1
|
Zeltser A, Ochneva A, Riabinina D, Zakurazhnaya V, Tsurina A, Golubeva E, Berdalin A, Andreyuk D, Leonteva E, Kostyuk G, Morozova A. EEG Techniques with Brain Activity Localization, Specifically LORETA, and Its Applicability in Monitoring Schizophrenia. J Clin Med 2024; 13:5108. [PMID: 39274319 PMCID: PMC11395834 DOI: 10.3390/jcm13175108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objectives: Electroencephalography (EEG) is considered a standard but powerful tool for the diagnosis of neurological and psychiatric diseases. With modern imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and magnetoencephalography (MEG), source localization can be improved, especially with low-resolution brain electromagnetic tomography (LORETA). The aim of this review is to explore the variety of modern techniques with emphasis on the efficacy of LORETA in detecting brain activity patterns in schizophrenia. The study's novelty lies in the comprehensive survey of EEG methods and detailed exploration of LORETA in schizophrenia research. This evaluation aligns with clinical objectives and has been performed for the first time. Methods: The study is split into two sections. Part I examines different EEG methodologies and adjuncts to detail brain activity in deep layers in articles published between 2018 and 2023 in PubMed. Part II focuses on the role of LORETA in investigating structural and functional changes in schizophrenia in studies published between 1999 and 2024 in PubMed. Results: Combining imaging techniques and EEG provides opportunities for mapping brain activity. Using LORETA, studies of schizophrenia have identified hemispheric asymmetry, especially increased activity in the left hemisphere. Cognitive deficits were associated with decreased activity in the dorsolateral prefrontal cortex and other areas. Comparison of the first episode of schizophrenia and a chronic one may help to classify structural change as a cause or as a consequence of the disorder. Antipsychotic drugs such as olanzapine or clozapine showed a change in P300 source density and increased activity in the delta and theta bands. Conclusions: Given the relatively low spatial resolution of LORETA, the method offers benefits such as accessibility, high temporal resolution, and the ability to map depth layers, emphasizing the potential of LORETA in monitoring the progression and treatment response in schizophrenia.
Collapse
Affiliation(s)
- Angelina Zeltser
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Daria Riabinina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Valeria Zakurazhnaya
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Anna Tsurina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Elizaveta Golubeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Institute of Biodesign and Research of Living Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Alexander Berdalin
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Denis Andreyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Marketing, Faculty of Economics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena Leonteva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Institute of Biodesign and Research of Living Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Department of Mental Health, Faculty of Psychology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Psychiatry, Federal State Budgetary Educational Institution of Higher Education "Russian Biotechnological University (ROSBIOTECH)", Volokolamskoye Highway 11, 125080 Moscow, Russia
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|
2
|
Mathew J, Adhia DB, Hall M, De Ridder D, Mani R. EEG-Based Cortical Alterations in Individuals With Chronic Knee Pain Secondary to Osteoarthritis: A Cross-sectional Investigation. THE JOURNAL OF PAIN 2024; 25:104429. [PMID: 37989404 DOI: 10.1016/j.jpain.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Chronic painful knee osteoarthritis (OA) is a disabling physical health condition. Alterations in brain responses to arthritic changes in the knee may explain persistent pain. This study investigated source localized, resting-state electroencephalography activity and functional connectivity in people with knee OA, compared to healthy controls. Adults aged 44 to 85 years with knee OA (n = 37) and healthy control (n = 39) were recruited. Resting-state electroencephalography was collected for 10 minutes and decomposed into infraslow frequency (ISF) to gamma frequency bands. Standard low-resolution electromagnetic brain tomography statistical nonparametric maps were conducted, current densities of regions of interest were compared between groups and correlation analyses were performed between electroencephalography (EEG) measures and clinical pain and functional outcomes in the knee OA group. Standard low-resolution electromagnetic brain tomography nonparametric maps revealed higher (P = .006) gamma band activity over the right insula (RIns) in the knee OA group. A significant (P < .0001) reduction in ISF band activity at the pregenual anterior cingulate cortex, whereas higher theta, alpha, beta, and gamma band activity at the dorsal anterior cingulate cortex, pregenual anterior cingulate cortex, the somatosensory cortex, and RIns in the knee OA group were identified. ISF activity of the dorsal anterior cingulate cortex was positively correlated with pain measures and psychological distress scores. Theta and alpha activity of RIns were negatively correlated with pain interference. In conclusion, aberrations in infraslow and faster frequency EEG oscillations at sensory discriminative, motivational-affective, and descending inhibitory cortical regions were demonstrated in people with chronic painful knee OA. Moreover, EEG oscillations were correlated with pain and functional outcome measures. PERSPECTIVE: This study confirms alterations in the rsEEG oscillations and its relationship with pain experience in people with knee OA. The study provides potential cortical targets and the EEG frequency bands for neuromodulatory interventions for managing chronic pain experience in knee OA.
