1
|
Fischer QS, Kalikulov D, Viana Di Prisco G, Williams CA, Baldwin PR, Friedlander MJ. Synaptic Plasticity in the Injured Brain Depends on the Temporal Pattern of Stimulation. J Neurotrauma 2024. [PMID: 38818799 DOI: 10.1089/neu.2024.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Neurostimulation protocols are increasingly used as therapeutic interventions, including for brain injury. In addition to the direct activation of neurons, these stimulation protocols are also likely to have downstream effects on those neurons' synaptic outputs. It is well known that alterations in the strength of synaptic connections (long-term potentiation, LTP; long-term depression, LTD) are sensitive to the frequency of stimulation used for induction; however, little is known about the contribution of the temporal pattern of stimulation to the downstream synaptic plasticity that may be induced by neurostimulation in the injured brain. We explored interactions of the temporal pattern and frequency of neurostimulation in the normal cerebral cortex and after mild traumatic brain injury (mTBI), to inform therapies to strengthen or weaken neural circuits in injured brains, as well as to better understand the role of these factors in normal brain plasticity. Whole-cell (WC) patch-clamp recordings of evoked postsynaptic potentials in individual neurons, as well as field potential (FP) recordings, were made from layer 2/3 of visual cortex in response to stimulation of layer 4, in acute slices from control (naive), sham operated, and mTBI rats. We compared synaptic plasticity induced by different stimulation protocols, each consisting of a specific frequency (1 Hz, 10 Hz, or 100 Hz), continuity (continuous or discontinuous), and temporal pattern (perfectly regular, slightly irregular, or highly irregular). At the individual neuron level, dramatic differences in plasticity outcome occurred when the highly irregular stimulation protocol was used at 1 Hz or 10 Hz, producing an overall LTD in controls and shams, but a robust overall LTP after mTBI. Consistent with the individual neuron results, the plasticity outcomes for simultaneous FP recordings were similar, indicative of our results generalizing to a larger scale synaptic network than can be sampled by individual WC recordings alone. In addition to the differences in plasticity outcome between control (naive or sham) and injured brains, the dynamics of the changes in synaptic responses that developed during stimulation were predictive of the final plasticity outcome. Our results demonstrate that the temporal pattern of stimulation plays a role in the polarity and magnitude of synaptic plasticity induced in the cerebral cortex while highlighting differences between normal and injured brain responses. Moreover, these results may be useful for optimization of neurostimulation therapies to treat mTBI and other brain disorders, in addition to providing new insights into downstream plasticity signaling mechanisms in the normal brain.
Collapse
Affiliation(s)
- Quentin S Fischer
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Djanenkhodja Kalikulov
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | | | - Carrie A Williams
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
| | - Philip R Baldwin
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Michael J Friedlander
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Faculty of Health Sciences, Virginia Tech, Roanoke, Virginia, USA
| |
Collapse
|
2
|
Aaltonen J, Heikkinen V, Kaltiainen H, Salmelin R, Renvall H. Sensor-level MEG combined with machine learning yields robust classification of mild traumatic brain injury patients. Clin Neurophysiol 2023; 153:79-87. [PMID: 37459668 DOI: 10.1016/j.clinph.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/06/2023] [Accepted: 06/09/2023] [Indexed: 08/21/2023]
Abstract
OBJECTIVE Diagnosis of mild traumatic brain injury (mTBI) is challenging despite its high incidence, due to the unspecificity and variety of symptoms and the frequent lack of structural imaging findings. There is a need for reliable and simple-to-use diagnostic tools that would be feasible across sites and patient populations. METHODS We evaluated linear machine learning (ML) methods' ability to separate mTBI patients from healthy controls, based on their sensor-level magnetoencephalographic (MEG) power spectra in the subacute phase (<2 months) after a head trauma. We recorded resting-state MEG data from 25 patients and 25 age-sex matched controls and utilized a previously collected data set of 20 patients and 20 controls from a different site. The data sets were analyzed separately with three ML methods. RESULTS The median classification accuracies varied between 80 and 95%, without significant differences between the applied ML methods or data sets. The classification accuracies were significantly higher with ML than with traditional sensor-level MEG analysis based on detecting pathological low-frequency activity. CONCLUSIONS Easily applicable linear ML methods provide reliable and replicable classification of mTBI patients using sensor-level MEG data. SIGNIFICANCE Power spectral estimates combined with ML can classify mTBI patients with high accuracy and have high promise for clinical use.
