1
|
Yang L, Sun Q, Van Hulle MM. Binocularly incongruent, multifrequency-coded SSVEP in VR: feasibility and characteristics. J Neural Eng 2024; 21:056013. [PMID: 39231466 DOI: 10.1088/1741-2552/ad775f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Objective.Steady-state visual evoked potentials (SSVEPs) in response to flickering stimuli are popular in brain-computer interfacing but their implementation in virtual reality (VR) offers new opportunities also for clinical applications. While traditional SSVEP target selection relies on single-frequency stimulation of both eyes simultaneously, further called congruent stimulation, recent studies attempted to improve the information transfer rate by using dual-frequency-coded SSVEP where each eye is presented with a stimulus flickering at a different frequency, further called incongruent stimulation. However, few studies have investigated incongruent multifrequency-coded SSVEP (MultiIncong-SSVEP).Approach.This paper reports on a systematical investigation of incongruent dual-, triple-, and quadruple-frequency-coded SSVEP for use in VR, several of which are entirely novel, and compares their performance with that of congruent dual-frequency-coded SSVEP.Main results.We were able to confirm the presence of a summation effect when comparing monocular- and binocular single-frequency congruent stimulation, and a suppression effect when comparing monocular- and binocular dual-frequency incongruent stimulation, as both tap into the binocular vision capabilities which, when hampered, could signal amblyopia.Significance.In sum, our findings not only evidence the potential of VR-based binocularly incongruent SSVEP but also underscore the importance of paradigm choice and decoder design to optimize system performance and user comfort.
Collapse
Affiliation(s)
- Liuyin Yang
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium
| | - Qiang Sun
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium
| | - Marc M Van Hulle
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
2
|
Gruenwald J, Sieghartsleitner S, Kapeller C, Scharinger J, Kamada K, Brunner P, Guger C. Characterization of High-Gamma Activity in Electrocorticographic Signals. Front Neurosci 2023; 17:1206120. [PMID: 37609450 PMCID: PMC10440607 DOI: 10.3389/fnins.2023.1206120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction Electrocorticographic (ECoG) high-gamma activity (HGA) is a widely recognized and robust neural correlate of cognition and behavior. However, fundamental signal properties of HGA, such as the high-gamma frequency band or temporal dynamics of HGA, have never been systematically characterized. As a result, HGA estimators are often poorly adjusted, such that they miss valuable physiological information. Methods To address these issues, we conducted a thorough qualitative and quantitative characterization of HGA in ECoG signals. Our study is based on ECoG signals recorded from 18 epilepsy patients while performing motor control, listening, and visual perception tasks. In this study, we first categorize HGA into HGA types based on the cognitive/behavioral task. For each HGA type, we then systematically quantify three fundamental signal properties of HGA: the high-gamma frequency band, the HGA bandwidth, and the temporal dynamics of HGA. Results The high-gamma frequency band strongly varies across subjects and across cognitive/behavioral tasks. In addition, HGA time courses have lowpass character, with transients limited to 10 Hz. The task-related rise time and duration of these HGA time courses depend on the individual subject and cognitive/behavioral task. Task-related HGA amplitudes are comparable across the investigated tasks. Discussion This study is of high practical relevance because it provides a systematic basis for optimizing experiment design, ECoG acquisition and processing, and HGA estimation. Our results reveal previously unknown characteristics of HGA, the physiological principles of which need to be investigated in further studies.