Collapse
Affiliation(s)
- Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, New Zealand; Department of Anatomy, School of Biomedical Sciences, University of Otago, New Zealand; Pain@Otago Research Theme, University of Otago, New Zealand
| | - Divya B Adhia
- Pain@Otago Research Theme, University of Otago, New Zealand; Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Matthew Hall
- Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Dirk De Ridder
- Pain@Otago Research Theme, University of Otago, New Zealand; Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, New Zealand; Pain@Otago Research Theme, University of Otago, New Zealand
| |
Collapse
|
3
|
Mohammadi Y, Østergaard J, Graversen C, Andersen OK, Biurrun Manresa J. Validity and reliability of self-reported and neural measures of listening effort. Eur J Neurosci 2023; 58:4357-4370. [PMID: 37984406 DOI: 10.1111/ejn.16187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
Listening effort can be defined as a measure of cognitive resources used by listeners to perform a listening task. Various methods have been proposed to measure this effort, yet their reliability remains unestablished, a crucial step before their application in research or clinical settings. This study encompassed 32 participants undertaking speech-in-noise tasks across two sessions, approximately a week apart. They listened to sentences and word lists at varying signal-to-noise ratios (SNRs) (-9, -6, -3 and 0 dB), then retaining them for roughly 3 s. We evaluated the test-retest reliability of self-reported effort ratings, theta (4-7 Hz) and alpha (8-13 Hz) oscillatory power, suggested previously as neural markers of listening effort. Additionally, we examined the reliability of correct word percentages. Both relative and absolute reliability were assessed using intraclass correlation coefficients (ICC) and Bland-Altman analysis. We also computed the standard error of measurement (SEM) and smallest detectable change (SDC). Our findings indicated heightened frontal midline theta power for word lists compared to sentences during the retention phase under high SNRs (0 dB, -3 dB), likely indicating a greater memory load for word lists. We observed SNR's impact on alpha power in the right central region during the listening phase and frontal theta power during the retention phase in sentences. Overall, the reliability analysis demonstrated satisfactory between-session variability for correct words and effort ratings. However, neural measures (frontal midline theta power and right central alpha power) displayed substantial variability, even though group-level outcomes appeared consistent across sessions.
Collapse
Affiliation(s)
- Yousef Mohammadi
- Integrative Neuroscience, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jan Østergaard
- Department of Electronic Systems, Aalborg University, Aalborg, Denmark
| | - Carina Graversen
- Integrative Neuroscience, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ole Kaeseler Andersen
- Integrative Neuroscience, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - José Biurrun Manresa
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Institute for Research and Development in Bioengineering and Bioinformatics (IBB), CONICET-UNER, Oro Verde, Argentina
| |
Collapse
|
4
|
Kenefati G, Rockholt MM, Ok D, McCartin M, Zhang Q, Sun G, Maslinski J, Wang A, Chen B, Voigt EP, Chen ZS, Wang J, Doan LV. Changes in alpha, theta, and gamma oscillations in distinct cortical areas are associated with altered acute pain responses in chronic low back pain patients. Front Neurosci 2023; 17:1278183. [PMID: 37901433 PMCID: PMC10611481 DOI: 10.3389/fnins.2023.1278183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Chronic pain negatively impacts a range of sensory and affective behaviors. Previous studies have shown that the presence of chronic pain not only causes hypersensitivity at the site of injury but may also be associated with pain-aversive experiences at anatomically unrelated sites. While animal studies have indicated that the cingulate and prefrontal cortices are involved in this generalized hyperalgesia, the mechanisms distinguishing increased sensitivity at the site of injury from a generalized site-nonspecific enhancement in the aversive response to nociceptive inputs are not well known. Methods We compared measured pain responses to peripheral mechanical stimuli applied to a site of chronic pain and at a pain-free site in participants suffering from chronic lower back pain (n = 15) versus pain-free control participants (n = 15) by analyzing behavioral and electroencephalographic (EEG) data. Results As expected, participants with chronic pain endorsed enhanced pain with mechanical stimuli in both back and hand. We further analyzed electroencephalographic (EEG) recordings during these evoked pain episodes. Brain oscillations in theta and alpha bands in the medial orbitofrontal cortex (mOFC) were associated with localized hypersensitivity, while increased gamma oscillations in the anterior cingulate cortex (ACC) and increased theta oscillations in the dorsolateral prefrontal cortex (dlPFC) were associated with generalized hyperalgesia. Discussion These findings indicate that chronic pain may disrupt multiple cortical circuits to impact nociceptive processing.
