1
|
Williamson JN, James SA, He D, Peng RHT, Mulyana B, Yang Y. Bilateral High-Definition Transcranial Direct Current Stimulation for Upper Extremity Rehabilitation in Stroke. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40038978 DOI: 10.1109/embc53108.2024.10782733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Previous research shows that both anodal and cathodal high-definition transcranial direct current stimulation (HD-tDCS) may improve function of the upper extremity post stroke. However, most research has focused on the effects separately, therefore the purpose of this study was to determine the effects of performing simultaneous anodal-cathodal HD-tDCS. Five stroke participants received the stimulations in four visits with a two-week washout period: 1) anodal HD-tDCS to the ipsilesional primary motor cortex, 2) cathodal HD-tDCS to the contralesional dorsal premotor cortex, 3) bilateral anodal-cathodal HD-tDCS, and 4) sham. Active stimulation (anodal, cathodal, and bilateral) increased Fugl-Meyer upper extremity scores and decreased latency of ipsilesional M1-induced MEP. These results suggest that HD-tDCS could improve motor function of the upper extremity post-stroke, however, bilateral stimulation may not have an increased effect compared to anodal and cathodal HD-tDCS separately. This early phase study improves our understanding of neural circuitry and plasticity post stroke and HD-tDCS methods for improving function of the impaired arm post-stroke.
Collapse
|
2
|
Wunderle V, Kuzu TD, Tscherpel C, Fink GR, Grefkes C, Weiss PH. Age- and sex-related changes in motor functions: a comprehensive assessment and component analysis. Front Aging Neurosci 2024; 16:1368052. [PMID: 38813530 PMCID: PMC11133706 DOI: 10.3389/fnagi.2024.1368052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
Age-related motor impairments often cause caregiver dependency or even hospitalization. However, comprehensive investigations of the different motor abilities and the changes thereof across the adult lifespan remain sparse. We, therefore, extensively assessed essential basic and complex motor functions in 444 healthy adults covering a wide age range (range 21 to 88 years). Basic motor functions, here defined as simple isolated single or repetitive movements in one direction, were assessed by means of maximum grip strength (GS) and maximum finger-tapping frequency (FTF). Complex motor functions, comprising composite sequential movements involving both proximal and distal joints/muscle groups, were evaluated with the Action Research Arm Test (ARAT), the Jebsen-Taylor Hand Function Test (JTT), and the Purdue Pegboard Test. Men achieved higher scores than women concerning GS and FTF, whereas women stacked more pins per time than men during the Purdue Pegboard Test. There was no significant sex effect regarding JTT. We observed a significant but task-specific reduction of basic and complex motor performance scores across the adult lifespan. Linear regression analyses significantly predicted the participants' ages based on motor performance scores (R2 = 0.502). Of note, the ratio between the left- and right-hand performance remained stable across ages for all tests. Principal Component Analysis (PCA) revealed three motor components across all tests that represented dexterity, force, and speed. These components were consistently present in young (21-40 years), middle-aged (41-60 years), and older (61-88 years) adults, as well as in women and men. Based on the three motor components, K-means clustering analysis differentiated high- and low-performing participants across the adult life span. The rich motor data set of 444 healthy participants revealed age- and sex-dependent changes in essential basic and complex motor functions. Notably, the comprehensive assessment allowed for generating robust motor components across the adult lifespan. Our data may serve as a reference for future studies of healthy subjects and patients with motor deficits. Moreover, these findings emphasize the importance of comprehensively assessing different motor functions, including dexterity, force, and speed, to characterize human motor abilities and their age-related decline.
