functional MRI (fMRI), mood and quality of life (QOL) assessments, and measurements of salivary cortisol, alpha-amylase, and heart rate. Group differences were assessed, and we correlated beta values from a priori selected brain regions showing stress task fMRI group differences with other stress response measures. We also used the regions showing stress task fMRI group differences as seeds for resting state functional connectivity (rs-FC) analysis. Mood and QOL were worse in PNES versus HCs. Physiological and assessment measures were similar except 'Planful Problem Solving' coping that was greater for HCs (p = .043). Perceived stress associated negatively with heart rate change (rs = -0.74, p = .0063). There was stress fMRI hyporeactivity in left/right amygdala and left hippocampus in PNES versus HCs (corrected p < .05). PNES exhibited a positive association between alpha-amylase change and right amygdala activation (rs = 0.71, p = .010). PNES versus HCs exhibited greater right amygdala rs-FC to left precentral and inferior/middle frontal gyri (corrected p < .05). Our findings of fMRI hyporeactivity to psychological stress, along with greater emotion-motor-executive control network rs-FC in PNES when compared to HCs suggest a dysregulation in stress response circuitry in PNES.
Collapse
|
8
|
Goodman AM, Allendorfer JB, Heyse H, Szaflarski BA, Eliassen JC, Nelson EB, Storrs JM, Szaflarski JP. Neural response to stress and perceived stress differ in patients with left temporal lobe epilepsy. Hum Brain Mapp 2019; 40:3415-3430. [PMID: 31033120 DOI: 10.1002/hbm.24606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/21/2019] [Accepted: 04/14/2019] [Indexed: 01/28/2023] Open
Abstract
Patients with epilepsy are often able to predict seizure occurrence subsequent to an acute stress experience. However, neuroimaging investigations into the neural basis of this relationship or the potential influence of perceived life stress are limited. The current study assessed the relationship between perceived stress and the neurobehavioral response to stress in patients with left temporal lobe epilepsy (LTLE) and healthy controls (HCs) using heart rate, salivary cortisol level, and functional magnetic resonance imaging and compared these effects between HCs and LTLE. Matched on perceived stress levels, groups of 36 patients with LTLE and 36 HCs completed the Montreal Imaging Stress Task, with control and stress math task conditions. Among LTLEs, 27 reported that prior (acute) stress affected their seizures (LTLES+), while nine did not (LTLES-). The results revealed that increased perceived stress was associated with seizure frequency in LTLE. Further, cortisol secretion was greater in LTLE, but did not vary with perceived stress as observed in HCs. A linear mixed-effects analysis revealed that as perceived stress increased, activation in the hippocampal complex (parahippocampal gyrus and hippocampus) decreased during stressful math in the LTLES+, increased in HCs, but did not vary in the LTLES-. Task-based functional connectivity analyses revealed LTLE differences in hippocampal functional connectivity with sensory cortex specific to stressor modalities. We argue that the current study demonstrates an inhibitory hippocampal mechanism underlying differences in resilience to stress between HCs and LTLE, as well as LTLE patients who report stress as a precipitant of seizures.
Collapse
Affiliation(s)
- Adam M Goodman
- Department of Neurology and the UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jane B Allendorfer
- Department of Neurology and the UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, Ohio
| | - Heidi Heyse
- Department of Psychiatry, University of Cincinnati Academic Health Center, Cincinnati, Ohio
| | - Basia A Szaflarski
- Department of Neurology and the UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - James C Eliassen
- Department of Psychiatry, University of Cincinnati Academic Health Center, Cincinnati, Ohio.,Department of Psychology, University of Cincinnati Academic Health Center, Cincinnati, Ohio
| | - Erik B Nelson
- Department of Psychiatry, University of Cincinnati Academic Health Center, Cincinnati, Ohio
| | - Judd M Storrs
- Department of Psychiatry, University of Cincinnati Academic Health Center, Cincinnati, Ohio
| | - Jerzy P Szaflarski
- Department of Neurology and the UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, Ohio.,Department of Psychiatry, University of Cincinnati Academic Health Center, Cincinnati, Ohio.,Department of Psychology, University of Cincinnati Academic Health Center, Cincinnati, Ohio
| |
Collapse
|