Collapse
Affiliation(s)
- Juho Aaltonen
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, P.O. Box 340, 00029 HUS Helsinki, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto University, P.O. Box 12200, 00760 AALTO, Finland.
| | - Verna Heikkinen
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, P.O. Box 340, 00029 HUS Helsinki, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto University, P.O. Box 12200, 00760 AALTO, Finland
| | - Hanna Kaltiainen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto University, P.O. Box 12200, 00760 AALTO, Finland; Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, P.O. Box 340, 00029 HUS, Helsinki, Finland
| | - Riitta Salmelin
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto University, P.O. Box 12200, 00760 AALTO, Finland
| | - Hanna Renvall
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, P.O. Box 340, 00029 HUS Helsinki, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto University, P.O. Box 12200, 00760 AALTO, Finland; Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, P.O. Box 340, 00029 HUS, Helsinki, Finland
| |
Collapse
|
4
|
Huang MX, Huang CW, Harrington DL, Robb-Swan A, Angeles-Quinto A, Nichols S, Huang JW, Le L, Rimmele C, Matthews S, Drake A, Song T, Ji Z, Cheng CK, Shen Q, Foote E, Lerman I, Yurgil KA, Hansen HB, Naviaux RK, Dynes R, Baker DG, Lee RR. Resting-state magnetoencephalography source magnitude imaging with deep-learning neural network for classification of symptomatic combat-related mild traumatic brain injury. Hum Brain Mapp 2021; 42:1987-2004. [PMID: 33449442 PMCID: PMC8046098 DOI: 10.1002/hbm.25340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 11/16/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Combat‐related mild traumatic brain injury (cmTBI) is a leading cause of sustained physical, cognitive, emotional, and behavioral disabilities in Veterans and active‐duty military personnel. Accurate diagnosis of cmTBI is challenging since the symptom spectrum is broad and conventional neuroimaging techniques are insensitive to the underlying neuropathology. The present study developed a novel deep‐learning neural network method, 3D‐MEGNET, and applied it to resting‐state magnetoencephalography (rs‐MEG) source‐magnitude imaging data from 59 symptomatic cmTBI individuals and 42 combat‐deployed healthy controls (HCs). Analytic models of individual frequency bands and all bands together were tested. The All‐frequency model, which combined delta‐theta (1–7 Hz), alpha (8–12 Hz), beta (15–30 Hz), and gamma (30–80 Hz) frequency bands, outperformed models based on individual bands. The optimized 3D‐MEGNET method distinguished cmTBI individuals from HCs with excellent sensitivity (99.9 ± 0.38%) and specificity (98.9 ± 1.54%). Receiver‐operator‐characteristic curve analysis showed that diagnostic accuracy was 0.99. The gamma and delta‐theta band models outperformed alpha and beta band models. Among cmTBI individuals, but not controls, hyper delta‐theta and gamma‐band activity correlated with lower performance on neuropsychological tests, whereas hypo alpha and beta‐band activity also correlated with lower neuropsychological test performance. This study provides an integrated framework for condensing large source‐imaging variable sets into optimal combinations of regions and frequencies with high diagnostic accuracy and cognitive relevance in cmTBI. The all‐frequency model offered more discriminative power than each frequency‐band model alone. This approach offers an effective path for optimal characterization of behaviorally relevant neuroimaging features in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ming-Xiong Huang
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, California, USA.,Department of Radiology, University of California, San Diego, California, USA
| | - Charles W Huang
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Deborah L Harrington
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, California, USA.,Department of Radiology, University of California, San Diego, California, USA
| | - Ashley Robb-Swan
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, California, USA.,Department of Radiology, University of California, San Diego, California, USA
| | - Annemarie Angeles-Quinto
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, California, USA.,Department of Radiology, University of California, San Diego, California, USA
| | - Sharon Nichols
- Department of Neurosciences, University of California, San Diego, California, USA
| | - Jeffrey W Huang
- Department of Computer Science, Columbia University, New York, New York, USA
| | - Lu Le
- ASPIRE Center, VASDHS Residential Rehabilitation Treatment Program, San Diego, California, USA
| | - Carl Rimmele
- ASPIRE Center, VASDHS Residential Rehabilitation Treatment Program, San Diego, California, USA
| | - Scott Matthews
- ASPIRE Center, VASDHS Residential Rehabilitation Treatment Program, San Diego, California, USA
| | - Angela Drake
- Cedar Sinai Medical Group Chronic Pain Program, Beverly Hills, California, USA
| | - Tao Song
- Department of Radiology, University of California, San Diego, California, USA
| | - Zhengwei Ji
- Department of Radiology, University of California, San Diego, California, USA
| | - Chung-Kuan Cheng
- Department of Computer Science and Engineering, University of California, San Diego, California, USA
| | - Qian Shen
- Department of Radiology, University of California, San Diego, California, USA
| | - Ericka Foote
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, California, USA
| | - Imanuel Lerman
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, California, USA
| | - Kate A Yurgil
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, California, USA.,Department of Psychological Sciences, Loyola University New Orleans, Louisiana, USA
| | - Hayden B Hansen
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, California, USA
| | - Robert K Naviaux
- Department of Medicine, University of California, San Diego, California, USA.,Department of Pediatrics, University of California, San Diego, California, USA.,Department of Pathology, University of California, San Diego, California, USA
| | - Robert Dynes
- Department of Physics, University of California, San Diego, California, USA
| | - Dewleen G Baker
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, California, USA.,VA Center of Excellence for Stress and Mental Health, San Diego, California, USA.,Department of Psychiatry, University of California, San Diego, California, USA
| | - Roland R Lee
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, California, USA.,Department of Radiology, University of California, San Diego, California, USA
| |
Collapse
|