Collapse
Affiliation(s)
- George Kenefati
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Mika M. Rockholt
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Deborah Ok
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Michael McCartin
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Guanghao Sun
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Julia Maslinski
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Aaron Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Baldwin Chen
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Erich P. Voigt
- Department of Otolaryngology-Head and Neck Surgery, New York University Grossman School of Medicine, New York, NY, United States
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Lisa V. Doan
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
5
|
Mussigmann T, Bardel B, Lefaucheur JP. Resting-state electroencephalography (EEG) biomarkers of chronic neuropathic pain. A systematic review. Neuroimage 2022; 258:119351. [PMID: 35659993 DOI: 10.1016/j.neuroimage.2022.119351] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022] Open
Abstract
Diagnosis and management of chronic neuropathic pain are challenging, leading to current efforts to characterize 'objective' biomarkers of pain using imaging or neurophysiological techniques, such as electroencephalography (EEG). A systematic literature review was conducted in PubMed-Medline and Web-of-Science until October 2021 to identify EEG biomarkers of chronic neuropathic pain in humans. The risk of bias was assessed by the Newcastle-Ottawa-Scale. Experimental, provoked, or chronic non-neuropathic pain studies were excluded. We identified 14 studies, in which resting-state EEG spectral analysis was compared between patients with pain related to a neurological disease and patients with the same disease but without pain or healthy controls. From these heterogeneous exploratory studies, some conclusions can be drawn, even if they must be weighted by the fact that confounding factors, such as medication and association with anxio-depressive disorders, are generally not taken into account. Overall, EEG signal power was increased in the θ band (4-7Hz) and possibly in the high-β band (20-30Hz), but decreased in the high-α-low-β band (10-20Hz) in the presence of ongoing neuropathic pain, while increased γ band oscillations were not evidenced, unlike in experimental pain. Consequently, the dominant peak frequency was decreased in the θ-α band and increased in the whole-β band in neuropathic pain patients. Disappointingly, pain intensity correlated with various EEG changes across studies, with no consistent trend. This review also discusses the location of regional pain-related EEG changes in the pain connectome, as the perspectives offered by advanced techniques of EEG signal analysis (source location, connectivity, or classification methods based on artificial intelligence). The biomarkers provided by resting-state EEG are of particular interest for optimizing the treatment of chronic neuropathic pain by neuromodulation techniques, such as transcranial alternating current stimulation or neurofeedback procedures.
Collapse
Affiliation(s)
- Thibaut Mussigmann
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Benjamin Bardel
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France.
| |
Collapse
|
6
|
Völker JM, Arguissain FG, Andersen OK, Biurrun Manresa J. Variability and effect sizes of intracranial current source density estimations during pain: Systematic review, experimental findings, and future perspectives. Hum Brain Mapp 2021; 42:2461-2476. [PMID: 33605512 PMCID: PMC8090781 DOI: 10.1002/hbm.25380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Pain arises from the integration of sensory and cognitive processes in the brain, resulting in specific patterns of neural oscillations that can be characterized by measuring electrical brain activity. Current source density (CSD) estimation from low-resolution brain electromagnetic tomography (LORETA) and its standardized (sLORETA) and exact (eLORETA) variants, is a common approach to identify the spatiotemporal dynamics of the brain sources in physiological and pathological pain-related conditions. However, there is no consensus on the magnitude and variability of clinically or experimentally relevant effects for CSD estimations. Here, we systematically examined reports of sample size calculations and effect size estimations in all studies that included the keywords pain, and LORETA, sLORETA, or eLORETA in Scopus and PubMed. We also assessed the reliability of LORETA CSD estimations during non-painful and painful conditions to estimate hypothetical sample sizes for future experiments using CSD estimations. We found that none of the studies included in the systematic review reported sample size calculations, and less than 20% reported measures of central tendency and dispersion, which are necessary to estimate effect sizes. Based on these data and our experimental results, we determined that sample sizes commonly used in pain studies using CSD estimations are suitable to detect medium and large effect sizes in crossover designs and only large effects in parallel designs. These results provide a comprehensive summary of the effect sizes observed using LORETA in pain research, and this information can be used by clinicians and researchers to improve settings and designs of future pain studies.
Collapse
Affiliation(s)
- Juan Manuel Völker
- Integrative Neuroscience Group, Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Federico Gabriel Arguissain
- Integrative Neuroscience Group, Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ole Kaeseler Andersen
- Integrative Neuroscience Group, Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - José Biurrun Manresa
- Integrative Neuroscience Group, Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Institute for Research and Development in Bioengineering and Bioinformatics (IBB), National Scientific and Technical Research Council (CONICET) and National University of Entre Ríos (UNER), Oro Verde, Argentina
| |
Collapse
|