1
|
Alexander NA, Kelly CL, Wang H, Nash RA, Beebe S, Brookes MJ, Kessler K. Oscillatory Neural Correlates of Police Firearms Decision-Making in Virtual Reality. eNeuro 2024; 11:ENEURO.0112-24.2024. [PMID: 38977304 PMCID: PMC11289585 DOI: 10.1523/eneuro.0112-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 07/10/2024] Open
Abstract
We investigated the neural signatures of expert decision-making in the context of police training in a virtual reality-based shoot/don't shoot scenario. Police officers can use stopping force against a perpetrator, which may require using a firearm and each decision made by an officer to discharge their firearm or not has substantial implications. Therefore, it is important to understand the cognitive and underlying neurophysiological processes that lead to such a decision. We used virtual reality-based simulations to elicit ecologically valid behavior from authorized firearms officers (AFOs) in the UK and matched novices in a shoot/don't shoot task and recorded electroencephalography concurrently. We found that AFOs had consistently faster response times than novices, suggesting our task was sensitive to their expertise. To investigate differences in decision-making processes under varying levels of threat and expertise, we analyzed electrophysiological signals originating from the anterior cingulate cortex. In line with similar response inhibition tasks, we found greater increases in preresponse theta power when participants inhibited the response to shoot when under no threat as compared with shooting. Most importantly, we showed that when preparing against threat, theta power increase was greater for experts than novices, suggesting that differences in performance between experts and novices are due to their greater orientation toward threat. Additionally, shorter beta rebounds suggest that experts were "ready for action" sooner. More generally, we demonstrate that the investigation of expert decision-making should incorporate naturalistic stimuli and an appropriate control group to enhance validity.
Collapse
Affiliation(s)
- Nicholas A Alexander
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, United Kingdom
- Aston Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham B4 7E, United Kingdom
| | - Clíona L Kelly
- Aston Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham B4 7E, United Kingdom
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Hongfang Wang
- Aston Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham B4 7E, United Kingdom
- School of Psychology, University College Dublin, Dublin D4, Ireland
| | - Robert A Nash
- Aston Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham B4 7E, United Kingdom
| | - Shaun Beebe
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2QX, United Kingdom
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2QX, United Kingdom
| | - Klaus Kessler
- Aston Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham B4 7E, United Kingdom
- School of Psychology, University College Dublin, Dublin D4, Ireland
| |
Collapse
|
2
|
Walshe EA, Roberts TPL, Ward McIntosh C, Winston FK, Romer D, Gaetz W. An event-based magnetoencephalography study of simulated driving: Establishing a novel paradigm to probe the dynamic interplay of executive and motor function. Hum Brain Mapp 2023; 44:2109-2121. [PMID: 36617993 PMCID: PMC9980886 DOI: 10.1002/hbm.26197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/27/2022] [Accepted: 12/10/2022] [Indexed: 01/10/2023] Open
Abstract
Magnetoencephalography (MEG) is particularly well-suited to the study of human motor cortex oscillatory rhythms and motor control. However, the motor tasks studied to date are largely overly simplistic. This study describes a new approach: a novel event-based simulated drive made operational via MEG compatible driving simulator hardware, paired with differential beamformer methods to characterize the neural correlates of realistic, complex motor activity. We scanned 23 healthy individuals aged 16-23 years (mean age = 19.5, SD = 2.5; 18 males and 5 females, all right-handed) who completed a custom-built repeated trials driving scenario. MEG data were recorded with a 275-channel CTF, and a volumetric magnetic resonance imaging scan was used for MEG source localization. To validate this paradigm, we hypothesized that pedal-use would elicit expected modulation of primary motor responses beta-event-related desynchronization (B-ERD) and movement-related gamma synchrony (MRGS). To confirm the added utility of this paradigm, we hypothesized that the driving task could also probe frontal cognitive control responses (specifically, frontal midline theta [FMT]). Three of 23 participants were removed due to excess head motion (>1.5 cm/trial), confirming feasibility. Nonparametric group analysis revealed significant regions of pedal-use related B-ERD activity (at left precentral foot area, as well as bilateral superior parietal lobe: p < .01 corrected), MRGS (at medial precentral gyrus: p < .01 corrected), and FMT band activity sustained around planned braking (at bilateral superior frontal gyrus: p < .01 corrected). This paradigm overcomes the limits of previous efforts by allowing for characterization of the neural correlates of realistic, complex motor activity in terms of brain regions, frequency bands and their dynamic temporal interplay.
Collapse
Affiliation(s)
- Elizabeth A. Walshe
- Center for Injury Research and PreventionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Timothy P. L. Roberts
- Center for Injury Research and PreventionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Lurie Family Foundations' MEG Imaging Center, Department of RadiologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Department of RadiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Chelsea Ward McIntosh
- Center for Injury Research and PreventionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Flaura K. Winston
- Center for Injury Research and PreventionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Department of RadiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA,Department of PediatricsPerelamn School of Medicine, University of PennysylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dan Romer
- Annenberg Public Policy CenterUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - William Gaetz
- Center for Injury Research and PreventionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Lurie Family Foundations' MEG Imaging Center, Department of RadiologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Department of RadiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|