1
|
Hahn A, Reed MB, Murgaš M, Vraka C, Klug S, Schmidt C, Godbersen GM, Eggerstorfer B, Gomola D, Silberbauer LR, Nics L, Philippe C, Hacker M, Lanzenberger R. Dynamics of human serotonin synthesis differentially link to reward anticipation and feedback. Mol Psychiatry 2024:10.1038/s41380-024-02696-1. [PMID: 39179904 DOI: 10.1038/s41380-024-02696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Serotonin (5-HT) plays an essential role in reward processing, however, the possibilities to investigate 5-HT action in humans during emotional stimulation are particularly limited. Here we demonstrate the feasibility of assessing reward-specific dynamics in 5-HT synthesis using functional PET (fPET), combining its molecular specificity with the high temporal resolution of blood oxygen level dependent (BOLD) fMRI. Sixteen healthy volunteers underwent simultaneous fPET/fMRI with the radioligand [11C]AMT, a substrate for tryptophan hydroxylase. During the scan, participants completed the monetary incentive delay task and arterial blood samples were acquired for quantifying 5-HT synthesis rates. BOLD fMRI was recorded as a proxy of neuronal activation, allowing differentiation of reward anticipation and feedback. Monetary gain and loss resulted in substantial increases in 5-HT synthesis in the ventral striatum (VStr, +21% from baseline) and the anterior insula (+41%). In the VStr, task-specific 5-HT synthesis was further correlated with BOLD signal changes during reward feedback (ρ = -0.65), but not anticipation. Conversely, 5-HT synthesis in the anterior insula correlated with BOLD reward anticipation (ρ = -0.61), but not feedback. In sum, we provide a robust tool to identify task-induced changes in 5-HT action in humans, linking the dynamics of 5-HT synthesis to distinct phases of reward processing in a regionally specific manner. Given the relevance of altered reward processing in psychiatric disorders such as addiction, depression and schizophrenia, our approach offers a tailored assessment of impaired 5-HT signaling during cognitive and emotional processing.
Collapse
Affiliation(s)
- Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| | - Murray B Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Sebastian Klug
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Clemens Schmidt
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Benjamin Eggerstorfer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - David Gomola
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Leo R Silberbauer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Mandeville JB, Efthimiou N, Weigand-Whittier J, Hardy E, Knudsen GM, Jørgensen LM, Chen YCI. Partial volume correction of PET image data using geometric transfer matrices based on uniform B-splines. Phys Med Biol 2024; 69:055020. [PMID: 38271737 DOI: 10.1088/1361-6560/ad22a0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
Objective. Most methods for partial volume correction (PVC) of positron emission tomography (PET) data employ anatomical segmentation of images into regions of interest. This approach is not optimal for exploratory functional imaging beyond regional hypotheses. Here, we describe a novel method for unbiased voxel-wise PVC.Approach.B-spline basis functions were combined with geometric transfer matrices to enable a method (bsGTM) that provides PVC or alternatively provides smoothing with minimal regional crosstalk. The efficacy of the proposed method was evaluated using Monte Carlo simulations, human PET data, and murine functional PET data.Main results.In simulations, bsGTM provided recovery of partial volume signal loss comparable to iterative deconvolution, while demonstrating superior resilience to noise. In a real murine PET dataset, bsGTM yielded much higher sensitivity for detecting amphetamine-induced reduction of [11C]raclopride binding potential. In human PET data, bsGTM smoothing enabled increased signal-to-noise ratios with less degradation of binding potentials relative to Gaussian convolution or non-local means.Significance.bsGTM offers improved performance for PVC relative to iterative deconvolution, the current method of choice for voxel-wise PVC, especially in the common PET regime of low signal-to-noise ratio. The new method provides an anatomically unbiased way to compensate partial volume errors in cases where anatomical segmentation is unavailable or of questionable relevance or accuracy.
Collapse
Affiliation(s)
- Joseph B Mandeville
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Nikos Efthimiou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Jonah Weigand-Whittier
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA, United States of America
- Department of Bioengineering, University of California, Berkeley CA, United States of America
| | - Erin Hardy
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA, United States of America
| | - Gitte M Knudsen
- Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Louise M Jørgensen
- Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Yin-Ching I Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
3
|
Ocana-Santero G, Packer AM, Sharp T, Butt SJB. In Vivo Two-Photon Microscopy Reveals Sensory-Evoked Serotonin (5-HT) Release in Adult Mammalian Neocortex. ACS Chem Neurosci 2024; 15:456-461. [PMID: 38251903 PMCID: PMC10853926 DOI: 10.1021/acschemneuro.3c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
The recent development of genetically encoded fluorescent neurotransmitter biosensors has opened the door to recording serotonin (5-hydroxytryptamine, 5-HT) signaling dynamics with high temporal and spatial resolution in vivo. While this represents a significant step forward for serotonin research, the utility of available 5-HT biosensors remains to be fully established under diverse in vivo conditions. Here, we used two-photon microscopy in awake mice to examine the effectiveness of specific 5-HT biosensors for monitoring 5-HT dynamics in somatosensory cortex. Initial experiments found that whisker stimulation evoked a striking change in 5-HT biosensor signal. However, similar changes were observed in controls expressing green fluorescent protein, suggesting a potential hemodynamic artifact. Subsequent use of a second control fluorophore with emission peaks separated from the 5-HT biosensor revealed a reproducible, stimulus-locked increase in 5-HT signal. Our data highlight the promise of 5-HT biosensors for in vivo application, provided measurements are carried out with appropriate optical controls.
