1
|
Jo HS, Hsieh TH, Chien WC, Shaw FZ, Liang SF, Kung CC. Probing the neural dynamics of musicians' and non-musicians' consonant/dissonant perception: Joint analyses of electrical encephalogram (EEG) and functional magnetic resonance imaging (fMRI). Neuroimage 2024; 298:120784. [PMID: 39147290 DOI: 10.1016/j.neuroimage.2024.120784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
The perception of two (or more) simultaneous musical notes, depending on their pitch interval(s), could be broadly categorized as consonant or dissonant. Previous literature has suggested that musicians and non-musicians adopt different strategies when discerning music intervals: while musicians rely on the frequency ratios between the two fundamental frequencies, such as "perfect fifth" (3:2) as consonant and "tritone" (45:32) as dissonant intervals; non-musicians may rely on the presence of 'roughness' or 'beats', generated by the difference of fundamental frequencies, as the key elements of 'dissonance'. The separate Event-Related Potential (ERP) differences in N1 and P2 along the midline electrodes provided evidence congruent with such 'separate reliances'. To replicate and to extend, in this study we reran the previous experiment, and separately collected fMRI data of the same protocol (with sparse sampling modifications). The behavioral and EEG results largely corresponded to our previous finding. The fMRI results, with the joint analyses by univariate, psycho-physiological interaction, and representational similarity analysis (RSA) approaches, further reinforce the involvement of central midline-related brain regions, such as ventromedial prefrontal and dorsal anterior cingulate cortex, in consonant/dissonance judgments. The final spatiotemporal searchlight RSA provided convincing evidence that the medial prefrontal cortex, along with the bilateral superior temporal cortex, is the joint locus of midline N1 and dorsal anterior cingulate cortex for the P2 effect (for musicians). Together, these analyses reaffirm that musicians rely more on experience-driven knowledge for consonance/dissonance perception; but also demonstrate the advantages of multiple analyses in constraining the findings from both EEG and fMRI.
Collapse
Affiliation(s)
- Han Shin Jo
- Institute of Medical Informatics, National Cheng Kung University (NCKU), Tainan, 70101, Taiwan
| | - Tsung-Hao Hsieh
- Department of Computer Science and Information Engineering, NCKU, Tainan, 70101, Taiwan; Department of Computer Science, Tunghai University, Taichung, 407224, Taiwan
| | - Wei-Che Chien
- Department of Computer Science and Information Engineering, NCKU, Tainan, 70101, Taiwan
| | - Fu-Zen Shaw
- Department of Psychology, NCKU, Tainan, 70101, Taiwan; Mind Research and Imaging Center, NCKU, Tainan, 70101, Taiwan
| | - Sheng-Fu Liang
- Institute of Medical Informatics, National Cheng Kung University (NCKU), Tainan, 70101, Taiwan; Department of Computer Science and Information Engineering, NCKU, Tainan, 70101, Taiwan
| | - Chun-Chia Kung
- Department of Psychology, NCKU, Tainan, 70101, Taiwan; Mind Research and Imaging Center, NCKU, Tainan, 70101, Taiwan.
| |
Collapse
|
2
|
Ke M, Wang F, Liu G. Altered effective connectivity of the default mode network in juvenile myoclonic epilepsy. Cogn Neurodyn 2024; 18:1549-1561. [PMID: 39104702 PMCID: PMC11297871 DOI: 10.1007/s11571-023-09994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2024] Open
Abstract
Juvenile myoclonic epilepsy (JME) is associated with brain dysconnectivity in the default mode network (DMN). Most previous studies of patients with JME have assessed static functional connectivity in terms of the temporal correlation of signal intensity among different brain regions. However, more recent studies have shown that the directionality of brain information flow has a more significant regional impact on patients' brains than previously assumed in the present study. Here, we introduced an empirical approach incorporating independent component analysis (ICA) and spectral dynamic causal modeling (spDCM) analysis to study the variation in effective connectivity in DMN in JME patients. We began by collecting resting-state functional magnetic resonance imaging (rs-fMRI) data from 37 patients and 37 matched controls. Then, we selected 8 key nodes within the DMN using ICA; finally, the key nodes were analyzed for effective connectivity using spDCM to explore the information flow and detect patient abnormalities. This study found that compared with normal subjects, patients with JME showed significant changes in the effective connectivity among the precuneus, hippocampus, and lingual gyrus (p < 0.05 with false discovery rate (FDR) correction) with most of the effective connections being strengthened. In addition, previous studies have found that the self-connection of normal subjects' nodes showed strong inhibition, but the self-connection inhibition of the anterior cingulate cortex and lingual gyrus of the patient was decreased in this experiment (p < 0.05 with FDR correction); as the activity in these areas decreased, the nodes connected to them all appeared abnormal. We believe that the changes in the effective connectivity of nodes within the DMN are accompanied by changes in information transmission that lead to changes in brain function and impaired cognitive and executive function in patients with JME. Overall, our findings extended the dysconnectivity hypothesis in JME from static to dynamic causal and demonstrated that aberrant effective connectivity may underlie abnormal brain function in JME patients at early phase of illness, contributing to the understanding of the pathogenesis of JME. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-09994-4.