Collapse
Affiliation(s)
- Veronika Wunderle
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Taylan D. Kuzu
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Caroline Tscherpel
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gereon R. Fink
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Christian Grefkes
- Department of Neurology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Peter H. Weiss
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
3
|
Peng RHT, He D, James SA, Williamson JN, Skadden C, Jain S, Hassaneen W, Miranpuri A, Kaur A, Sarol JN, Yang Y. Determining the effects of targeted high-definition transcranial direct current stimulation on reducing post-stroke upper limb motor impairments-a randomized cross-over study. Trials 2024; 25:34. [PMID: 38195605 PMCID: PMC10775560 DOI: 10.1186/s13063-023-07886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Stroke is one of the leading causes of death in the USA and is a major cause of serious disability for adults. This randomized crossover study examines the effect of targeted high-definition transcranial direct current transcranial brain stimulation (tDCS) on upper extremity motor recovery in patients in the post-acute phase of stroke recovery. METHODS This randomized double-blinded cross-over study includes four intervention arms: anodal, cathodal, and bilateral brain stimulation, as well as a placebo stimulation. Participants receive each intervention in a randomized order, with a 2-week washout period between each intervention. The primary outcome measure is change in Motor Evoked Potential. Secondary outcome measures include the Fugl-Meyer Upper Extremity (FM-UE) score, a subset of FM-UE (A), related to the muscle synergies, and the Modified Ashworth Scale. DISCUSSION We hypothesize that anodal stimulation to the ipsilesional primary motor cortex will increase the excitability of the damaged cortico-spinal tract, reducing the UE flexion synergy and enhancing UE motor function. We further hypothesize that targeted cathodal stimulation to the contralesional premotor cortex will decrease activation of the cortico-reticulospinal tract (CRST) and the expression of the upper extremity (UE) flexion synergy and spasticity. Finally, we hypothesize bilateral stimulation will achieve both results simultaneously. Results from this study could improve understanding of the mechanism behind motor impairment and recovery in stroke and perfect the targeting of tDCS as a potential stroke intervention. With the use of appropriate screening, we anticipate no ethical or safety concerns. We plan to disseminate these research results to journals related to stroke recovery, engineering, and medicine. TRIAL REGISTRATION ClinicalTrials.gov NCT05479006 . Registered on 26 July 2022.
Collapse
Affiliation(s)
- Rita Huan-Ting Peng
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carle Foundation Hospital, Urbana, IL, USA
| | - Dorothy He
- The University of Oklahoma College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shirley A James
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jordan N Williamson
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Sanjiv Jain
- Carle Foundation Hospital, Urbana, IL, USA
- Carle Illinois College of Medicine, Urbana, IL, USA
| | - Wael Hassaneen
- Carle Foundation Hospital, Urbana, IL, USA
- Carle Illinois College of Medicine, Urbana, IL, USA
| | - Amrendra Miranpuri
- Carle Foundation Hospital, Urbana, IL, USA
- Carle Illinois College of Medicine, Urbana, IL, USA
| | - Amandeep Kaur
- Interdisciplinary Health Sciences Institute, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jesus N Sarol
- Interdisciplinary Health Sciences Institute, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yuan Yang
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carle Foundation Hospital, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
4
|
Williamson JN, James SA, He D, Li S, Sidorov EV, Yang Y. High-definition transcranial direct current stimulation for upper extremity rehabilitation in moderate-to-severe ischemic stroke: a pilot study. Front Hum Neurosci 2023; 17:1286238. [PMID: 37900725 PMCID: PMC10602806 DOI: 10.3389/fnhum.2023.1286238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Previous studies found that post-stroke motor impairments are associated with damage to the lesioned corticospinal tract (CST) and hyperexcitability of the contralesional cortico-reticulospinal tract (CRST). This proof-of-concept study aims to develop a non-invasive brain stimulation protocol that facilitates the lesioned CST and inhibits the contralesional CRST to improve upper extremity rehabilitation in individuals with moderate-to-severe motor impairments post-stroke. Methods Fourteen individuals (minimum 3 months post ischemic stroke) consented. Physician decision of the participants baseline assessment qualified eight to continue in a randomized, double-blind cross-over pilot trial (ClinicalTrials.gov Identifier: NCT05174949) with: (1) anodal high-definition transcranial direct stimulation (HD-tDCS) over the ipsilesional primary motor cortex (M1), (2) cathodal HD-tDCS over contralesional dorsal premotor cortex (PMd), (3) sham stimulation, with a two-week washout period in-between. Subject-specific MR images and computer simulation were used to guide HD-tDCS and verified by Transcranial Magnetic Stimulation (TMS) induced Motor Evoked Potential (MEP). The motor behavior outcome was evaluated by an Fugl-Meyer Upper Extremity score (primary outcome measure) and the excitability of the ipslesoinal CST and contralesional CRST was determined by the change of MEP latencies and amplitude (secondary outcome measures). Results The baseline ipsilesional M1 MEP latency and amplitude were correlated with FM-UE. FM-UE scores were improved post HD-tDCS, in comparison to sham stimulation. Both anodal and cathodal HD-tDCS reduced the latency of the ipsilesional M1 MEP. The contralesional PMd MEP disappeared/delayed after HD-tDCS. Discussion These results suggest that HD-tDCS could improve the function of the lesioned corticospinal tract and reduce the excitability of the contralesional cortico-reticulospinal tract, thus, improving motor function of the upper extremity in more severely impaired individuals.