Collapse
Affiliation(s)
- Gabriel Ocana-Santero
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
- Department
of Physiology, Anatomy & Genetics, University
of Oxford, Oxford OX1 3PT, U.K.
| | - Adam M. Packer
- Department
of Physiology, Anatomy & Genetics, University
of Oxford, Oxford OX1 3PT, U.K.
| | - Trevor Sharp
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Simon J. B. Butt
- Department
of Physiology, Anatomy & Genetics, University
of Oxford, Oxford OX1 3PT, U.K.
| |
Collapse
|
4
|
Zhang X, Liu L, Li Y, Wang K, Zheng G, Zhang Y, Cheng J, Wen B. Altered local spontaneous brain activity pattern in children with right-eye amblyopia of varying degrees: evidence from fMRI. Neuroradiology 2023; 65:1757-1766. [PMID: 37749259 DOI: 10.1007/s00234-023-03221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 09/06/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE To investigate the abnormal changes of local brain activity in children with right-eye amblyopia of varying degrees. METHODS Data of resting-state functional magnetic resonance imaging were collected from 16 children with severe amblyopia, 17 children with mild to moderate amblyopia, and 15 children with normal binocular vision. Local brain activity was analyzed using the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo). RESULTS There were extensive ALFF differences among the three groups in 10 brain regions. There were extensive differences in ReHo among the three groups in 11 brain regions. The ALFF and ReHo of the right orbital part of the middle frontal gyrus displayed a significantly positive correlation with the best-corrected visual acuity of the right eye, respectively. The ALFF value and ReHo value of the right orbital part of the middle frontal gyrus followed the pattern of normal control < mild to moderate amblyopia < severe amblyopia. CONCLUSION This study demonstrated that there were changes in specific patterns of ALFF and ReHo in children with right-eye amblyopia of different degrees in brain regions performing visual sensorimotor and attentional control functions.
Collapse
Affiliation(s)
- Xiaopan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Magnetic Resonance and Brain Function, Zhengzhou, 450052, China
| | - Liang Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Magnetic Resonance and Brain Function, Zhengzhou, 450052, China
| | - Yadong Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kejia Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guangying Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Magnetic Resonance and Brain Function, Zhengzhou, 450052, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Norgaard M, Matheson GJ, Hansen HD, Thomas A, Searle G, Rizzo G, Veronese M, Giacomel A, Yaqub M, Tonietto M, Funck T, Gillman A, Boniface H, Routier A, Dalenberg JR, Betthauser T, Feingold F, Markiewicz CJ, Gorgolewski KJ, Blair RW, Appelhoff S, Gau R, Salo T, Niso G, Pernet C, Phillips C, Oostenveld R, Gallezot JD, Carson RE, Knudsen GM, Innis RB, Ganz M. PET-BIDS, an extension to the brain imaging data structure for positron emission tomography. Sci Data 2022; 9:65. [PMID: 35236846 PMCID: PMC8891322 DOI: 10.1038/s41597-022-01164-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/11/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Martin Norgaard
- Neurobiology Research Unit, Rigshospitalet, and Institute of Clinical Medicine, Univ. Copenhagen, København, Denmark.,Department of Psychology, Stanford University, California, USA
| | - Granville J Matheson
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA.,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Hanne D Hansen
- Neurobiology Research Unit, Rigshospitalet, and Institute of Clinical Medicine, Univ. Copenhagen, København, Denmark.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, MA, USA
| | - Adam Thomas
- Intramural Research Program, NIMH, Bethesda, USA
| | - Graham Searle
- Invicro and Division of Brain Sciences, Imperial College London, London, UK
| | - Gaia Rizzo
- Invicro and Division of Brain Sciences, Imperial College London, London, UK
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, King's College London, London, UK.,Department of Information Engineering, University of Padua, Padua, Italy
| | - Alessio Giacomel
- Centre for Neuroimaging Sciences, King's College London, London, UK
| | - Maqsood Yaqub
- Amsterdam UMC, location VUmc, department of radiology and nuclear medicine, Amsterdam, Netherlands
| | - Matteo Tonietto
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Thomas Funck
- INM-1, Jülich Forschungszentrum, Jülich, Germany
| | - Ashley Gillman
- Aust. e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Townsville, Australia
| | - Hugo Boniface
- Centre d'Acquisition et de Traitement des Images, CEA, Paris, France
| | - Alexandre Routier
- Inria, Aramis project-team, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtriére, Paris, France
| | - Jelle R Dalenberg
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tobey Betthauser
- Wisconsin Alzheimer's Disease Research Center, Division of Geriatrics, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | - Ross W Blair
- Department of Psychology, Stanford University, California, USA
| | - Stefan Appelhoff
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
| | - Remi Gau
- Institute of psychology, Université catholique de Louvain, Louvain la Neuve, Belgium