Collapse
Affiliation(s)
- Johannes Gruenwald
- g.tec medical engineering GmbH, Schiedlberg, Austria
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | - Sebastian Sieghartsleitner
- g.tec medical engineering GmbH, Schiedlberg, Austria
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | | | - Josef Scharinger
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | - Kyousuke Kamada
- Department for Neurosurgery, Asahikawa Medical University, Asahikawa, Japan
- Hokashin Group Megumino Hospital, Sapporo, Japan
| | - Peter Brunner
- National Center for Adaptive Neurotechnologies, Albany, NY, United States
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
3
|
Khachatryan E, Wittevrongel B, Reinartz M, Dauwe I, Carrette E, Meurs A, Van Roost D, Boon P, Van Hulle MM. Cognitive tasks propagate the neural entrainment in response to a visual 40 Hz stimulation in humans. Front Aging Neurosci 2022; 14:1010765. [PMID: 36275007 PMCID: PMC9582357 DOI: 10.3389/fnagi.2022.1010765] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction Alzheimer's disease is one of the great challenges in the coming decades, and despite great efforts, a widely effective disease-modifying therapy in humans remains elusive. One particular promising non-pharmacological therapy that has received increased attention in recent years is based on the Gamma ENtrainment Using Sensory stimulation (GENUS), a high-frequency neural response elicited by a visual and/or auditory stimulus at 40 Hz. While this has shown to be effective in animal models, studies on human participants have reported varying success. The current work hypothesizes that the varying success in humans is due to differences in cognitive workload during the GENUS sessions. Methods We recruited a cohort of 15 participants who underwent a scalp-EEG recording as well as one epilepsy patient who was implanted with 50 subdural surface electrodes over temporo-occipital and temporo-basal cortex and 14 depth contacts that targeted the hippocampus and insula. All participants completed several GENUS sessions, in each of which a different cognitive task was performed. Results We found that the inclusion of a cognitive task during the GENUS session not only has a positive effect on the strength and extent of the gamma entrainment, but also promotes the propagation of gamma entrainment to additional neural areas including deep ones such as hippocampus which were not recruited when no cognitive task was required from the participants. The latter is of particular interest given that the hippocampal complex is considered to be one of the primary targets for AD therapies. Discussion This work introduces a possible improvement strategy for GENUS therapy that might contribute to increasing the efficacy of the therapy or shortening the time needed for the positive outcome.
Collapse
Affiliation(s)
- Elvira Khachatryan
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
- Department of Neurology, General Hospital Maria Middelares, Ghent, Belgium
- Department of Neuroscience, Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
- *Correspondence: Elvira Khachatryan
| | - Benjamin Wittevrongel
- Department of Neuroscience, Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Mariska Reinartz
- Leuven Brain Institute (LBI), Leuven, Belgium
- Department of Neuroscience, Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium
| | - Ine Dauwe
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Evelien Carrette
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Alfred Meurs
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Dirk Van Roost
- Department of Neurosurgery, Ghent University Hospital, Ghent, Belgium
| | - Paul Boon
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Marc M. Van Hulle
- Department of Neuroscience, Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| |
Collapse
|
4
|
Wittevrongel B, Holmes N, Boto E, Hill R, Rea M, Libert A, Khachatryan E, Van Hulle MM, Bowtell R, Brookes MJ. Practical real-time MEG-based neural interfacing with optically pumped magnetometers. BMC Biol 2021; 19:158. [PMID: 34376215 PMCID: PMC8356471 DOI: 10.1186/s12915-021-01073-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/25/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Brain-computer interfaces decode intentions directly from the human brain with the aim to restore lost functionality, control external devices or augment daily experiences. To combine optimal performance with wide applicability, high-quality brain signals should be captured non-invasively. Magnetoencephalography (MEG) is a potent candidate but currently requires costly and confining recording hardware. The recently developed optically pumped magnetometers (OPMs) promise to overcome this limitation, but are currently untested in the context of neural interfacing. RESULTS In this work, we show that OPM-MEG allows robust single-trial analysis which we exploited in a real-time 'mind-spelling' application yielding an average accuracy of 97.7%. CONCLUSIONS This shows that OPM-MEG can be used to exploit neuro-magnetic brain responses in a practical and flexible manner, and opens up new avenues for a wide range of new neural interface applications in the future.
Collapse
Affiliation(s)
- Benjamin Wittevrongel
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium. .,Leuven Institute for Artificial Intelligence (Leuven.AI), Leuven, Belgium. .,Leuven Brain Institute (LBI), Leuven, Belgium.
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Ryan Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Arno Libert
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), Leuven, Belgium
| | - Elvira Khachatryan
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), Leuven, Belgium
| | - Marc M Van Hulle
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Leuven Institute for Artificial Intelligence (Leuven.AI), Leuven, Belgium.,Leuven Brain Institute (LBI), Leuven, Belgium
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Kawala-Sterniuk A, Browarska N, Al-Bakri A, Pelc M, Zygarlicki J, Sidikova M, Martinek R, Gorzelanczyk EJ. Summary of over Fifty Years with Brain-Computer Interfaces-A Review. Brain Sci 2021; 11:43. [PMID: 33401571 PMCID: PMC7824107 DOI: 10.3390/brainsci11010043] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/25/2020] [Accepted: 12/27/2020] [Indexed: 11/16/2022] Open
Abstract
Over the last few decades, the Brain-Computer Interfaces have been gradually making their way to the epicenter of scientific interest. Many scientists from all around the world have contributed to the state of the art in this scientific domain by developing numerous tools and methods for brain signal acquisition and processing. Such a spectacular progress would not be achievable without accompanying technological development to equip the researchers with the proper devices providing what is absolutely necessary for any kind of discovery as the core of every analysis: the data reflecting the brain activity. The common effort has resulted in pushing the whole domain to the point where the communication between a human being and the external world through BCI interfaces is no longer science fiction but nowadays reality. In this work we present the most relevant aspects of the BCIs and all the milestones that have been made over nearly 50-year history of this research domain. We mention people who were pioneers in this area as well as we highlight all the technological and methodological advances that have transformed something available and understandable by a very few into something that has a potential to be a breathtaking change for so many. Aiming to fully understand how the human brain works is a very ambitious goal and it will surely take time to succeed. However, even that fraction of what has already been determined is sufficient e.g., to allow impaired people to regain control on their lives and significantly improve its quality. The more is discovered in this domain, the more benefit for all of us this can potentially bring.