Collapse
Affiliation(s)
- Jordan N. Williamson
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Shirley A. James
- University of Oklahoma Health Sciences Center, Hudson College of Public Health, Oklahoma City, OK, United States
| | - Dorothy He
- University of Oklahoma Health Sciences Center, College of Medicine, Oklahoma City, OK, United States
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, UT Health Huston, McGovern Medical School, Houston, TX, United States
| | - Evgeny V. Sidorov
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yuan Yang
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Clinical Imaging Research Center, Stephenson Family Clinical Research Institute, Carle Foundation Hospital, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Gallogly College of Engineering, Stephenson School of Biomedical Engineering, University of Oklahoma, Oklahoma City, OK, United States
| |
Collapse
|
5
|
Hensel L, Lange F, Tscherpel C, Viswanathan S, Freytag J, Volz LJ, Eickhoff SB, Fink GR, Grefkes C. Recovered grasping performance after stroke depends on interhemispheric frontoparietal connectivity. Brain 2022; 146:1006-1020. [PMID: 35485480 PMCID: PMC9976969 DOI: 10.1093/brain/awac157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 01/11/2023] Open
Abstract
Activity changes in the ipsi- and contralesional parietal cortex and abnormal interhemispheric connectivity between these regions are commonly observed after stroke, however, their significance for motor recovery remains poorly understood. We here assessed the contribution of ipsilesional and contralesional anterior intraparietal cortex (aIPS) for hand motor function in 18 recovered chronic stroke patients and 18 healthy control subjects using a multimodal assessment consisting of resting-state functional MRI, motor task functional MRI, online-repetitive transcranial magnetic stimulation (rTMS) interference, and 3D movement kinematics. Effects were compared against two control stimulation sites, i.e. contralesional M1 and a sham stimulation condition. We found that patients with good motor outcome compared to patients with more substantial residual deficits featured increased resting-state connectivity between ipsilesional aIPS and contralesional aIPS as well as between ipsilesional aIPS and dorsal premotor cortex. Moreover, interhemispheric connectivity between ipsilesional M1 and contralesional M1 as well as ipsilesional aIPS and contralesional M1 correlated with better motor performance across tasks. TMS interference at individual aIPS and M1 coordinates led to differential effects depending on the motor task that was tested, i.e. index finger-tapping, rapid pointing movements, or a reach-grasp-lift task. Interfering with contralesional aIPS deteriorated the accuracy of grasping, especially in patients featuring higher connectivity between ipsi- and contralesional aIPS. In contrast, interference with the contralesional M1 led to impaired grasping speed in patients featuring higher connectivity between bilateral M1. These findings suggest differential roles of contralesional M1 and aIPS for distinct aspects of recovered hand motor function, depending on the reorganization of interhemispheric connectivity.