| | - Taylor Salo
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Guiomar Niso
- Psychological Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Cyril Pernet
- Neurobiology Research Unit, Rigshospitalet, and Institute of Clinical Medicine, Univ. Copenhagen, København, Denmark
| | - Christophe Phillips
- GIGA Cyclotron Research Centre in vivo imaging, University of Liege, Liege, Belgium
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.,NatMEG, Karolinska Institutet, Stockholm, Sweden
| | | | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
| | - Gitte M Knudsen
- Neurobiology Research Unit, Rigshospitalet, and Institute of Clinical Medicine, Univ. Copenhagen, København, Denmark
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, USA
| | - Melanie Ganz
- Neurobiology Research Unit, Rigshospitalet, and Institute of Clinical Medicine, Univ. Copenhagen, København, Denmark. .,Department of Computer Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
The Modulatory Role of Serotonin on Human Impulsive Aggression. Biol Psychiatry 2021; 90:447-457. [PMID: 34266672 DOI: 10.1016/j.biopsych.2021.05.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/29/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022]
Abstract
The hypothesis of chronically low brain serotonin levels as pathophysiologically linked to impulsive aggression has been around for several decades. Whereas the theory was initially based on indirect methods to probe serotonin function, our understanding of the neural mechanisms involved in impulsive aggression has progressed with recent advances in neuroimaging. The review integrates evidence based on data from several neuroimaging domains in humans. In vivo molecular neuroimaging findings demonstrate associations between impulsive aggression and high serotonin 1B and serotonin 4 receptor binding, high serotonin transporter levels, and low monoamine oxidase A levels, suggesting that low interstitial serotonin levels are a neurobiological risk factor for impulsive aggressive behavior. Imaging genetics suggests that serotonergic-related genetic polymorphisms associate with antisocial behavior, and some evidence indicates that the low-expressing monoamine oxidase A genotype specifically predisposes to impulsive aggression, which may be mediated by effects on corticolimbic function. Interventions that (presumably) alter serotonin levels have effects on brain activity within brain regions involved in impulsive aggression, notably the amygdala, dorsal striatum, anterior cingulate, insula, and prefrontal cortex. Based on these findings, we propose a model for the modulatory role of serotonin in impulsive aggression. Future studies should ensure that clinical features unique for impulsive aggression are appropriately assessed, and we propose investigations of knowledge gaps that can help confirm, refute, or modify our proposed model of impulsive aggression.
Collapse
|
7
|
Hansen HD, Lindberg U, Ozenne B, Fisher PM, Johansen A, Svarer C, Keller SH, Hansen AE, Knudsen GM. Visual stimuli induce serotonin release in occipital cortex: A simultaneous positron emission tomography/magnetic resonance imaging study. Hum Brain Mapp 2020; 41:4753-4763. [PMID: 32813903 PMCID: PMC7555083 DOI: 10.1002/hbm.25156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/25/2020] [Accepted: 07/21/2020] [Indexed: 12/27/2022] Open
Abstract
Endogenous serotonin (5-HT) release can be measured noninvasively using positron emission tomography (PET) imaging in combination with certain serotonergic radiotracers. This allows us to investigate effects of pharmacological and nonpharmacological interventions on brain 5-HT levels in living humans. Here, we study the neural responses to a visual stimulus using simultaneous PET/MRI. In a cross-over design, 11 healthy individuals were PET/MRI scanned with the 5-HT1B receptor radioligand [11 C]AZ10419369, which is sensitive to changes in endogenous 5-HT. During the last part of the scan, participants either viewed autobiographical images with positive valence (n = 11) or kept their eyes closed (n = 7). The visual stimuli increased cerebral blood flow (CBF) in the occipital cortex, as measured with pseudo-continuous arterial spin labeling. Simultaneously, we found decreased 5-HT1B receptor binding in the occipital cortex (-3.6 ± 3.6%), indicating synaptic 5-HT release. Using a linear regression model, we found that the change in 5-HT1B receptor binding was significantly negatively associated with change in CBF in the occipital cortex (p = .004). For the first time, we here demonstrate how cerebral 5-HT levels change in response to nonpharmacological stimuli in humans, as measured with PET. Our findings more directly support a link between 5-HT signaling and visual processing and/or visual attention.
Collapse
Affiliation(s)
- Hanne Demant Hansen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Massachusetts, Massachusetts
| | - Ulrich Lindberg
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen K, Denmark
| | - Patrick MacDonald Fisher
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Annette Johansen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Svarer
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sune Høgild Keller
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Adam Espe Hansen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|