Collapse
Affiliation(s)
- Ming Ke
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050 China
| | - Feng Wang
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050 China
| | - Guangyao Liu
- Department of Nuclear Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, 730030 China
| |
Collapse
|
3
|
Xue C, Chen Y, Thompson WF, Liu F, Jiang C. Time-varying similarity of neural responses to musical tension is shaped by physical features and musical themes. Int J Psychophysiol 2024; 202:112387. [PMID: 38909958 DOI: 10.1016/j.ijpsycho.2024.112387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
The similarity of understanding is important for music experience and communication, but little is understood about the sources of this common knowledge. Although neural responses to the same piece of music are known to be similar across listeners, it remains unclear whether this neural response similarity is linked to musical understanding and the role of dynamic musical attributes in shaping it. Our study addresses this gap by investigating the relationship between neural response similarity, musical tension, and dynamic musical attributes. Using electroencephalography-based inter-subject correlation (EEG-ISC), we examined how the neural response similarity among listeners varies throughout the evaluation of musical tension in the first movement of Beethoven's Piano Sonata No. 8. Participants continuously rated the degree of alignment between musical events and their expectations, while neural activity was recorded using electroencephalography (EEG). The results showed that neural response similarity fluctuated in tandem with musical tension, with increased similarity observed during moments of heightened tension. This time-varying neural response similarity was influenced by two dynamic attributes contributing to musical tension: physical features and musical themes. Specifically, its fluctuation was driven by physical features, and the patterns of its variation were modulated by musical themes, with similar time-varying patterns observed across similar thematic materials. These findings offer valuable insight into the role of dynamic musical attributes in shaping neural response similarity, and reveal an important source and mechanism of shared musical understandings.
Collapse
Affiliation(s)
- Chao Xue
- Department of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Yiran Chen
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Fang Liu
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6AL, UK
| | - Cunmei Jiang
- Music College, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
4
|
Bravo F, Glogowski J, Stamatakis EA, Herfert K. Dissonant music engages early visual processing. Proc Natl Acad Sci U S A 2024; 121:e2320378121. [PMID: 39008675 PMCID: PMC11287129 DOI: 10.1073/pnas.2320378121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
The neuroscientific examination of music processing in audio-visual contexts offers a valuable framework to assess how auditory information influences the emotional encoding of visual information. Using fMRI during naturalistic film viewing, we investigated the neural mechanisms underlying the effect of music on valence inferences during mental state attribution. Thirty-eight participants watched the same short-film accompanied by systematically controlled consonant or dissonant music. Subjects were instructed to think about the main character's intentions. The results revealed that increasing levels of dissonance led to more negatively valenced inferences, displaying the profound emotional impact of musical dissonance. Crucially, at the neuroscientific level and despite music being the sole manipulation, dissonance evoked the response of the primary visual cortex (V1). Functional/effective connectivity analysis showed a stronger coupling between the auditory ventral stream (AVS) and V1 in response to tonal dissonance and demonstrated the modulation of early visual processing via top-down feedback inputs from the AVS to V1. These V1 signal changes indicate the influence of high-level contextual representations associated with tonal dissonance on early visual cortices, serving to facilitate the emotional interpretation of visual information. Our results highlight the significance of employing systematically controlled music, which can isolate emotional valence from the arousal dimension, to elucidate the brain's sound-to-meaning interface and its distributive crossmodal effects on early visual encoding during naturalistic film viewing.