Collapse
Affiliation(s)
- Lukas Hensel
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Fabian Lange
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Caroline Tscherpel
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Shivakumar Viswanathan
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Jana Freytag
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Lukas J Volz
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Gereon R Fink
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Christian Grefkes
- Correspondence to: Christian Grefkes Institute of Neuroscience and Medicine - Cognitive Neuroscience (INM-3) Research Centre Juelich, Juelich, Germany E-mail:
| |
Collapse
|
6
|
Chettouf S, Triebkorn P, Daffertshofer A, Ritter P. Unimanual sensorimotor learning-A simultaneous EEG-fMRI aging study. Hum Brain Mapp 2022; 43:2348-2364. [PMID: 35133058 PMCID: PMC8996364 DOI: 10.1002/hbm.25791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/24/2021] [Accepted: 01/09/2022] [Indexed: 11/06/2022] Open
Abstract
Sensorimotor coordination requires orchestrated network activity in the brain, mediated by inter‐ and intra‐hemispheric interactions that may be affected by aging‐related changes. We adopted a theoretical model, according to which intra‐hemispheric inhibition from premotor to primary motor cortex is mandatory to compensate for inter‐hemispheric excitation through the corpus callosum. To test this as a function of age we acquired electroencephalography (EEG) simultaneously with functional magnetic resonance imaging (fMRI) in two groups of healthy adults (younger N = 13: 20–25 year and older N = 14: 59–70 year) while learning a unimanual motor task. On average, quality of performance of older participants stayed significantly below that of the younger ones. Accompanying decreases in motor‐event‐related EEG β‐activity were lateralized toward contralateral motor regions, albeit more so in younger participants. In this younger group, the mean β‐power during motor task execution was significantly higher in bilateral premotor areas compared to the older adults. In both groups, fMRI blood oxygen level dependent (BOLD) signals were positively correlated with source‐reconstructed β‐amplitudes: positive in primary motor and negative in premotor cortex. This suggests that β‐amplitude modulation is associated with primary motor cortex “activation” (positive BOLD response) and premotor “deactivation” (negative BOLD response). Although the latter results did not discriminate between age groups, they underscore that enhanced modulation in primary motor cortex may be explained by a β‐associated excitatory crosstalk between hemispheres.
Collapse
Affiliation(s)
- Sabrina Chettouf
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.,Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, Berlin, Germany.,Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam
| | - Paul Triebkorn
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.,Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, Berlin, Germany.,Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | - Andreas Daffertshofer
- Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam
| | - Petra Ritter
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.,Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neuroscience Berlin, Berlin, Germany.,Einstein Center Digital Future, Berlin, Germany
| |
Collapse
|
7
|
Andrushko JW, Gould L, Renshaw DW, Forrester S, Kelly ME, Linassi G, Mickleborough M, Oates A, Hunter G, Borowsky R, Farthing JP. Ipsilesional Motor Cortex Activation with High-force Unimanual Handgrip Contractions of the Less-affected Limb in Participants with Stroke. Neuroscience 2021; 483:82-94. [PMID: 34920023 DOI: 10.1016/j.neuroscience.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/27/2022]
Abstract
Stroke is a leading cause of severe disability that often presents with unilateral motor impairment. Conventional rehabilitation approaches focus on motor practice of the affected limb and aim to suppress brain activity in the contralesional hemisphere. Conversely, exercise of the less-affected limb promotes contralesional brain activity which is typically viewed as contraindicated in stroke recovery due to the interhemispheric inhibitory influence onto the ipsilesional hemisphere. Yet, high-force unimanual handgrip contractions are known to increase ipsilateral brain activation in control participants, and it remains to be determined if high-force contractions with the less-affected limb would promote ipsilateral brain activation in participants with stroke (i.e., the ipsilesional hemisphere). Therefore, this study aimed to determine how parametric increases in handgrip force during repeated contractions with the less-affected limb impacts brain activity bilaterally in participants with stroke and in a cohort of neurologically intact controls. Participants performed repeated submaximal contractions at 25%, 50%, and 75% of their maximum voluntary contraction during separate functional magnetic resonance imaging brain scans. Brain activation during the tasks was quantified as the present change from resting levels. In this study, higher force contractions were found to increase brain activation in the ipsilesional (stroke)/ipsilateral (controls) hemisphere in both groups (p = .002), but no between group differences were observed. These data suggest that high-force exercise with the less-affected limb may promote ipsilesional cortical plasticity to promote motor recovery of the affected-limb in participants with stroke.