Collapse
Affiliation(s)
- Aleksandra Kawala-Sterniuk
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland; (N.B.); (M.P.); (J.Z.)
| | - Natalia Browarska
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland; (N.B.); (M.P.); (J.Z.)
| | - Amir Al-Bakri
- Department of Biomedical Engineering, College of Engineering, University of Babylon, 51001 Babylon, Iraq;
| | - Mariusz Pelc
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland; (N.B.); (M.P.); (J.Z.)
- Department of Computing and Information Systems, University of Greenwich, London SE10 9LS, UK
| | - Jaroslaw Zygarlicki
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland; (N.B.); (M.P.); (J.Z.)
| | - Michaela Sidikova
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava—FEECS, 708 00 Ostrava-Poruba, Czech Republic; (M.S.); (R.M.)
| | - Radek Martinek
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava—FEECS, 708 00 Ostrava-Poruba, Czech Republic; (M.S.); (R.M.)
| | - Edward Jacek Gorzelanczyk
- Department of Theoretical Basis of BioMedical Sciences and Medical Informatics, Nicolaus Copernicus University, Collegium Medicum, 85-067 Bydgoszcz, Poland;
- Institute of Philosophy, Kazimierz Wielki University, 85-092 Bydgoszcz, Poland
- Babinski Specialist Psychiatric Healthcare Center, Outpatient Addiction Treatment, 91-229 Lodz, Poland
- The Society for the Substitution Treatment of Addiction “Medically Assisted Recovery”, 85-791 Bydgoszcz, Poland
| |
Collapse
|
6
|
Wittevrongel B, Khachatryan E, Carrette E, Boon P, Meurs A, Van Roost D, Van Hulle MM. High-gamma oscillations precede visual steady-state responses: A human electrocorticography study. Hum Brain Mapp 2020; 41:5341-5355. [PMID: 32885895 PMCID: PMC7670637 DOI: 10.1002/hbm.25196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/03/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
The robust steady-state cortical activation elicited by flickering visual stimulation has been exploited by a wide range of scientific studies. As the fundamental neural response inherits the spectral properties of the gazed flickering, the paradigm has been used to chart cortical characteristics and their relation to pathologies. However, despite its widespread adoption, the underlying neural mechanisms are not well understood. Here, we show that the fundamental response is preceded by high-gamma (55-125 Hz) oscillations which are also synchronised to the gazed frequency. Using a subdural recording of the primary and associative visual cortices of one human subject, we demonstrate that the latencies of the high-gamma and fundamental components are highly correlated on a single-trial basis albeit that the latter is consistently delayed by approximately 55 ms. These results corroborate previous reports that top-down feedback projections are involved in the generation of the fundamental response, but, in addition, we show that trial-to-trial variability in fundamental latency is paralleled by a highly similar variability in high-gamma latency. Pathology- or paradigm-induced alterations in steady-state responses could thus originate either from deviating visual gamma responses or from aberrations in the neural feedback mechanism. Experiments designed to tease apart the two processes are expected to provide deeper insights into the studied paradigm.
Collapse
Affiliation(s)
| | | | - Evelien Carrette
- Laboratory of Clinical and Experimental NeurophysiologyGhent University HospitalGhentBelgium
| | - Paul Boon
- Laboratory of Clinical and Experimental NeurophysiologyGhent University HospitalGhentBelgium
| | - Alfred Meurs
- Laboratory of Clinical and Experimental NeurophysiologyGhent University HospitalGhentBelgium
| | - Dirk Van Roost
- Department of NeurosurgeryGhent University HospitalGhentBelgium
| | | |
Collapse
|