Collapse
Affiliation(s)
- Fernando Bravo
- Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen72076, Germany
- Cognition and Consciousness Imaging Group, Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0SP, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0SP, United Kingdom
- Institut für Kunst- und Musikwissenschaft, Division of Musicology, Technische Universität Dresden, Dresden01219, Germany
| | - Jana Glogowski
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin12489, Germany
| | - Emmanuel Andreas Stamatakis
- Cognition and Consciousness Imaging Group, Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0SP, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0SP, United Kingdom
| | - Kristina Herfert
- Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen72076, Germany
| |
Collapse
|
5
|
Ren Y, Brown TI. Beyond the ears: A review exploring the interconnected brain behind the hierarchical memory of music. Psychon Bull Rev 2024; 31:507-530. [PMID: 37723336 DOI: 10.3758/s13423-023-02376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/20/2023]
Abstract
Music is a ubiquitous element of daily life. Understanding how music memory is represented and expressed in the brain is key to understanding how music can influence human daily cognitive tasks. Current music-memory literature is built on data from very heterogeneous tasks for measuring memory, and the neural correlates appear to differ depending on different forms of memory function targeted. Such heterogeneity leaves many exceptions and conflicts in the data underexplained (e.g., hippocampal involvement in music memory is debated). This review provides an overview of existing neuroimaging results from music-memory related studies and concludes that although music is a special class of event in our lives, the memory systems behind it do in fact share neural mechanisms with memories from other modalities. We suggest that dividing music memory into different levels of a hierarchy (structural level and semantic level) helps understand overlap and divergence in neural networks involved. This is grounded in the fact that memorizing a piece of music recruits brain clusters that separately support functions including-but not limited to-syntax storage and retrieval, temporal processing, prediction versus reality comparison, stimulus feature integration, personal memory associations, and emotion perception. The cross-talk between frontal-parietal music structural processing centers and the subcortical emotion and context encoding areas explains why music is not only so easily memorable but can also serve as strong contextual information for encoding and retrieving nonmusic information in our lives.
Collapse
Affiliation(s)
- Yiren Ren
- Georgia Institute of Technology, College of Science, School of Psychology, Atlanta, GA, USA.
| | - Thackery I Brown
- Georgia Institute of Technology, College of Science, School of Psychology, Atlanta, GA, USA
| |
Collapse
|
6
|
Loukas S, Lordier L, Meskaldji DE, Filippa M, Sa de Almeida J, Van De Ville D, Hüppi PS. Musical memories in newborns: A resting-state functional connectivity study. Hum Brain Mapp 2022; 43:647-664. [PMID: 34738276 PMCID: PMC8720188 DOI: 10.1002/hbm.25677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022] Open
Abstract
Music is known to induce emotions and activate associated memories, including musical memories. In adults, it is well known that music activates both working memory and limbic networks. We have recently discovered that as early as during the newborn period, familiar music is processed differently from unfamiliar music. The present study evaluates music listening effects at the brain level in newborns, by exploring the impact of familiar or first‐time music listening on the subsequent resting‐state functional connectivity in the brain. Using a connectome‐based framework, we describe resting‐state functional connectivity (RS‐FC) modulation after music listening in three groups of newborn infants, in preterm infants exposed to music during their neonatal‐intensive‐care‐unit (NICU) stay, in control preterm, and full‐term infants. We observed modulation of the RS‐FC between brain regions known to be implicated in music and emotions processing, immediately following music listening in all newborn infants. In the music exposed group, we found increased RS‐FC between brain regions known to be implicated in familiar and emotionally arousing music and multisensory processing, and therefore implying memory retrieval and associative memory. We demonstrate a positive correlation between the occurrence of the prior music exposure and increased RS‐FC in brain regions implicated in multisensory and emotional processing, indicating strong engagement of musical memories; and a negative correlation with the Default Mode Network, indicating disengagement due to the aforementioned cognitive processing. Our results describe the modulatory effect of music listening on brain RS‐FC that can be linked to brain correlates of musical memory engrams in preterm infants.
Collapse
Affiliation(s)
- Serafeim Loukas
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland.,Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Lara Lordier
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Djalel-Eddine Meskaldji
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland.,Institute of Mathematics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Manuela Filippa
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Joana Sa de Almeida
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Petra S Hüppi
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Musical features emerging from a biocultural musicality. Behav Brain Sci 2021; 44:e87. [PMID: 34588081 DOI: 10.1017/s0140525x20001491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Savage et al. make a compelling case, Mehr et al. less so, for social bonding and credible signalling, respectively, as the main adaptive function of human musicality. We express general advocacy for the former thesis, highlighting: (1) overlap between the two; (2) direct versus derived biological functions, and (3) aspects of music embedded in cultural evolution, for example, departures from tonality.