Collapse
Affiliation(s)
- Justin W Andrushko
- College of Kinesiology, University of Saskatchewan, Saskatchewan, Canada
| | - Layla Gould
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Doug W Renshaw
- College of Kinesiology, University of Saskatchewan, Saskatchewan, Canada
| | - Shannon Forrester
- College of Kinesiology, University of Saskatchewan, Saskatchewan, Canada
| | - Michael E Kelly
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Gary Linassi
- Department of Physical Medicine and Rehabilitation, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Marla Mickleborough
- Department of Psychology, College of Arts and Science, University of Saskatchewan, Saskatchewan, Canada
| | - Alison Oates
- College of Kinesiology, University of Saskatchewan, Saskatchewan, Canada
| | - Gary Hunter
- Department of Medicine, Division of Neurology, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Ron Borowsky
- Department of Psychology, College of Arts and Science, University of Saskatchewan, Saskatchewan, Canada
| | | |
Collapse
|
8
|
Tak YW, Knights E, Henson R, Zeidman P. Ageing and the Ipsilateral M1 BOLD Response: A Connectivity Study. Brain Sci 2021; 11:1130. [PMID: 34573152 PMCID: PMC8470146 DOI: 10.3390/brainsci11091130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Young people exhibit a negative BOLD response in ipsilateral primary motor cortex (M1) when making unilateral movements, such as button presses. This negative BOLD response becomes more positive as people age. In this study, we investigated why this occurs, in terms of the underlying effective connectivity and haemodynamics. We applied dynamic causal modeling (DCM) to task fMRI data from 635 participants aged 18-88 from the Cam-CAN dataset, who performed a cued button pressing task with their right hand. We found that connectivity from contralateral supplementary motor area (SMA) and dorsal premotor cortex (PMd) to ipsilateral M1 became more positive with age, explaining 44% of the variability across people in ipsilateral M1 responses. In contrast, connectivity from contralateral M1 to ipsilateral M1 was weaker and did not correlate with individual differences in rM1 BOLD. Neurovascular and haemodynamic parameters in the model were not able to explain the age-related shift to positive BOLD. Our results add to a body of evidence implicating neural, rather than vascular factors as the predominant cause of negative BOLD-while emphasising the importance of inter-hemispheric connectivity. This study provides a foundation for investigating the clinical and lifestyle factors that determine the sign and amplitude of the M1 BOLD response in ageing, which could serve as a proxy for neural and vascular health, via the underlying neurovascular mechanisms.
Collapse
Affiliation(s)
- Yae Won Tak
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK;
| | - Ethan Knights
- MRC Cognition and Brain Sciences Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 7EF, UK; (E.K.); (R.H.)
| | - Richard Henson
- MRC Cognition and Brain Sciences Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 7EF, UK; (E.K.); (R.H.)