Collapse
|
8
|
Olszewska AM, Gaca M, Herman AM, Jednoróg K, Marchewka A. How Musical Training Shapes the Adult Brain: Predispositions and Neuroplasticity. Front Neurosci 2021; 15:630829. [PMID: 33776638 PMCID: PMC7987793 DOI: 10.3389/fnins.2021.630829] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/12/2021] [Indexed: 11/25/2022] Open
Abstract
Learning to play a musical instrument is a complex task that integrates multiple sensory modalities and higher-order cognitive functions. Therefore, musical training is considered a useful framework for the research on training-induced neuroplasticity. However, the classical nature-or-nurture question remains, whether the differences observed between musicians and non-musicians are due to predispositions or result from the training itself. Here we present a review of recent publications with strong focus on experimental designs to better understand both brain reorganization and the neuronal markers of predispositions when learning to play a musical instrument. Cross-sectional studies identified structural and functional differences between the brains of musicians and non-musicians, especially in regions related to motor control and auditory processing. A few longitudinal studies showed functional changes related to training while listening to and producing music, in the motor network and its connectivity with the auditory system, in line with the outcomes of cross-sectional studies. Parallel changes within the motor system and between the motor and auditory systems were revealed for structural connectivity. In addition, potential predictors of musical learning success were found including increased brain activation in the auditory and motor systems during listening, the microstructure of the arcuate fasciculus, and the functional connectivity between the auditory and the motor systems. We show that “the musical brain” is a product of both the natural human neurodiversity and the training practice.
Collapse
Affiliation(s)
- Alicja M Olszewska
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Gaca
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra M Herman
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Bravo F, Cross I, Hopkins C, Gonzalez N, Docampo J, Bruno C, Stamatakis EA. Anterior cingulate and medial prefrontal cortex response to systematically controlled tonal dissonance during passive music listening. Hum Brain Mapp 2019; 41:46-66. [PMID: 31512332 PMCID: PMC7268082 DOI: 10.1002/hbm.24786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/18/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
Several studies have attempted to investigate how the brain codes emotional value when processing music of contrasting levels of dissonance; however, the lack of control over specific musical structural characteristics (i.e., dynamics, rhythm, melodic contour or instrumental timbre), which are known to affect perceived dissonance, rendered results difficult to interpret. To account for this, we used functional imaging with an optimized control of the musical structure to obtain a finer characterization of brain activity in response to tonal dissonance. Behavioral findings supported previous evidence for an association between increased dissonance and negative emotion. Results further demonstrated that the manipulation of tonal dissonance through systematically controlled changes in interval content elicited contrasting valence ratings but no significant effects on either arousal or potency. Neuroscientific findings showed an engagement of the left medial prefrontal cortex (mPFC) and the left rostral anterior cingulate cortex (ACC) while participants listened to dissonant compared to consonant music, converging with studies that have proposed a core role of these regions during conflict monitoring (detection and resolution), and in the appraisal of negative emotion and fear‐related information. Both the left and right primary auditory cortices showed stronger functional connectivity with the ACC during the dissonant portion of the task, implying a demand for greater information integration when processing negatively valenced musical stimuli. This study demonstrated that the systematic control of musical dissonance could be applied to isolate valence from the arousal dimension, facilitating a novel access to the neural representation of negative emotion.
Collapse
Affiliation(s)
- Fernando Bravo
- Centre for Music and Science, University of Cambridge, Cambridge, UK.,TU Dresden, Institut für Kunst- und Musikwissenschaft, Dresden, Germany.,Cognition and Consciousness Imaging Group, Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ian Cross
- Centre for Music and Science, University of Cambridge, Cambridge, UK
| | | | - Nadia Gonzalez
- Department of Neuroimaging, Fundación Científica del Sur Imaging Centre, Buenos Aires, Argentina
| | - Jorge Docampo
- Department of Neuroimaging, Fundación Científica del Sur Imaging Centre, Buenos Aires, Argentina
| | - Claudio Bruno
- Department of Neuroimaging, Fundación Científica del Sur Imaging Centre, Buenos Aires, Argentina
| | - Emmanuel A Stamatakis
- Cognition and Consciousness Imaging Group, Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|