| | - Peter Zeidman
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK;
| |
Collapse
|
9
|
Di Tella S, Blasi V, Cabinio M, Bergsland N, Buccino G, Baglio F. How Do We Motorically Resonate in Aging? A Compensatory Role of Prefrontal Cortex. Front Aging Neurosci 2021; 13:694676. [PMID: 34393758 PMCID: PMC8358457 DOI: 10.3389/fnagi.2021.694676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/18/2021] [Indexed: 12/05/2022] Open
Abstract
Aging is the major risk factor for chronic age-related neurological diseases such as neurodegenerative disorders and neurovascular injuries. Exploiting the multimodal nature of the Mirror Neuron System (MNS), rehabilitative interventions have been proposed based on motor-resonance mechanisms in recent years. Despite the considerable evidence of the MNS’ functionality in young adults, further investigation of the action-observation matching system is required in aging, where well-known structural and functional brain changes occur. Twenty-one healthy young adults (mean age 26.66y) and 19 healthy elderly participants (mean age 71.47y) underwent a single MRI evaluation including a T1-3D high-resolution and functional MRI (fMRI) with mirror task. Morphological and functional BOLD data were derived from MRI images to highlight cortical activations associated with the task; to detect differences between the two groups (Young, Elderly) in the two MRI indexes (BOLD and thickness z-scores) using mixed factorial ANOVA (Group∗Index analyses); and to investigate the presence of different cortical lateralization of the BOLD signal in the two groups. In the entire sample, the activation of a bilateral MNS fronto-parietal network was highlighted. The mixed ANOVA (pFDR-corr < 0.05) revealed significant interactions between BOLD signal and cortical thickness in left dorsal premotor cortex, right ventral premotor and prefrontal cortices. A different cortical lateralization of the BOLD signal in frontal lobe activity between groups was also found. Data herein reported suggest that age-related cortical thinning of the MNS is coupled with increased interhemispheric symmetry along with premotor and prefrontal cortex recruitment. These physiological changes of MNS resemble the aging of the motor and cognitive neural systems, suggesting specific but also common aging and compensatory mechanisms.
Collapse
Affiliation(s)
- Sonia Di Tella
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.,Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Valeria Blasi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Monia Cabinio
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Niels Bergsland
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.,Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Giovanni Buccino
- Divisione di Neuroscienze, Università Vita e Salute San Raffaele e Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, Milan, Italy
| | - Francesca Baglio
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| |
Collapse
|
10
|
Hensel L, Tscherpel C, Freytag J, Ritter S, Rehme AK, Volz LJ, Eickhoff SB, Fink GR, Grefkes C. Connectivity-Related Roles of Contralesional Brain Regions for Motor Performance Early after Stroke. Cereb Cortex 2020; 31:993-1007. [DOI: 10.1093/cercor/bhaa270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Abstract
Hemiparesis after stroke is associated with increased neural activity not only in the lesioned but also in the contralesional hemisphere. While most studies have focused on the role of contralesional primary motor cortex (M1) activity for motor performance, data on other areas within the unaffected hemisphere are scarce, especially early after stroke. We here combined functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) to elucidate the contribution of contralesional M1, dorsal premotor cortex (dPMC), and anterior intraparietal sulcus (aIPS) for the stroke-affected hand within the first 10 days after stroke. We used “online” TMS to interfere with neural activity at subject-specific fMRI coordinates while recording 3D movement kinematics. Interfering with aIPS activity improved tapping performance in patients, but not healthy controls, suggesting a maladaptive role of this region early poststroke. Analyzing effective connectivity parameters using a Lasso prediction model revealed that behavioral TMS effects were predicted by the coupling of the stimulated aIPS with dPMC and ipsilesional M1. In conclusion, we found a strong link between patterns of frontoparietal connectivity and TMS effects, indicating a detrimental influence of the contralesional aIPS on motor performance early after stroke.
Collapse
Affiliation(s)
- Lukas Hensel
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Caroline Tscherpel
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52428 Jülich, Germany
| | - Jana Freytag
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Stella Ritter
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Anne K Rehme
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Lukas J Volz
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Simon B Eickhoff
- Medical Faculty, Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Brain and Behaviour, Institute of Neuroscience and Medicine, (INM-7), Research Centre Jülich, 52428 Jülich, Germany
| | - Gereon R Fink
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52428 Jülich, Germany
| | - Christian Grefkes
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52428 Jülich, Germany
| |
Collapse
|
11
|
Grefkes C, Fink GR. Recovery from stroke: current concepts and future perspectives. Neurol Res Pract 2020; 2:17. [PMID: 33324923 PMCID: PMC7650109 DOI: 10.1186/s42466-020-00060-6] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
Stroke is a leading cause of acquired, permanent disability worldwide. Although the treatment of acute stroke has been improved considerably, the majority of patients to date are left disabled with a considerable impact on functional independence and quality of life. As the absolute number of stroke survivors is likely to further increase due to the demographic changes in our aging societies, new strategies are needed in order to improve neurorehabilitation. The most critical driver of functional recovery post-stroke is neural reorganization. For developing novel, neurobiologically informed strategies to promote recovery of function, an improved understanding of the mechanisms enabling plasticity and recovery is mandatory. This review provides a comprehensive survey of recent developments in the field of stroke recovery using neuroimaging and non-invasive brain stimulation. We discuss current concepts of how the brain reorganizes its functional architecture to overcome stroke-induced deficits, and also present evidence for maladaptive effects interfering with recovery. We demonstrate that the combination of neuroimaging and neurostimulation techniques allows a better understanding of how brain plasticity can be modulated to promote the reorganization of neural networks. Finally, neurotechnology-based treatment strategies allowing patient-tailored interventions to achieve enhanced treatment responses are discussed. The review also highlights important limitations of current models, and finally closes with possible solutions and future directions.
Collapse
Affiliation(s)
- Christian Grefkes
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52425 Jülich, Germany
- Medical Faculty, University of Cologne & Department of Neurology, University Hospital Cologne, 50924 Cologne, Germany
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52425 Jülich, Germany
- Medical Faculty, University of Cologne & Department of Neurology, University Hospital Cologne, 50924 Cologne, Germany
| |
Collapse
|
12
|
Tscherpel C, Hensel L, Lemberg K, Freytag J, Michely J, Volz LJ, Fink GR, Grefkes C. Age affects the contribution of ipsilateral brain regions to movement kinematics. Hum Brain Mapp 2019; 41:640-655. [PMID: 31617272 PMCID: PMC7268044 DOI: 10.1002/hbm.24829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022] Open
Abstract
Healthy aging is accompanied by changes in brain activation patterns in the motor system. In older subjects, unilateral hand movements typically rely on increased recruitment of ipsilateral frontoparietal areas. While the two central concepts of aging‐related brain activity changes, “Hemispheric Asymmetry Reduction in Older Adults” (HAROLD), and “Posterior to Anterior Shift in Aging” (PASA), have initially been suggested in the context of cognitive tasks and were attributed to compensation, current knowledge regarding the functional significance of increased motor system activity remains scarce. We, therefore, used online interference transcranial magnetic stimulation in young and older subjects to investigate the role of key regions of the ipsilateral frontoparietal cortex, that is, (a) primary motor cortex (M1), (b) dorsal premotor cortex (dPMC), and (c) anterior intraparietal sulcus (IPS) in the control of hand movements of different motor demands. Our data suggest a change of the functional roles of ipsilateral brain areas in healthy age with a reduced relevance of ipsilateral M1 and a shift of importance toward dPMC for repetitive high‐frequency movements. These results support the notion that mechanisms conceptualized in the models of “PASA” and “HAROLD” also apply to the motor system.
Collapse
Affiliation(s)
- Caroline Tscherpel
- Medical Faculty, University of Cologne and Department of Neurology, University Hospital Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Lukas Hensel
- Medical Faculty, University of Cologne and Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Katharina Lemberg
- Medical Faculty, University of Cologne and Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Jana Freytag
- Medical Faculty, University of Cologne and Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Jochen Michely
- Medical Faculty, University of Cologne and Department of Neurology, University Hospital Cologne, Cologne, Germany.,Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Lukas J Volz
- Medical Faculty, University of Cologne and Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Gereon R Fink
- Medical Faculty, University of Cologne and Department of Neurology, University Hospital Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Christian Grefkes
- Medical Faculty, University of Cologne and Department of Neurology, University Hospital Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| |
Collapse
|